1
|
Tsai YC, Hsin MC, Liu RJ, Li TW, Ch’ang HJ. Krüppel-like Factor 10 as a Prognostic and Predictive Biomarker of Radiotherapy in Pancreatic Adenocarcinoma. Cancers (Basel) 2023; 15:5212. [PMID: 37958386 PMCID: PMC10648792 DOI: 10.3390/cancers15215212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The prognosis of pancreatic adenocarcinoma (PDAC) remains poor, with a 5-year survival rate of 12%. Although radiotherapy is effective for the locoregional control of PDAC, it does not have survival benefits compared with systemic chemotherapy. Most patients with localized PDAC develop distant metastasis shortly after diagnosis. Upfront chemotherapy has been suggested so that patients with localized PDAC with early distant metastasis do not have to undergo radical local therapy. Several potential tissue markers have been identified for selecting patients who may benefit from local radiotherapy, thereby prolonging their survival. This review summarizes these biomarkers including SMAD4, which is significantly associated with PDAC failure patterns and survival. In particular, Krüppel-like factor 10 (KLF10) is an early response transcription factor of transforming growth factor (TGF)-β. Unlike TGF-β in advanced cancers, KLF10 loss in two-thirds of patients with PDAC was associated with rapid distant metastasis and radioresistance; thus, KLF10 can serve as a predictive and therapeutic marker for PDAC. For patients with resectable PDAC, a combination of KLF10 and SMAD4 expression in tumor tissues may help select those who may benefit the most from additional radiotherapy. Future trials should consider upfront systemic therapy or include molecular biomarker-enriched patients without early distant metastasis.
Collapse
Affiliation(s)
- Yi-Chih Tsai
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 350, Taiwan; (Y.-C.T.); (M.-C.H.)
| | - Min-Chieh Hsin
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 350, Taiwan; (Y.-C.T.); (M.-C.H.)
| | - Rui-Jun Liu
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 350, Taiwan; (Y.-C.T.); (M.-C.H.)
| | - Ting-Wei Li
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 350, Taiwan; (Y.-C.T.); (M.-C.H.)
| | - Hui-Ju Ch’ang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 350, Taiwan; (Y.-C.T.); (M.-C.H.)
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
- Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
2
|
Memon A, Lee WK. KLF10 as a Tumor Suppressor Gene and Its TGF-β Signaling. Cancers (Basel) 2018; 10:E161. [PMID: 29799499 PMCID: PMC6025274 DOI: 10.3390/cancers10060161] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/15/2018] [Accepted: 05/23/2018] [Indexed: 12/17/2022] Open
Abstract
Krüppel-like factor 10 (KLF10), originally named TGF-β (Transforming growth factor beta) inducible early gene 1 (TIEG1), is a DNA-binding transcriptional regulator containing a triple C2H2 zinc finger domain. By binding to Sp1 (specificity protein 1) sites on the DNA and interactions with other regulatory transcription factors, KLF10 encourages and suppresses the expression of multiple genes in many cell types. Many studies have investigated its signaling cascade, but other than the TGF-β/Smad signaling pathway, these are still not clear. KLF10 plays a role in proliferation, differentiation as well as apoptosis, just like other members of the SP (specificity proteins)/KLF (Krüppel-like Factors). Recently, several studies reported that KLF10 KO (Knock out) is associated with defects in cell and organs such as osteopenia, abnormal tendon or cardiac hypertrophy. Since KLF10 was first discovered, several studies have defined its role in cancer as a tumor suppressor. KLF10 demonstrate anti-proliferative effects and induce apoptosis in various carcinoma cells including pancreatic cancer, leukemia, and osteoporosis. Collectively, these data indicate that KLF10 plays a significant role in various biological processes and diseases, but its role in cancer is still unclear. Therefore, this review was conducted to describe and discuss the role and function of KLF10 in diseases, including cancer, with a special emphasis on its signaling with TGF-β.
Collapse
Affiliation(s)
- Azra Memon
- Laboratory of Developmental Genetics, Department of Biomedical Sciences, School of Medicine, Inha University, Incheon 22212, Korea.
| | - Woon Kyu Lee
- Laboratory of Developmental Genetics, Department of Biomedical Sciences, School of Medicine, Inha University, Incheon 22212, Korea.
| |
Collapse
|
3
|
Human cancer: Is it linked to dysfunctional lipid metabolism? Biochim Biophys Acta Gen Subj 2015; 1850:352-64. [DOI: 10.1016/j.bbagen.2014.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/27/2014] [Accepted: 11/03/2014] [Indexed: 11/23/2022]
|
4
|
Stebbing J, Lit LC, Zhang H, Darrington RS, Melaiu O, Rudraraju B, Giamas G. The regulatory roles of phosphatases in cancer. Oncogene 2014; 33:939-53. [PMID: 23503460 DOI: 10.1038/onc.2013.80] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/01/2013] [Indexed: 02/06/2023]
Abstract
The relevance of potentially reversible post-translational modifications required for controlling cellular processes in cancer is one of the most thriving arenas of cellular and molecular biology. Any alteration in the balanced equilibrium between kinases and phosphatases may result in development and progression of various diseases, including different types of cancer, though phosphatases are relatively under-studied. Loss of phosphatases such as PTEN (phosphatase and tensin homologue deleted on chromosome 10), a known tumour suppressor, across tumour types lends credence to the development of phosphatidylinositol 3-kinase inhibitors alongside the use of phosphatase expression as a biomarker, though phase 3 trial data are lacking. In this review, we give an updated report on phosphatase dysregulation linked to organ-specific malignancies.
Collapse
Affiliation(s)
- J Stebbing
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - L C Lit
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - H Zhang
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - R S Darrington
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - O Melaiu
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - B Rudraraju
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - G Giamas
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
5
|
Pang X, Li SL, Zhao ZH, Zhang HX, Gao DL. Clinical significance of expression of TGF-β1, TIEG1 and stathmin proteins in esophageal squamous cell carcinoma. Shijie Huaren Xiaohua Zazhi 2013; 21:327-331. [DOI: 10.11569/wcjd.v21.i4.327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyze the clinical significance of expression of transforming growth factor-β1 (TGF-β1), transforming growth factor β-inducible early gene 1 (TIEG1) and stathmin in esophageal squamous cell carcinoma (ESCC).
METHODS: Immunohistochemistry was used to detect the expression of TGF-β1, TIEG1 and stathmin in 62 cases of ESCC, 31 cases of tumor-adjacent atypical hyperplasia epithelium and 62 cases of normal esophageal epithelium.
RESULTS: The positive rates of TGF-β1 and TIEG1 proteins in normal esophageal epithelium were significantly higher than those in tumor-adjacent atypical hyperplasia epithelium and ESCC [TGF-β1: 62 (100.0) vs 22 (71.0), 41 (66.1), P < 0.05]. The expression of stathmin was also noted in ESCC and tumor-adjacent atypical hyperplasia epithelium, but its expression was not as wide as that of TGF-β1 and TIEG1. In normal esophageal epithelium, the expression of stathmin was not detected. Expression of stathmin in ESCC had a negative correlation with TGF-β1 and TIEG1 expression (r = -0.609, -0.459, both P < 0.05)). The expression of TGF-β1, TIEG1 and stathmin proteins was closely correlated with clinical grade and lymph node metastasis in ESCC (all P < 0.05).
CONCLUSION: TGF-β1 and TIEG1 may bind to stathmin, down-regulate stathmin expression and inhibit the metastasis of ESCC.
Collapse
|
6
|
Abstract
The Krüppel-like factor (KLF) family of transcription factors regulates diverse biological processes that include proliferation, differentiation, growth, development, survival, and responses to external stress. Seventeen mammalian KLFs have been identified, and numerous studies have been published that describe their basic biology and contribution to human diseases. KLF proteins have received much attention because of their involvement in the development and homeostasis of numerous organ systems. KLFs are critical regulators of physiological systems that include the cardiovascular, digestive, respiratory, hematological, and immune systems and are involved in disorders such as obesity, cardiovascular disease, cancer, and inflammatory conditions. Furthermore, KLFs play an important role in reprogramming somatic cells into induced pluripotent stem (iPS) cells and maintaining the pluripotent state of embryonic stem cells. As research on KLF proteins progresses, additional KLF functions and associations with disease are likely to be discovered. Here, we review the current knowledge of KLF proteins and describe common attributes of their biochemical and physiological functions and their pathophysiological roles.
Collapse
Affiliation(s)
- Beth B McConnell
- Departments of Medicine and of Hematology and Medical Oncology, Emory University School of Medicine,Atlanta, Georgia 30322, USA
| | | |
Collapse
|
7
|
Subramaniam M, Hawse JR, Rajamannan NM, Ingle JN, Spelsberg TC. Functional role of KLF10 in multiple disease processes. Biofactors 2010; 36:8-18. [PMID: 20087894 PMCID: PMC3104724 DOI: 10.1002/biof.67] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Since the discovery by this laboratory of the zinc finger transcription factor, KLF10, a member of the Krüppel-like family of transcription factors, there have been multiple publications regarding its functions and its immediate family members, in numerous cell types. KLF10 has been shown to be rapidly induced by TGFbeta1, 2, 3, E(2), epidermal growth factor, and bone morphogenetic protein-2. TGFbeta inducible early gene-1 activates the TGFbeta-Smad signaling pathway via repression of Smad 7 expression and activation of Smad 2 expression and activity. Overall, KLF10 has been implicated in cell differentiation, as a target gene for a variety of signaling pathways, and in serving as a potential marker for human diseases such as breast cancer, cardiac hypertrophy, and osteoporosis. Like other KLF members, KLF10 is expressed in specific cell types in numerous tissues and is known to be involved in repressing cell proliferation and inflammation as well as inducing apoptosis similar to that of TGFbeta. KLF10 binds to Sp-1-GC rich DNA sequences and can activate or repress the transcription of a number of genes. Overall, KLF10 has been shown to play a major role in the TGFbeta inhibition of cell proliferation and inflammation and induction of apoptosis, and its overexpression in human osteoblasts and pancreatic carcinoma cells mimics the actions of TGFbeta.
Collapse
Affiliation(s)
- Malayannan Subramaniam
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | |
Collapse
|
8
|
Jiang L, Chen Y, Chan CY, Wang X, Lin L, He ML, Lin MCM, Yew DT, Sung JJY, Li JC, Kung HF. Down-regulation of stathmin is required for TGF-beta inducible early gene 1 induced growth inhibition of pancreatic cancer cells. Cancer Lett 2009; 274:101-108. [PMID: 18930345 DOI: 10.1016/j.canlet.2008.09.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 07/08/2008] [Accepted: 09/03/2008] [Indexed: 12/19/2022]
Abstract
Transforming growth factor-beta (TGF-beta) inducible early gene 1 (TIEG1) is known to induce apoptosis in TGF-beta sensitive pancreatic cancer cells, yet its effect on TGF-beta resistant cancer cells remains unclear. In this study, TIEG1 was found to induce apoptosis in TGF-beta resistant cancer cells and concurrently enhanced gemcitabine chemosensitivity. Down-regulation of stathmin was noted to associate with TIEG1 expression, whilst ectopic overexpression of stathmin prevented TIEG1 mediated growth inhibition of tumor cells. Small interfering RNAs targeting stathmin inhibited pancreatic cancer cell growth. These suggest that stathmin is a downstream target of TIEG1.
Collapse
Affiliation(s)
- Lei Jiang
- Institute of Cell Biology, Zhejiang University, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Subramaniam M, Hawse JR, Johnsen SA, Spelsberg TC. Role of TIEG1 in biological processes and disease states. J Cell Biochem 2008; 102:539-48. [PMID: 17729309 DOI: 10.1002/jcb.21492] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel TGFbeta Inducible Early Gene-1 (TIEG1) was discovered in human osteoblast (OB) cells by our laboratory. Over the past decade, a handful of laboratories have revealed a multitude of organismic, cellular, and molecular functions of this gene. TIEG1 is now classified as a member of the 3 zinc finger family of Krüppel-like transcription factors (KLF10). Other closely related factors [TIEG2 (KLF11) and TIEG3/TIEG2b] have been reported and are briefly compared. As described in this review, TIEG1 is shown to play a role in regulating estrogen and TGFbeta actions, the latter through the Smad signaling pathway. In both cases, TIEG1 acts as an inducer or repressor of gene transcription to enhance the TGFbeta/Smad pathway, as well at other signaling pathways, to regulate cell proliferation, differentiation, and apoptosis. This review outlines TIEG1's molecular functions and roles in skeletal disease (osteopenia/osteoporosis), heart disease (hypertrophic cardiomyopathy), and cancer (breast and prostate).
Collapse
Affiliation(s)
- Malayannan Subramaniam
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
10
|
Bohuslav J, Chen LF, Kwon H, Mu Y, Greene WC. p53 induces NF-kappaB activation by an IkappaB kinase-independent mechanism involving phosphorylation of p65 by ribosomal S6 kinase 1. J Biol Chem 2004; 279:26115-25. [PMID: 15073170 DOI: 10.1074/jbc.m313509200] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apoptosis induced by p53 has been proposed to involve activation of the transcription factor NF-kappaB. Here we describe the novel molecular mechanism through which p53 and DNA-damaging agents activate NF-kappaB. NF-kappaB induction by p53 does not occur through classical activation of the IkappaB kinases and degradation of IkappaBalpha. Rather, p53 expression stimulates the serine/threonine kinase ribosomal S6 kinase 1 (RSK1), which in turn phosphorylates the p65 subunit of NF-kappaB. The lower affinity of RSK1-phosphorylated p65 for its negative regulator, IkappaBalpha, decreases IkappaBalpha-mediated nuclear export of shuttling forms of NF-kappaB, thereby promoting the binding and action of NF-kappaB on cognate kappaB enhancers. These findings highlight a rather unusual pathway of NF-kappaB activation, which is utilized by the p53 tumor suppressor.
Collapse
Affiliation(s)
- Jan Bohuslav
- Gladstone Institute of Virology and Immunology and the Department of Medicine, University of California, San Francisco, California 94143-1234, USA
| | | | | | | | | |
Collapse
|
11
|
Abstract
Pancreatic adenocarcinoma is characterized by poor prognosis, because of late diagnosis and lack of response to chemo- and/or radiation therapies. Resistance to apoptosis mainly causes this insensitivity to conventional therapies. Apoptosis or programmed cell death is a central regulator of tissue homeostasis. Certain genetic disturbances of apoptotic signaling pathways have been found in carcinomas leading to tumor development and progression. In the past few years, the knowledge about the complex pathways of apoptosis has strongly increased and new therapeutic approaches based on this knowledge are being developed. This review will focus on the role of apoptotic proteins contributing to pancreatic cancer development and progression and will demonstrate possible targets to influence this deadly disease.
Collapse
Affiliation(s)
- Sabine Westphal
- Molecular Oncology, Clinic for General and Thoracic Surgery, University of Kiel, Arnold-Heller-Str. 7, 24105 Kiel, Germany
| | - Holger Kalthoff
- Molecular Oncology, Clinic for General and Thoracic Surgery, University of Kiel, Arnold-Heller-Str. 7, 24105 Kiel, Germany
| |
Collapse
|