1
|
Sayin AZ, Abali Z, Senyuz S, Cankara F, Gursoy A, Keskin O. Conformational diversity and protein-protein interfaces in drug repurposing in Ras signaling pathway. Sci Rep 2024; 14:1239. [PMID: 38216592 PMCID: PMC10786864 DOI: 10.1038/s41598-023-50913-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/27/2023] [Indexed: 01/14/2024] Open
Abstract
We focus on drug repurposing in the Ras signaling pathway, considering structural similarities of protein-protein interfaces. The interfaces formed by physically interacting proteins are found from PDB if available and via PRISM (PRotein Interaction by Structural Matching) otherwise. The structural coverage of these interactions has been increased from 21 to 92% using PRISM. Multiple conformations of each protein are used to include protein dynamics and diversity. Next, we find FDA-approved drugs bound to structurally similar protein-protein interfaces. The results suggest that HIV protease inhibitors tipranavir, indinavir, and saquinavir may bind to EGFR and ERBB3/HER3 interface. Tipranavir and indinavir may also bind to EGFR and ERBB2/HER2 interface. Additionally, a drug used in Alzheimer's disease can bind to RAF1 and BRAF interface. Hence, we propose a methodology to find drugs to be potentially used for cancer using a dataset of structurally similar protein-protein interface clusters rather than pockets in a systematic way.
Collapse
Affiliation(s)
- Ahenk Zeynep Sayin
- Department of Chemical and Biological Engineering, College of Engineering, Koc University, Rumeli Feneri Yolu Sariyer, 34450, Istanbul, Turkey
| | - Zeynep Abali
- Graduate School of Science and Engineering, Computational Sciences and Engineering, Koc University, 34450, Istanbul, Turkey
| | - Simge Senyuz
- Graduate School of Science and Engineering, Computational Sciences and Engineering, Koc University, 34450, Istanbul, Turkey
| | - Fatma Cankara
- Graduate School of Science and Engineering, Computational Sciences and Engineering, Koc University, 34450, Istanbul, Turkey
| | - Attila Gursoy
- Department of Computer Engineering, Koc University, 34450, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, College of Engineering, Koc University, Rumeli Feneri Yolu Sariyer, 34450, Istanbul, Turkey.
| |
Collapse
|
2
|
Abstract
The enzyme acetylcholinesterase (AChE) is a serine hydrolase whose primary function is to degrade acetylcholine (ACh) and terminate neurotransmission. Apart from its role in synaptic transmission, AChE has several "non-classical" functions in non-neuronal cells. AChE is involved in cellular growth, apoptosis, drug resistance pathways, response to stress signals and inflammation. The observation that the functional activity of AChE is altered in human tumors (relative to adjacent matched normal tissue) has raised several intriguing questions about its role in the pathophysiology of human cancers. Published reports show that AChE is a vital regulator of oncogenic signaling pathways involving proliferation, differentiation, cell-cell adhesion, migration, invasion and metastasis of primary tumors. The objective of this book chapter is to provide a comprehensive overview of the contributions of the AChE-signaling pathway in the growth of progression of human cancers. The AChE isoforms, AChE-T, AChE-R and AChE-S are robustly expressed in human cancer cell lines as well in human tumors (isolated from patients). Traditionally, AChE-modulators have been used in the clinic for treatment of neurodegenerative disorders. Emerging studies reveal that these drugs could be repurposed for the treatment of human cancers. The discovery of potent, selective AChE ligands will provide new knowledge about AChE-regulatory pathways in human cancers and foster the hope of novel therapies for this disease.
Collapse
Affiliation(s)
- Stephen D Richbart
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Justin C Merritt
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Nicholas A Nolan
- West Virginia University Medical School, Morgantown, WV, United States
| | - Piyali Dasgupta
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States.
| |
Collapse
|
3
|
Obajuluwa AO, Akinyemi AJ, Afolabi OB, Adekoya K, Sanya JO, Ishola AO. Exposure to radio-frequency electromagnetic waves alters acetylcholinesterase gene expression, exploratory and motor coordination-linked behaviour in male rats. Toxicol Rep 2017; 4:530-534. [PMID: 29657919 PMCID: PMC5897318 DOI: 10.1016/j.toxrep.2017.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/12/2017] [Accepted: 09/30/2017] [Indexed: 01/27/2023] Open
Abstract
Humans in modern society are exposed to an ever-increasing number of electromagnetic fields (EMFs) and some studies have demonstrated that these waves can alter brain function but the mechanism still remains unclear. Hence, this study sought to investigate the effect of 2.5 Ghz band radio-frequency electromagnetic waves (RF-EMF) exposure on cerebral cortex acetylcholinesterase (AChE) activity and their mRNA expression level as well as locomotor function and anxiety-linked behaviour in male rats. Animals were divided into four groups namely; group 1 was control (without exposure), group 2-4 were exposed to 2.5 Ghz radiofrequency waves from an installed WI-FI device for a period of 4, 6 and 8 weeks respectively. The results revealed that WiFi exposure caused a significant increase in anxiety level and affect locomotor function. Furthermore, there was a significant decrease in AChE activity with a concomitant increase in AChE mRNA expression level in WiFi exposed rats when compared with control. In conclusions, these data showed that long term exposure to WiFi may lead to adverse effects such as neurodegenerative diseases as observed by a significant alteration on AChE gene expression and some neurobehavioral parameters associated with brain damage.
Collapse
Affiliation(s)
| | - Ayodele Jacob Akinyemi
- Biochemistry Department, College of Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | | | - Khalid Adekoya
- Cell Biology and Genetics Department, Faculty of Sciences, University of Lagos, Lagos, Nigeria
| | | | - Azeez Olakunle Ishola
- Anatomy Department, College of Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| |
Collapse
|
4
|
|
5
|
Fernández-Gómez FJ, Muñoz-Delgado E, Montenegro MF, Campoy FJ, Vidal CJ, Jordán J. Cholinesterase activity in brain of senescence-accelerated-resistant mouse SAMR1 and its variation in brain of senescence-accelerated-prone mouse SAMP8. J Neurosci Res 2009; 88:155-66. [DOI: 10.1002/jnr.22177] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
6
|
Onganer PU, Djamgoz MBA, Whyte K, Greenfield SA. An acetylcholinesterase-derived peptide inhibits endocytic membrane activity in a human metastatic breast cancer cell line. Biochim Biophys Acta Gen Subj 2006; 1760:415-20. [PMID: 16469451 DOI: 10.1016/j.bbagen.2005.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 12/14/2005] [Accepted: 12/19/2005] [Indexed: 12/11/2022]
Abstract
Acetylcholinesterase (AChE) is well established as having non-cholinergic functions and is also expressed in breast tumours where its function(s) is not known. Recently, a candidate peptide sequence towards the C-terminal of the AChE molecule has been identified, as the salient site remote from normal catalysis in neurons, and possibly other cells. The main aim of this study was to explore the possibility that 'AChE-peptide' might also affect human breast cancer cells. Uptake of the non-cytotoxic tracer horseradish peroxidase (HRP) was used as an index of endocytosis, a key component of the metastatic cascade, representing exocytosis/secretory membrane activity and/or plasma membrane protein turnover. AChE-peptide had no affect on the weakly metastatic MCF-7 human breast cancer cell line. By contrast, application of AChE-peptide to the strongly metastatic MDA-MB-231 cells resulted in a dose-dependent inhibition of HRP uptake; treatment with a scrambled variant of the peptide of comparable amino acid length was ineffective. The action of AChE-peptide was suppressed by lowering the extracellular Ca2+ concentration and co-applying a selective antagonist of alpha7, but not alpha4/beta2, nicotinic receptor. The results suggest that AChE-peptide has a novel, selective bioactivity on breast cancer cells and can potentiate metastatic cell behaviour.
Collapse
Affiliation(s)
- Pinar U Onganer
- Neuroscience Solutions to Cancer Research Group, Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
7
|
Martínez-Moreno P, Nieto-Cerón S, Torres-Lanzas J, Ruiz-Espejo F, Tovar-Zapata I, Martínez-Hernández P, Rodríguez-López JN, Vidal CJ, Cabezas-Herrera J. Cholinesterase activity of human lung tumours varies according to their histological classification. Carcinogenesis 2005; 27:429-36. [PMID: 16272577 DOI: 10.1093/carcin/bgi250] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The probable involvement of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in cancer and the relevance of cholinergic responses for lung cancer growth prompted us to study whether cholinesterase activity of human lung is altered by malignancy. Surgical pieces of non-small lung carcinomas (NSLC) and their adjacent non-cancerous tissues (ANCT) were analysed for AChE and BChE activities. AChE activity in adenocarcinoma (AC) was 7.80 +/- 5.59 nmol of substrate hydrolysed per min and per mg of protein (mU/mg), the same as in their ANCT (8.83 +/- 4.72 mU/mg; P = 0.823); in large cell carcinoma (LCC), 7.52 +/- 3.32 mU/mg, approximately 50% less than in their ANCT (15.39 +/- 5.66 mU/mg; P = 0.043); and in squamous cell carcinoma (SCC), 1.39 +/- 0.58 mU/mg, 80% less than in ANCT (6.08 +/- 2.88 mU/mg; P = 0.003). BChE activity was 5.85 +/- 3.20 mU/mg in AC and 9.56 +/- 3.38 mU/mg in ANCT (P = 0.022); 2.94 +/- 2.01 mU/mg in LCC and 6.50 +/- 6.63 mU/mg in ANCT (P = 0.068); and 4.49 +/- 2.30 mU/mg in SCC and ANCT 6.56 +/- 4.09 mU/mg (P = 0.026). Abundant AChE dimers and fewer monomers were identified in lung and, although their distribution was unaffected by cancer, the binding with concanavalin A revealed changes in AChE glycosylation between SCC and their ANCT. The fall in BChE activity affected all molecules, with a strong decrease of the amphiphilic tetramers. Western blotting revealed protein bands with the expected mass of the principal AChE subunits, and the deeper intensity of the protein signal in SCC than in healthy lung, in lanes loaded with the same units of AChE activity, supported an augment in the amount of AChE protein/unit of AChE activity in SCC. The increased availability of acetylcholine in neoplastic lung, resulting from the fall of cholinesterase activity, may enhance cholinergic signalling and contribute to tumour progression.
Collapse
Affiliation(s)
- Pedro Martínez-Moreno
- Servicio de Análisis Clínicos and Cirugía Torácica, University Hospital Virgen de la Arrixaca, Ctra. Madrid-Cartagena s/n, El Palmar, E-30120, Murcia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Although the involvement of cholinesterases (ChEs) in the removal of acetylcholine (ACh) at cholinergic synapses is firmly established, there is evidence to suggest that acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) take part in several cellular processes. The early expression of ChE genes during embryonic development and their role in morphogenesis and apoptosis have been explained on the basis of the non-cholinergic actions of ChEs. In addition, the effects of AChE and BuChE, their inhibitors and antisense oligonucleotides in proliferating cellular systems, together with the mitogenic actions of ACh, support a role for ChEs in cell cycle control. The anomalous expression of ChEs may increase cell proliferation and contribute to cancer growth or development. The aim of this report is to compile the available information on ChEs in cancerous tissues in order to stimulating the research to clarify the molecular mechanisms by which ChEs may participate in cancer. Future investigations may throw light into this intriguing issue which will be of benefit to humankind.
Collapse
Affiliation(s)
- Cecilio J Vidal
- Departamento de Bioquímica y Biología Molecular-A, Edificio de Veterinaria, Universidad de Murcia, Apdo. 4021, E-30071 Murcia, Spain.
| |
Collapse
|
9
|
Ruiz-Espejo F, Cabezas-Herrera J, Illana J, Campoy FJ, Muñoz-Delgado E, Vidal CJ. Breast cancer metastasis alters acetylcholinesterase activity and the composition of enzyme forms in axillary lymph nodes. Breast Cancer Res Treat 2003; 80:105-14. [PMID: 12889604 DOI: 10.1023/a:1024461108704] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Because of the probable involvement of cholinesterases (ChEs) in tumorigenesis, this research was addressed to ascertaining whether breast cancer metastasis alters the content of acetylcholinesterase (AChE) and/or butyrylcholinesterase (BuChE) in axillary lymph nodes (LN). ChE activity was assayed in nine normal (NLN) and seven metastasis-bearing nodes (MLN) from women. AChE and BuChE forms were characterised by sedimentation analyses, hydrophobic chromatography and western blotting. The origin of ChEs in LN was studied by lectin interaction. AChE activity dropped from 21.6 mU/mg (nmol of the substrate hydrolysed per minute and per milligram protein) in NLN to 3.8 mU/mg in MLN (p < 0.001), while BuChE activity (3.6 mU/mg) was little affected. NLN contained globular amphiphilic AChE dimers (G2A, 35%), monomers (G1A, 30%), hydrophilic tetramers (G4H, 8%), and asymmetric species (A4, 23%, and A8, 4%); MLN displayed only G2A (65%) and G1A (35%) AChE forms. NLN and MLN contained G4H (79%), G4A (7%), and G1H (14%) BuChE components. Neither the binding of ChE forms with lectins and antibodies nor the subunit size were altered by metastasis. The higher level of AChE in NLN than in brain and the specific pattern of AChE forms in NLN support its role in immunity. The different profile of AChE forms in NLN and MLN may be useful for diagnosis.
Collapse
Affiliation(s)
- Francisco Ruiz-Espejo
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, Murcia, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Perry C, Sklan EH, Birikh K, Shapira M, Trejo L, Eldor A, Soreq H. Complex regulation of acetylcholinesterase gene expression in human brain tumors. Oncogene 2002; 21:8428-41. [PMID: 12466963 DOI: 10.1038/sj.onc.1205945] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2002] [Revised: 07/31/2002] [Accepted: 08/07/2002] [Indexed: 11/09/2022]
Abstract
To study the regulation of acetylcholinesterase (AChE) gene expression in human brain tumors, 3' splice variants of AChE mRNA and potentially relevant transcription factor mRNAs were labeled in primary astrocytomas and melanomas. AChE-S and AChE-R mRNA, as well as Runx1/AML1 mRNA accumulated in astrocytomas in correlation with tumor aggressiveness, but neither HNF3beta nor c-fos mRNA was observed in melanoma and astrocytomas. Immunohistochemistry demonstrated nuclear Runx1/AML1 and cellular AChE-S and AChE-R in melanomas, however, only AChE-S, and not the secreted AChE-R variant, was retained in astrocyte tumor cells. Runx1/AML1 revealed weak linkage with ACHE promoter sequences, yet enhanced ACHE gene expression in co-transfected COS1 cells. The p300 co-activator and the ACHE promoter's distal enhancer facilitated this effect, which was independent of much of the Runx1/AML1 trans-activation domain. Surprisingly, GASP, a fusion product of green fluorescence protein (GFP) and ASP(67), a peptide composed of the 67 C-terminal amino acid residues of AChE-S, localized to COS1 cell nuclei. However, GARP, the corresponding fusion product of GFP with a peptide having the 51 C-terminal residues of AChE-E or GFP alone, remained cytoplasmic. Runx1/AML1 exhibited improved nuclear retention in GASP-expressing COS1 cells, suggesting modulated nuclear localization processes. Together, these findings reveal brain tumor-specific regulation of both expression and cellular retention of variant ACHE gene products.
Collapse
Affiliation(s)
- Chava Perry
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Israel 91904
| | | | | | | | | | | | | |
Collapse
|
11
|
Ruiz-Espejo F, Cabezas-Herrera J, Illana J, Campoy FJ, Vidal CJ. Cholinesterase activity and acetylcholinesterase glycosylation are altered in human breast cancer. Breast Cancer Res Treat 2002; 72:11-22. [PMID: 12000217 DOI: 10.1023/a:1014904701723] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Increasing evidence supports the involvement of cholinesterases in tumorigenesis. Several tumour cells show ChE activity, while the acetyl- (AChE) and butyrylcholinesterase (BuChE) genes are amplified in leukemias, ovarian carcinoma and other cancers. ChE activity was measured in 31 samples of tumoral breast (TB) and 20 of normal breast (NB). Despite the wide variations observed, BuChE predominated over AChE both in TB and NB. The mean AChE activity in NB was 1.61 nmol of the substrate hydrolysed per minute and per miligram protein (mU/mg), which rose to 3.09 mU/mg in TB (p = 0.041). The BuChE activity dropped from 5.24 mU/mg in NB to 3.39 mU/mg in TB (p = 0.002). Glycolipid-linked AChE dimers and monomers and hydrophilic BuChE tetramers and monomers were identified in NB and TB, and their proportions were unmodified by the neoplasia. The amount of AChE forms reacting with wheat germ agglutinin (WGA) decreased in TB while that of BuChE species was unaffected, demonstrating that the glycosylation of AChE was altered in TB. The binding of AChE and BuChE with antibodies was unaffected by the neoplasia. The difference in lectin reactivity between erythrocyte and breast AChE, the lack of AChE in blood plasma, and the finding of monomeric BuChE in breast but not in plasma suggest that breast epithelial cells produce AChE for membrane attachment and hydrophilic BuChE for secretion. Several reasons are provided to explain the altered expression of ChEs in breast cancer.
Collapse
Affiliation(s)
- Francisco Ruiz-Espejo
- Departamento de Bioquímica y Biología Molecular-A, Edificio de Veterinaria, Universidad de Murcia, Spain
| | | | | | | | | |
Collapse
|
12
|
García-Ayllón MS, Sáez-Valero J, Muñoz-Delgado E, Vidal CJ. Identification of hybrid cholinesterase forms consisting of acetyl- and butyrylcholinesterase subunits in human glioma. Neuroscience 2002; 107:199-208. [PMID: 11731094 DOI: 10.1016/s0306-4522(01)00355-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brain and non-brain tumors contain acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) transcripts and enzyme activity. AChE and BuChE occur in tissues as a set of molecular components, whose distribution in a cyst fluid from a human astrocytoma we investigated. The fluid displayed high BuChE and low AChE activities. Three types of cholinesterase (ChE) tetramers were identified in the fluid by means of sedimentation analyses and assays with specific inhibitors, and their sedimentation coefficients were 11.7S (ChE-I), 11.1S (ChE-II), and 10.5S (ChE-III). ChE-I was unretained, ChE-II was weakly retained and ChE-III was adsorbed to edrophonium-agarose, confirming the AChE nature of the latter. ChE-I and ChE-II tetramers contained BuChE subunits as shown by their binding with an antiserum against BuChE. The ChE activity of the immunocomplexes made with ChE-II and anti-BuChE antibodies decreased with the AChE inhibitor BW284c51, revealing that ChE-II was made of AChE and BuChE subunits, in contrast to ChE-I, which only contained BuChE subunits. The binding of an anti-AChE antibody (AE1) to ChE-II and ChE-III, but not to ChE-I, demonstrated the hybrid composition of ChE-II. A substantial fraction of the AChE tetramers and dimers of astrocytomas and oligodendrogliomas bound both to anti-AChE and anti-BuChE antibodies, which revealed a mixed composition of AChE and BuChE subunits in them. The AChE components of brain, meningiomas and neurinomas were only recognized by AE1. In conclusion, our results demonstrate that aberrant ChE oligomers consisting of AChE and BuChE subunits are generated in astrocytomatous cyst and gliomas but not in brain, meningiomas or neurinomas.
Collapse
Affiliation(s)
- M S García-Ayllón
- Departamento de Bioquímica y Biología Molecular-A, Edificio de Veterinaria, Universidad de Murcia, Apdo. 4021, E-30071 Espinardo, Murcia, Spain
| | | | | | | |
Collapse
|
13
|
Mack A, Robitzki A. The key role of butyrylcholinesterase during neurogenesis and neural disorders: an antisense-5'butyrylcholinesterase-DNA study. Prog Neurobiol 2000; 60:607-28. [PMID: 10739090 DOI: 10.1016/s0301-0082(99)00047-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The wide tissue distribution of butyrylcholinesterase (BChE) in organisms makes specific roles possible, although no clear physiologic function has yet been assigned to this enzyme. In vertebrates, it appears e.g. in serum, hemopoietic cells, liver, lung, heart, at cholinergic synapses, in the central nervous system. in tumors and not at least (besides acetylcholinesterase, AChE) in developing embryonic tissues. Here, a functional role of BChE can be found in regulation of cell proliferation and the onset of differentiation during early neuronal development--independent of its enzymatic activity. For studies concerning this point, we have established a strategy for a specific and efficient inhibition of BChE to investigate how the expected decrease of enzyme and, therefore, the manipulation of cellular cholinesterase-equilibrium influences embryonic neurogenesis--among others to gain information about the significance of noncholinergic, activity-independent and cell growth functions of BChE. The antisense-5'BChE-DNA strategy is based on inhibition of BChE mRNA transcription and protein synthesis. For this, the BChE gene is cloned into a suitable vector system; this is done in antisense-orientation, so that a transfected cell will produce their own antisense mRNA to inhibit gene expression. For such investigations in neurogenesis, the developing retina is a good model and we are able to create organotypic, three-dimensional retinal aggregates in vitro (retinospheroids) using isolated retinal cells of 6-day-old chicken embryos. Using this in vitro retina and "knock out" of BChE gene expression, we could show a key role of BChE during neurogenesis. The results are of great interest because in tumorigenesis and some neuronal disorders, the BChE gene is amplified or abnormally expressed. It has to be discussed how the antisense-5'BChE strategy can play a role in the development of new and efficient therapy forms.
Collapse
Affiliation(s)
- A Mack
- Fraunhofer Institute for Biomedical Engineering (FhG-IBMT), Section Biohybrid Systems, St. Ingbert/Saar, Germany.
| | | |
Collapse
|
14
|
García-Ayllón MS, Sáez-Valero J, Piqueras-Pérez C, Vidal CJ. Characterization of molecular forms of acetyl- and butyrylcholinesterase in human acoustic neurinomas. Neurosci Lett 1999; 274:56-60. [PMID: 10530519 DOI: 10.1016/s0304-3940(99)00596-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Acoustic neurinomas were sequentially extracted with saline and saline-Triton X-100 buffers. Detergent was required to detach the bulk of acetylcholinesterase (AChE), but butyrylcholinesterase (BuChE) was mostly released with saline buffer. Sedimentation analysis and hydrophobic chromatography revealed that neurinomas contain principally amphiphilic AChE tetramers, dimers and monomers, and hydrophilic BuChE tetramers. The AChE dimers and monomers remained amphiphilic after incubation with phosphatidylinositol-specific phospholipase C (PIPLC), after or without prior treatment with alkaline hydroxylamine, which shows that, in contrast to the meningioma AChE dimers and monomers, the neurinoma isoforms are devoid of glycolipid. Neurinoma AChE reacted with the antibodies HR2 and AE1 raised against AChE from human brain or erythrocyte, whereas BuChE bound to a sheep antiserum.
Collapse
Affiliation(s)
- M S García-Ayllón
- Departmento de Bioquímica y Biología Molecular A, Edificio de Veterinaria, Universidad de Murcia, Espinardo, Spain
| | | | | | | |
Collapse
|
15
|
García-Ayllón MS, Gómez JL, Vidal CJ. Amphiphilic properties of acetylcholinesterase monomers in mouse plasma. Neurosci Lett 1999; 265:211-4. [PMID: 10327168 DOI: 10.1016/s0304-3940(99)00252-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mouse plasma acetylcholinesterase (AChE) tetramers (G4) and dimers (G2) were retained by edrophonium-Sepharose, whereas AChE monomers (G1), and G4, G2 and G1 butyrylcholinesterase (BuChE) forms were not. Plasma G4 or G1 AChE did not differ in their affinity for edrophonium. G1 AChE, and G1 and G2 BuChE were retained in octyl-Sepharose, while G4 and G2 AChE, and G4 BuChE eluted freely. The amphiphilic behaviour of G1 AChE remained unmodified after incubation with trypsin. The electrophoretic mobility of the AChE monomers varied with the detergent added to the samples. The results show that mouse plasma G1 AChE possesses hydrophobic regions, which prevent its binding to the affinity matrix, and afford its interaction with octyl-Sepharose. The hydrophobic regions in G1 AChE probably provide conformational stability to disulfide-linked subunits in hydrophilic dimers.
Collapse
Affiliation(s)
- M S García-Ayllón
- Departamento de Bioquímica y Biología Molecular A, Universidad de Murcia, Espinardo, Spain
| | | | | |
Collapse
|
16
|
Moral-Naranjo MT, Cabezas-Herrera J, Campoy FJ, Vidal CJ. Glycosylation of cholinesterase forms in brain from normal and dystrophic Lama2dy mice. Neurosci Lett 1997; 226:45-8. [PMID: 9153638 DOI: 10.1016/s0304-3940(97)00249-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Differences in the oligosaccharides attached to acetyl- (AChE) and butyrylcholinesterase (BuChE) forms in brain from control and merosin-deficient Lama2dy dystrophic mice were investigated by means of their interaction with agarose-immobilized lectins. Asymmetric AChE, hydrophilic and amphiphilic AChE and BuChE tetramers, and amphiphilic AChE and BuChE monomers were identified in brain. All ChE forms were strongly adsorbed to the lectins concanavalin A (Con A), Lens culinaris (LCA) and Triticum vulgaris (WGA), and poorly so to Ricinus communis agglutinin (RCA), suggesting that the oligosaccharides in AChE or BuChE subunits are similarly processed regardless of their state of polymerization. The lack of differences in the interaction of lectins with homologous AChE and BuChE forms in normal and dystrophic tissue indicates that, in contrast to ChEs forms in skeletal muscle, the dystrophic condition does not disturb the processing of the oligosaccarides of brain enzyme forms.
Collapse
Affiliation(s)
- M T Moral-Naranjo
- Departamento de Bioquímica y Biología Molecular A. Edificio de Veterinaria, Universidad de Murcia, Spain
| | | | | | | |
Collapse
|
17
|
Sáez-Valero J, Vidal CJ. Biochemical properties of acetyl- and butyrylcholinesterase in human meningioma. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1317:210-8. [PMID: 8988237 DOI: 10.1016/s0925-4439(96)00061-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The structural properties of acetyl-(AChE) and butyrylcholinesterase (BuChE) in meningioma and the possible relationship with brain and plasma were investigated. Meningioma ChEs were extracted with saline and saline-Triton X-100 buffers. The tumor ChE forms were identified by sedimentation analysis, and their amphiphilic/hydrophilic behaviour was assessed by Triton X-114 phase-partitioning and hydrophobic chromatography. Meningioma contained amphiphilic globular AChE dimers (G2A) and monomers (G1A), and hydrophilic BuChE tetramers (G4H). The conversion of G2A into G1A AChE by reduction confirmed their structures. In contrast to the meningioma species, brain G1A AChE forms remained amphiphilic after incubation with alkaline hydroxylamine and phosphatidylinositol-specific phospholipase C (PIPLC). Meningioma G1A and PIPLC-converted G1H, and brain G1A AChE showed similar rate constants for thermal inactivation, and this suggested that the thermal stability of AChE subunits was unaffected by the presence or not of phosphatidylinositol residues. AChE in meningioma and brain did not differ in the interaction with the lectins Con A, LCA, WGA and RCA. BuChE in meningioma and brain bound to a similar extent to Con A, LCA and WGA-Agarose, whereas one-half of BuChE in the tumor, all in plasma and little in brain was fixed by RCA. Therefore, meningioma possesses RCA(+)- and RCA(-)-BuChE, the former predominating in brain and the latter in plasma. It remains to be clarified whether the tumor RCA(+)-BuChE is intrinsic or derived from plasma.
Collapse
Affiliation(s)
- J Sáez-Valero
- Departamento de Bioquímica y Biología Molecular A, Universidad de Murcia, Spain
| | | |
Collapse
|