1
|
Tsuchiya H, Shimada M, Tsukada K, Meng Q, Kobayashi J, Matsumoto Y. THE ROLE OF DNA DOUBLE-STRAND BREAK REPAIR THROUGH NON-HOMOLOGOUS END JOINING IN THE DOSE-RATE EFFECT IN TERMS OF CLONOGENIC ABILITY. RADIATION PROTECTION DOSIMETRY 2022; 198:990-997. [PMID: 36083749 DOI: 10.1093/rpd/ncac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 06/15/2023]
Abstract
It is generally and widely accepted that the biological effects of a given dose of ionizing radiation, especially those of low linear energy transfer radiations like X-ray and gamma ray, become smaller as the dose rate becomes lower. This phenomenon, known as 'dose-rate effect (DRE),' is considered due to the repair of sublethal damage during irradiation but the precise mechanisms for DRE have remained to be clarified. We recently showed that DRE in terms of clonogenic cell survival is diminished or even inversed in rodent cells lacking Ku, which is one of the essential factors in the repair of DNA double-strand breaks (DSBs) through non-homologous end joining (NHEJ). Here we review and discuss the involvement of NHEJ in DRE, which has potential implications in radiological protection and cancer therapeutics.
Collapse
Affiliation(s)
- Hisayo Tsuchiya
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Mikio Shimada
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Kaima Tsukada
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Qingmei Meng
- Department of Interdisciplinary Environment, Graduate School of Human and Environmental Sciences, Kyoto University, Yoshidanihonmatsucho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Junya Kobayashi
- Department of Radiological Sciences, School of Health Science at Narita, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba 286-8686, Japan
| | - Yoshihisa Matsumoto
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
2
|
A comprehensive analysis of the relationship between dose-rate and biological effects in pre-clinical and clinical studies, from brachytherapy to flattening filter-free radiation therapy and FLASH irradiation. Int J Radiat Oncol Biol Phys 2022; 113:985-995. [DOI: 10.1016/j.ijrobp.2022.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 01/16/2023]
|
3
|
Lee JK, Lee SY, Jeong J, Baik MH. Effects of gamma irradiation and Shewanella putrefaciens on the sorption of uranium by goethite. J Radioanal Nucl Chem 2015. [DOI: 10.1007/s10967-015-4552-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Löbrich M, Jeggo PA. The two edges of the ATM sword: co-operation between repair and checkpoint functions. Radiother Oncol 2006; 76:112-8. [PMID: 16026874 DOI: 10.1016/j.radonc.2005.06.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 05/26/2005] [Accepted: 06/18/2005] [Indexed: 12/22/2022]
Abstract
ATM is a central component of a signal transduction process that responds to DNA double strand breaks (DSBs) ultimately effecting cell cycle checkpoint arrest and/or apoptosis. Recent studies have shown that ATM also regulates a mechanism of processing a subset of DNA ends that appear to be difficult to ligate, since they are rejoined with slow kinetics in control cells. In the absence of this process, which involves the nuclease, Artemis, the DSBs either remain unrejoined or potentially undergo misrejoining. Thus, ATM's checkpoint function specifically facilitates its repair function. Here, we discuss the contribution of this novel function of ATM to survival after ionising irradiation and to cancer avoidance. We suggest that ATM's strength as a damage response protein lies in the co-ordination of its repair and checkpoint functions making a razor sharp knife out of two blunter edges.
Collapse
Affiliation(s)
- Markus Löbrich
- Fachrichtung Biophysik, Universität des Saarlandes, Homburg/Saar, Germany.
| | | |
Collapse
|
5
|
Löbrich M, Jeggo PA. Harmonising the response to DSBs: a new string in the ATM bow. DNA Repair (Amst) 2005; 4:749-59. [PMID: 15978533 DOI: 10.1016/j.dnarep.2004.12.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Accepted: 12/16/2004] [Indexed: 01/12/2023]
Abstract
Ataxia telangiestasia mutated protein (ATM) is the major kinase that initiates the DNA damage signal transduction response following exposure to ionising radiation (IR) in mammalian cells. DNA non-homologous end-joining (NHEJ) is the most significant double strand break (DSB) repair pathway in mammalian cells. ATM-defective cell lines display cell cycle checkpoint defects and show pronounced radiosensitivity. ATM signalling was previously thought to be dispensable for NHEJ. This review discusses recent findings that ATM activates an end-processing mechanism dependent upon Artemis, a nuclease that also functions to cleave the hairpin intermediate generated during V(D)J recombination. ATM/Artemis-dependent end-processing is required for the repair of a sub-fraction (approximately 10%) of DSBs induced by IR and makes a significant contribution to survival following exposure to ionising radiation. This result represents a new role for ATM and demonstrates a novel cross communication between the DNA repair and signal transduction machinery.
Collapse
Affiliation(s)
- Markus Löbrich
- Fachrichtung Biophysik, Universität des Saarlandes, D-66421 Homburg/Saar, Germany.
| | | |
Collapse
|
6
|
Roullin VG, Mege M, Lemaire L, Cueyssac JP, Venier-Julienne MC, Menei P, Gamelin E, Benoit JP. Influence of 5-fluorouracil-loaded microsphere formulation on efficient rat glioma radiosensitization. Pharm Res 2005; 21:1558-63. [PMID: 15497679 DOI: 10.1023/b:pham.0000041448.22771.48] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To determine (i) the efficiency of radiosensitizing 5-FU-loaded microspheres and (ii) the impact of microparticle formulation on response to treatment. METHODS C6 tumor-bearing rats were stereotactically implanted with microspheres and/or allocated to: control groups (untreated) or treatment (only radiotherapy; fast-release 5-FU microspheres + radiotherapy; slow-release 5-FU microspheres + radiotherapy). The next day, fractionated radiotherapy, limited to the hemibrain, was initiated in all treated animals. The irradiation cycle included 36 Gy, given in 9 sessions for 3 consecutive weeks. Tumor development was assessed by T2-weighted MRI. RESULTS 5-FU microspheres associated with radiotherapy caused a 47% complete remission rate (9/19) as opposed to the 8% rate (1/12) when radiotherapy alone or 0% in control animals. Drug delivery for 3 weeks produced better survival results (57%) compared to one-week sustained release (41%). MR images showed exponentially increasing tumor volumes during the first half of the radiotherapy cycle, followed by a decrease, and the disappearance of the tumor if survival exceeded 120 days. CONCLUSIONS 5-FU controlled delivery is a promising strategy for radiosensitizing gliomas. Drug delivery system formulation is unambiguously implicated in both the response to treatment and the limitation of toxic side effects.
Collapse
|
7
|
Riballo E, Kühne M, Rief N, Doherty A, Smith GCM, Recio MJ, Reis C, Dahm K, Fricke A, Krempler A, Parker AR, Jackson SP, Gennery A, Jeggo PA, Löbrich M. A Pathway of Double-Strand Break Rejoining Dependent upon ATM, Artemis, and Proteins Locating to γ-H2AX Foci. Mol Cell 2004; 16:715-24. [PMID: 15574327 DOI: 10.1016/j.molcel.2004.10.029] [Citation(s) in RCA: 661] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Revised: 09/14/2004] [Accepted: 10/27/2004] [Indexed: 02/06/2023]
Abstract
The hereditary disorder ataxia telangiectasia (A-T) is associated with striking cellular radiosensitivity that cannot be attributed to the characterized cell cycle checkpoint defects. By epistasis analysis, we show that ataxia telangiectasia mutated protein (ATM) and Artemis, the protein defective in patients with RS-SCID, function in a common double-strand break (DSB) repair pathway that also requires H2AX, 53BP1, Nbs1, Mre11, and DNA-PK. We show that radiation-induced Artemis hyperphosphorylation is ATM dependent. The DSB repair process requires Artemis nuclease activity and rejoins approximately 10% of radiation-induced DSBs. Our findings are consistent with a model in which ATM is required for Artemis-dependent processing of double-stranded ends with damaged termini. We demonstrate that Artemis is a downstream component of the ATM signaling pathway required uniquely for the DSB repair function but dispensable for ATM-dependent cell cycle checkpoint arrest. The significant radiosensitivity of Artemis-deficient cells demonstrates the importance of this component of DSB repair to survival.
Collapse
Affiliation(s)
- Enriqueta Riballo
- Genome Damage and Stability Centre, University of Sussex, East Sussex, BN1 9RQ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Miura Y. Oxidative stress, radiation-adaptive responses, and aging. JOURNAL OF RADIATION RESEARCH 2004; 45:357-372. [PMID: 15613781 DOI: 10.1269/jrr.45.357] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Organisms living in an aerobic environment were forced to evolve effective cellular strategies to detoxify reactive oxygen species. Besides diverse antioxidant enzymes and compounds, DNA repair enzymes, and disassembly systems, which remove damaged proteins, regulation systems that control transcription, translation, and activation have also been developed. The adaptive responses, especially those to radiation, are defensive regulation mechanisms by which oxidative stress (conditioning irradiation) elicits a response against damage because of subsequent stress (challenging irradiation). Although many researchers have investigated these molecular mechanisms, they remain obscure because of their complex signaling pathways and the involvement of various proteins. This article reviews the factors concerned with radiation-adaptive response, the signaling pathways activated by conditioning irradiation, and the effects of aging on radiation-adaptive response. The proteomics approach is also introduced, which is a useful method for studying stress response in cells.
Collapse
Affiliation(s)
- Yuri Miura
- Redox regulation research group, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku. Tokyo, Japan.
| |
Collapse
|
9
|
Wang B, Ohyama H, Shang Y, Tanaka K, Aizawa S, Yukawa O, Hayata I. Adaptive response in embryogenesis: V. Existence of two efficient dose-rate ranges for 0.3 Gy of priming irradiation to adapt mouse fetuses. Radiat Res 2004; 161:264-72. [PMID: 14982488 DOI: 10.1667/rr3141] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The adaptive response is an important phenomenon in radiobiology. A study of the conditions essential for the induction of an adaptive response is of critical importance to understanding the novel biological defense mechanisms against the hazardous effects of radiation. In our previous studies, the specific dose and timing of radiation for induction of an adaptive response were studied in ICR mouse fetuses. We found that exposure of the fetuses on embryonic day 11 to a priming dose of 0.3 Gy significantly suppressed prenatal death and malformation induced by a challenging dose of radiation on embryonic day 12. Since a significant dose-rate effect has been observed in a variety of radiobiological phenomena, the effect of dose rate on the effectiveness of induction of an adaptive response by a priming dose of 0.3 Gy administered to fetuses on embryonic day 11 was investigated over the range from 0.06 to 5.0 Gy/min. The occurrence of apoptosis in limb buds, incidences of prenatal death and digital defects, and postnatal mortality induced by a challenging dose of 3.5 Gy given at 1.8 Gy/min to the fetuses on embryonic day 12 were the biological end points examined. Unexpectedly, effective induction of an adaptive response was observed within two dose-rate ranges for the same dose of priming radiation, from 0.18 to 0.98 Gy/ min and from 3.5 to 4.6 Gy/min, for reduction of the detrimental effect induced by a challenging dose of 3.5 Gy. In contrast, when the priming irradiation was delivered at a dose rate outside these two ranges, no protective effect was observed, and at some dose rates elevation of detrimental effects was observed. In general, neither a normal nor a reverse dose- rate effect was found in the dose-rate range tested. These results clearly indicated that the dose rate at which the priming irradiation was delivered played a crucial role in the induction of an adaptive response. This paper provides the first evidence for the existence of two dose-rate ranges for the same dose of priming radiation to successfully induce an adaptive response in mouse fetuses.
Collapse
Affiliation(s)
- Bing Wang
- Radiation Hazards Research Group, Radiation Safety Research Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | | | | | | | | | | | | |
Collapse
|
10
|
Sasaki MS, Ejima Y, Tachibana A, Yamada T, Ishizaki K, Shimizu T, Nomura T. DNA damage response pathway in radioadaptive response. Mutat Res 2002; 504:101-18. [PMID: 12106651 DOI: 10.1016/s0027-5107(02)00084-2] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Radioadaptive response is a biological defense mechanism in which low-dose ionizing irradiation elicits cellular resistance to the genotoxic effects of subsequent irradiation. However, its molecular mechanism remains largely unknown. We previously demonstrated that the dose recognition and adaptive response could be mediated by a feedback signaling pathway involving protein kinase C (PKC), p38 mitogen activated protein kinase (p38MAPK) and phospholipase C (PLC). Further, to elucidate the downstream effector pathway, we studied the X-ray-induced adaptive response in cultured mouse and human cells with different genetic background relevant to the DNA damage response pathway, such as deficiencies in TP53, DNA-PKcs, ATM and FANCA genes. The results showed that p53 protein played a key role in the adaptive response while DNA-PKcs, ATM and FANCA were not responsible. Wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K), mimicked the priming irradiation in that the inhibitor alone rendered the cells resistant against the induction of chromosome aberrations and apoptosis by the subsequent X-ray irradiation. The adaptive response, whether it was afforded by low-dose X-rays or wortmannin, occurred in parallel with the reduction of apoptotic cell death by challenging doses. The inhibitor of p38MAPK which blocks the adaptive response did not suppress apoptosis. These observations indicate that the adaptive response and apoptotic cell death constitute a complementary defense system via life-or-death decisions. The p53 has a pivotal role in channeling the radiation-induced DNA double-strand breaks (DSBs) into an adaptive legitimate repair pathway, where the signals are integrated into p53 by a circuitous PKC-p38MAPK-PLC damage sensing pathway, and hence turning off the signals to an alternative pathway to illegitimate repair and apoptosis. A possible molecular mechanism of adaptive response to low-dose ionizing irradiation has been discussed in relation to the repair of DSBs and implicated to the current controversial observations on the expression of adaptive response.
Collapse
Affiliation(s)
- Masao S Sasaki
- Radiation Biology Center, Kyoto University, Yoshida-konoecho, Sakyo-ku, Kyoto, Japan.
| | | | | | | | | | | | | |
Collapse
|