1
|
Topical Calendula officinalis L. inhibits inflammatory pain through antioxidant, anti-inflammatory and peripheral opioid mechanisms. JOURNAL OF INTEGRATIVE MEDICINE 2022. [DOI: 10.1016/j.joim.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
2
|
Wang Y, Hu X, Huang H, Jin Z, Gao J, Guo Y, Zhong Y, Li Z, Zong X, Wang K, Zhang L, Liu Z. Optimization of 4-arylthiophene-3-carboxylic acid derivatives as inhibitors of ANO1: Lead optimization studies toward their analgesic efficacy for inflammatory pain. Eur J Med Chem 2022; 237:114413. [DOI: 10.1016/j.ejmech.2022.114413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/17/2022] [Accepted: 04/21/2022] [Indexed: 11/04/2022]
|
3
|
Ng SY, Ariffin MZ, Khanna S. Neurokinin receptor mechanisms in forebrain medial septum modulate nociception in the formalin model of inflammatory pain. Sci Rep 2021; 11:24358. [PMID: 34934106 PMCID: PMC8692436 DOI: 10.1038/s41598-021-03661-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/07/2021] [Indexed: 12/03/2022] Open
Abstract
The present study has explored the hypothesis that neurokinin1 receptors (NK1Rs) in medial septum (MS) modulate nociception evoked on hind paw injection of formalin. Indeed, the NK1Rs in MS are localized on cholinergic neurons which have been implicated in nociception. In anaesthetized rat, microinjection of L-733,060, an antagonist at NK1Rs, into MS antagonized the suppression of CA1 population spike (PS) evoked on peripheral injection of formalin or on intraseptal microinjection of substance P (SP), an agonist at NK1Rs. The CA1 PS reflects the synaptic excitability of pyramidal cells in the region. Furthermore, microinjection of L-733,060 into MS, but not LS, attenuated formalin-induced theta activation in both anaesthetized and awake rat, where theta reflects an oscillatory information processing by hippocampal neurons. The effects of L-733,060 on microinjection into MS were nociceptive selective as the antagonist did not block septo-hippocampal response to direct MS stimulation by the cholinergic receptor agonist, carbachol, in anaesthetized animal or on exploration in awake animal. Interestingly, microinjection of L-733,060 into both MS and LS attenuated formalin-induced nociceptive flinches. Collectively, the foregoing novel findings highlight that transmission at NK1R provide an affective valence to septo-hippocampal information processing and that peptidergic transmission in the septum modulates nociceptive behaviours.
Collapse
Affiliation(s)
- Si Yun Ng
- grid.4280.e0000 0001 2180 6431Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9, 2 Medical Drive, Singapore, 117593 Singapore ,grid.4280.e0000 0001 2180 6431Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Mohammed Zacky Ariffin
- grid.4280.e0000 0001 2180 6431Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9, 2 Medical Drive, Singapore, 117593 Singapore ,grid.4280.e0000 0001 2180 6431Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Sanjay Khanna
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9, 2 Medical Drive, Singapore, 117593, Singapore. .,Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore. .,Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
Garrido-Suárez BB, Garrido G, Bellma Menéndez A, Merino N, Valdés O, Delgado-Hernández R, Granados-Soto V. Synergistic interaction between amitriptyline and paracetamol in persistent and neuropathic pain models: An isobolografic analysis. Neurochem Int 2021; 150:105160. [PMID: 34411687 DOI: 10.1016/j.neuint.2021.105160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/26/2021] [Accepted: 08/15/2021] [Indexed: 01/07/2023]
Abstract
The current study was designed to evaluate the transient antinociceptive interaction between amitriptyline and paracetamol in the formalin test. In addition, considering other long-term neuroprotective mechanisms of these drugs, we hypothesized that this combination might exert some synergistic effects on neuropathic pain linked with its possible ability to prevent Wallerian degeneration (WD). The effects of individual and fixed-ratio of 1:1 combinations of orally administered amitriptyline and paracetamol were assayed in the two phases of the formalin test and in the chronic constriction injury (CCI) model in rats. Isobolographic analysis was employed to characterize the synergism produced by the combinations. Amitriptyline, paracetamol, and fixed-ratio amitriptyline-paracetamol combinations produced dose-dependent antinociceptive effects mainly on the inflammatory tonic phase. Repeated doses of individual drugs and their combination decreased CCI-induced mechanical allodynia in a dose-dependent manner. ED30 (formalin) and ED50 (CCI) values were estimated for the individual drugs, and isobolograms were constructed. Theoretical ED30/50 values for the combination estimated from the isobolograms were 16.5 ± 3.9 mg/kg and 26.0 ± 7.2 mg/kg for the single and repeated doses in persistent and neuropathic pain models, respectively. These values were significantly higher than the actually observed ED30/50 values, which were 0.39 ± 0.1 mg/kg and 8.2 ± 0.8 mg/kg in each model, respectively, indicating a synergistic interaction. Remarkably, CCI-induced sciatic nerve WD-related histopathological changes were prevented by this combination compared to either drug administered alone.
Collapse
Affiliation(s)
- Bárbara B Garrido-Suárez
- Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, Ave. 26 No. 1605, Nuevo Vedado, Havana, Cuba; Instituto de Ciencias Del Mar, Loma y 37, CP 10300, Nuevo Vedado, Havana, Cuba.
| | - Gabino Garrido
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Edificio Ñ3, Universidad Católica Del Norte, Angamos, 0610, Antofagasta, Chile; Fundación ACPHARMA, Antofagasta, Chile.
| | - Addis Bellma Menéndez
- Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, Ave. 26 No. 1605, Nuevo Vedado, Havana, Cuba
| | - Nelson Merino
- Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, Ave. 26 No. 1605, Nuevo Vedado, Havana, Cuba
| | - Odalys Valdés
- Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, Ave. 26 No. 1605, Nuevo Vedado, Havana, Cuba
| | - René Delgado-Hernández
- Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, Ave. 26 No. 1605, Nuevo Vedado, Havana, Cuba; Centro de Estudio para Las Investigaciones y Evaluaciones Biológicas, Instituto de Farmacia y Alimentos, Universidad de La Habana. Calle 222, N° 2317 e/23 y 31, La Coronela, La Lisa, CP 13600, La Habana, Cuba
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| |
Collapse
|
5
|
Wang Y, Gao J, Zhao S, Song Y, Huang H, Zhu G, Jiao P, Xu X, Zhang G, Wang K, Zhang L, Liu Z. Discovery of 4-arylthiophene-3-carboxylic acid as inhibitor of ANO1 and its effect as analgesic agent. Acta Pharm Sin B 2021; 11:1947-1964. [PMID: 34386330 PMCID: PMC8343189 DOI: 10.1016/j.apsb.2020.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/26/2020] [Accepted: 11/04/2020] [Indexed: 02/05/2023] Open
Abstract
Anoctamin 1 (ANO1) is a kind of calcium-activated chloride channel involved in nerve depolarization. ANO1 inhibitors display significant analgesic activity by the local peripheral and intrathecal administration. In this study, several thiophenecarboxylic acid and benzoic acid derivatives were identified as novel ANO1 inhibitors through the shape-based virtual screening, among which the 4-arylthiophene-3-carboxylic acid analogues with the best ANO1 inhibitory activity were designed, synthesized and compound 42 (IC50 = 0.79 μmol/L) was finally obtained. Compound 42 selectively inhibited ANO1 without affecting ANO2 and intracellular Ca2+ concentration. Subsequently, the analgesic effect was investigated by intragastric administration in pain models. Compound 42 significantly attenuated allodynia which was induced by formalin and chronic constriction injury. Through homology modeling and molecular dynamics, the binding site was predicted to be located near the calcium-binding region between α6 and α8. Our study validates ANO1 inhibitors having a significant analgesic effect by intragastric administration and also provides selective molecular tools for ANO1-related research.
Collapse
|
6
|
Archibald J, MacMillan EL, Graf C, Kozlowski P, Laule C, Kramer JLK. Metabolite activity in the anterior cingulate cortex during a painful stimulus using functional MRS. Sci Rep 2020; 10:19218. [PMID: 33154474 PMCID: PMC7645766 DOI: 10.1038/s41598-020-76263-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023] Open
Abstract
To understand neurochemical brain responses to pain, proton magnetic resonance spectroscopy (1H-MRS) is used in humans in vivo to examine various metabolites. Recent MRS investigations have adopted a functional approach, where acquisitions of MRS are performed over time to track task-related changes. Previous studies suggest glutamate is of primary interest, as it may play a role during cortical processing of noxious stimuli. The objective of this study was to examine the metabolic effect (i.e., glutamate) in the anterior cingulate cortex during noxious stimulation using fMRS. The analysis addressed changes in glutamate and glutamate + glutamine (Glx) associated with the onset of pain, and the degree by which fluctuations in metabolites corresponded with continuous pain outcomes. Results suggest healthy participants undergoing tonic noxious stimulation demonstrated increased concentrations of glutamate and Glx at the onset of pain. Subsequent reports of pain were not accompanied by corresponding changes in glutamate of Glx concentrations. An exploratory analysis on sex revealed large effect size changes in glutamate at pain onset in female participants, compared with medium-sized effects in male participants. We propose a role for glutamate in the ACC related to the detection of a noxious stimulus.
Collapse
Affiliation(s)
- J Archibald
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada.
- Department of Experimental Medicine, University of British Columbia, Vancouver, Canada.
| | - E L MacMillan
- Department of Radiology, University of British Columbia, Vancouver, Canada
- ImageTech Lab, Simon Fraser University, Surrey, Canada
- Philips Healthcare Canada, Markham, Canada
| | - C Graf
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada
| | - P Kozlowski
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
- Hughill Center, Vancouver, Canada
- Department of Radiology, University of British Columbia, Vancouver, Canada
- UBC MRI Research Centre, University of British Columbia, Vancouver, Canada
| | - C Laule
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
- Hughill Center, Vancouver, Canada
- Department of Radiology, University of British Columbia, Vancouver, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada
- UBC MRI Research Centre, University of British Columbia, Vancouver, Canada
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - J L K Kramer
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Center for Brain Health (DMCH), Vancouver, Canada
- Hughill Center, Vancouver, Canada
| |
Collapse
|
7
|
Garrido-Suárez BB, Garrido G, Castro-Labrada M, Merino N, Valdés O, Pardo Z, Ochoa-Rodríguez E, Verdecia-Reyes Y, Delgado-Hernández R, Godoy-Figueiredo J, Ferreira SH. Anti-hypernociceptive and anti-inflammatory effects of JM-20: A novel hybrid neuroprotective compound. Brain Res Bull 2020; 165:185-197. [PMID: 33096198 DOI: 10.1016/j.brainresbull.2020.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022]
Abstract
The present study examines the possible effect of the novel hybrid molecule JM-20 (3-ethoxycarbonyl-2-methyl-4-(2-nitrophenyl)-411-dihydro-1H-pyrido[2,3-b] [1,5] benzodiazepine) on pain-related behaviours in a persistent pain model (5% formalin test) and in the neutrophil migration events during the inflammatory process. It further introduces JM-20 in a chronic constriction injury (CCI) model to clarify the possible subjacent mechanisms with its consequent clinical relevance. A single administration of JM-20 (20 or 40 mg/kg, per os [p.o.]) decreased licking/biting exclusively in the tonic phase of the formalin test in a GABA/benzodiazepine (BZD) receptor antagonist flumazenil-sensitive manner. JM-20 reduced in vivo neutrophil migration, rolling and adhesion to the endothelium induced by intraperitoneal administration of carrageenan in mice. In addition, plasma extravasation and tumour necrosis factor alpha production in the peritoneal fluid were decreased. Treatment with JM-20 (20 mg/kg, p.o.) for 7 days after CCI reduced mechanical hypersensitivity in a NG-monomethyl-l-arginine (L-NMMA)/methylene blue/glibenclamide-sensitive manner. Histopathological signs of Wallerian degeneration (WD) of the sciatic nerve were also attenuated, as well as interleukin-1 beta release in the spinal cord. The nitrate/nitrite concentration was increased centrally and did not show differences at the peripheral nerve level. The findings of this study suggest JM-20 can decrease persistent pain. A transient activity of its BDZ portion on nociceptive pathways mediated by GABA/BDZ receptors in association with its anti-inflammatory properties could be at least partially involved in this effect. JM-20 decreased CCI-induced mechanical hypersensitivity via the l-arginine/nitric oxide (NO)/cyclic GMP-sensitive ATP-sensitive potassium channel pathway. Its neuroprotective ability by preventing WD could be implicated in its anti-neuropathic mechanisms.
Collapse
Affiliation(s)
- Bárbara B Garrido-Suárez
- Centro de Investigación y Desarrollo de Medicamentos, Ave 26, No. 1605 Boyeros y Puentes Grandes, CP, 10600, La Habana, Cuba.
| | - Gabino Garrido
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Edificio Ñ3, Universidad Católica del Norte, Angamos, 0610, Antofagasta, Chile.
| | - Marian Castro-Labrada
- Centro de Investigación y Desarrollo de Medicamentos, Ave 26, No. 1605 Boyeros y Puentes Grandes, CP, 10600, La Habana, Cuba
| | - Nelson Merino
- Centro de Investigación y Desarrollo de Medicamentos, Ave 26, No. 1605 Boyeros y Puentes Grandes, CP, 10600, La Habana, Cuba
| | - Odalys Valdés
- Centro de Investigación y Desarrollo de Medicamentos, Ave 26, No. 1605 Boyeros y Puentes Grandes, CP, 10600, La Habana, Cuba
| | - Zenia Pardo
- Centro de Investigación y Desarrollo de Medicamentos, Ave 26, No. 1605 Boyeros y Puentes Grandes, CP, 10600, La Habana, Cuba
| | - Estael Ochoa-Rodríguez
- Laboratorio de Síntesis Orgánica de La Facultad de Química de La Universidad de La Habana, Zapata s/n entre G y Carlitos Aguirre, Vedado Plaza de la Revolución, CP, 10400, La Habana, Cuba
| | - Yamila Verdecia-Reyes
- Laboratorio de Síntesis Orgánica de La Facultad de Química de La Universidad de La Habana, Zapata s/n entre G y Carlitos Aguirre, Vedado Plaza de la Revolución, CP, 10400, La Habana, Cuba
| | - René Delgado-Hernández
- Centro de Investigación y Desarrollo de Medicamentos, Ave 26, No. 1605 Boyeros y Puentes Grandes, CP, 10600, La Habana, Cuba
| | - Jozi Godoy-Figueiredo
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto University of São Paulo, Avenida Bandeirantes, 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | - Sergio H Ferreira
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto University of São Paulo, Avenida Bandeirantes, 3900, 14049-900, Ribeirão Preto, SP, Brazil
| |
Collapse
|
8
|
Archibald J, MacMillan EL, Enzler A, Jutzeler CR, Schweinhardt P, Kramer JL. Excitatory and inhibitory responses in the brain to experimental pain: A systematic review of MR spectroscopy studies. Neuroimage 2020; 215:116794. [DOI: 10.1016/j.neuroimage.2020.116794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/19/2020] [Accepted: 04/01/2020] [Indexed: 01/21/2023] Open
|
9
|
Xiong J, Jin J, Gao L, Hao C, Liu X, Liu BF, Chen Y, Zhang G. Piperidine propionamide as a scaffold for potent sigma-1 receptor antagonists and mu opioid receptor agonists for treating neuropathic pain. Eur J Med Chem 2020; 191:112144. [PMID: 32087465 DOI: 10.1016/j.ejmech.2020.112144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 11/24/2022]
Abstract
We designed and synthesized a novel series of piperidine propionamide derivatives as potent sigma-1 (σ1) receptor antagonists and mu (μ) opioid receptor agonists, and measured their affinity for σ1 and μ receptors in vitro through binding assays. The basic scaffold of the new compounds contained a 4-substituted piperidine ring and N-aryl propionamide. Compound 44, N-(2-(4-(4-fluorobenzyl) piperidin-1-yl) ethyl)-N-(4-methoxy-phenyl) propionamide, showed the highest affinity for σ1 receptor (Ki σ1 = 1.86 nM) and μ receptor (Ki μ = 2.1 nM). It exhibited potent analgesic activity in the formalin test (ED50 = 15.1 ± 1.67 mg/kg) and had equivalent analgesic effects to S1RA (σ1 antagonist) in a CCI model. Therefore, Compound 44, which has mixed σ1/μ receptor profiles, may be a potential candidate for treating neuropathic pain.
Collapse
Affiliation(s)
- Jiaying Xiong
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jian Jin
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Lanchang Gao
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Hao
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xin Liu
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-Feng Liu
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yin Chen
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Guisen Zhang
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
10
|
Garrido-Suárez BB, Garrido G, Piñeros O, Delgado-Hernández R. Mangiferin: Possible uses in the prevention and treatment of mixed osteoarthritic pain. Phytother Res 2019; 34:505-525. [PMID: 31755173 DOI: 10.1002/ptr.6546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 10/07/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022]
Abstract
Osteoarthritis (OA) pain has been proposed to be a mixed pain state, because in some patients, central nervous system factors are superimposed upon the more traditional peripheral factors. In addition, a considerable amount of preclinical and clinical evidence has shown that, accompanying the central neuroplasticity changes and partially driven by a peripheral nociceptive input, a real neuropathic component occurs that are particularly linked to disease severity and progression. Hence, innovative strategies targeting neuroprotection and particularly neuroinflammation to prevent and treat OA pain could be introduced. Mangiferin (MG) is a glucosylxanthone that is broadly distributed in higher plants, such as Mangifera indica L. Previous studies have documented its analgesic, anti-inflammatory, antioxidant, neuroprotective, and immunomodulatory properties. In this paper, we propose its potential utility as a multitargeted compound for mixed OA pain, even in the context of multimodal pharmacotherapy. This hypothesis is supported by three main aspects: the cumulus of preclinical evidence around this xanthone, some preliminary clinical results using formulations containing MG in clinical musculoskeletal or neuropathic pain, and by speculations regarding its possible mechanism of action according to recent advances in OA pain knowledge.
Collapse
Affiliation(s)
- Bárbara B Garrido-Suárez
- Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, Havana, Cuba
| | - Gabino Garrido
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile
| | - Octavio Piñeros
- Departamento de Investigaciones, Universidad de Santiago de Cali, Cali, Colombia
| | - René Delgado-Hernández
- Centro de Estudio para las Investigaciones y Evaluaciones Biológicas, Instituto de Farmacia y Alimentos, Universidad de La Habana, Havana, Cuba
| |
Collapse
|
11
|
Tadros MA, Zouikr I, Hodgson DM, Callister RJ. Excitability of Rat Superficial Dorsal Horn Neurons Following a Neonatal Immune Challenge. Front Neurol 2018; 9:743. [PMID: 30245664 PMCID: PMC6137193 DOI: 10.3389/fneur.2018.00743] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/17/2018] [Indexed: 12/15/2022] Open
Abstract
Previous studies have shown that neonatal exposure to a mild inflammatory challenge, such as lipopolysaccharide (LPS, Salmonella enteriditis) results in altered pain behaviors later in life. To further characterize the impact of a neonatal immune challenge on pain processing, we examined the excitability of superficial dorsal horn (SDH) neurons following neonatal LPS exposure and subsequent responses to noxious stimulation at three time-points during early postnatal development. Wistar rats were injected with LPS (0.05 mg/kg i.p.) or saline on postnatal days (PNDs) 3 and 5, and later subjected to the formalin test at PNDs 7, 13, and 22. One hour after formalin injection into the plantar hindpaw, animals were euthanized (Ketamine, 100 mg/kg i.p.) and transverse slices from the lumbosacral spinal cord were prepared. Whole-cell patch-clamp recordings were made from SDH neurons (KCH3SO4-based internal, 22–24°C) on the ipsi- and contralateral sides of the spinal cord. Depolarising current steps were injected into SDH neurons to categorize action potential (AP) discharge. In both saline- and LPS-treated rats we observed age-related increases the percentage of neurons exhibiting tonic-firing, with concurrent decreases in single-spiking, between PND 7 and 22. In contrast, neonatal exposure to LPS failed to alter the proportions of AP discharge patterns at any age examined. We also assessed the subthreshold currents that determine AP discharge in SDH neurons. The rapid outward potassium current, IAr decreased in prevalence with age, but was susceptible to neonatal LPS exposure. Peak IAr current amplitude was greater in ipsilateral vs. contralateral SDH neurons from LPS-treated rats. Spontaneous excitatory synaptic currents (sEPSCs) were recorded to assess network excitability. Age-related increases were observed in sEPSC frequency and time course, but not peak amplitude, in both saline- and LPS-treated rats. Furthermore, sEPSC frequency was higher in ipsilateral vs. contralateral SDH neurons in LPS-treated animals. Taken together, these data suggest a neonatal immune challenge does not markedly affect the intrinsic properties of SDH neurons, however, it can increase the excitability of local spinal cord networks via altering the properties of rapid A-type currents and excitatory synaptic connections. These changes, made in neurons within spinal cord pain circuits, have the capacity to alter nociceptive signaling in the ascending pain pathway.
Collapse
Affiliation(s)
- Melissa A Tadros
- Faculty of Health and Hunter Medical Research Institute, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Ihssane Zouikr
- Laboratory for Molecular Mechanisms of Thalamus Development, RIKEN, Wako, Saitama, Japan
| | - Deborah M Hodgson
- Laboratory of Neuroimmunology, School of Psychology, University of Newcastle, Callaghan, NSW, Australia
| | - Robert J Callister
- Faculty of Health and Hunter Medical Research Institute, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
12
|
Mansouri MT, Naghizadeh B, Ghorbanzadeh B, Rajabi H, Pashmforoush M. Pharmacological evidence for systemic and peripheral antinociceptive activities of pioglitazone in the rat formalin test: Role of PPARγ and nitric oxide. Eur J Pharmacol 2017; 805:84-92. [DOI: 10.1016/j.ejphar.2017.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 02/11/2017] [Accepted: 03/08/2017] [Indexed: 12/19/2022]
|
13
|
Singh G, Singh G, Bhatti R, Gupta V, Mahajan A, Singh P, Singh Ishar MP. Rationally designed benzopyran fused isoxazolidines and derived β 2,3,3-amino alcohols as potent analgesics: Synthesis, biological evaluation and molecular docking analysis. Eur J Med Chem 2016; 127:210-222. [PMID: 28063353 DOI: 10.1016/j.ejmech.2016.12.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/27/2016] [Accepted: 12/24/2016] [Indexed: 12/14/2022]
Abstract
Based on structure activity analysis of morphine related opiates, we have synthesized some novel benzopyran fused isoxazolidines (2a-e) and derived conformationally constrained β2,3,3-amino alcohols (3a-e), which were evaluated in vivo for their anti-nociceptive activity through acetic acid induced writhing test (peripheral) and formalin induced algesia (central). Results showed that, compound 2a possesses significant opioid agonist activity. Further, molecular docking analysis reveals that compound 2a binds to δ-opioid receptor (DOR) with comparatively better D-score than to μ (MOR) and κ (KOR) receptors. Compound 2a did not show any toxicity up to a 2000 mg kg-1 dose.
Collapse
Affiliation(s)
- Gagandeep Singh
- Bio-Organic and Photochemistry Laboratory, Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143 005, Punjab, India
| | - Gurjit Singh
- Bio-Organic and Photochemistry Laboratory, Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143 005, Punjab, India
| | - Rajbir Bhatti
- Bio-Organic and Photochemistry Laboratory, Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143 005, Punjab, India
| | - Vivek Gupta
- Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi, 180 006, India
| | - Ajay Mahajan
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine (CSIR), Jammu, 180001, India
| | - Palwinder Singh
- Department of Chemistry, UGC Sponsored Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, 143 005, Punjab, India
| | - Mohan Paul Singh Ishar
- Bio-Organic and Photochemistry Laboratory, Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143 005, Punjab, India.
| |
Collapse
|
14
|
Huh Y, Cho J. Differential Responses of Thalamic Reticular Neurons to Nociception in Freely Behaving Mice. Front Behav Neurosci 2016; 10:223. [PMID: 27917114 PMCID: PMC5116476 DOI: 10.3389/fnbeh.2016.00223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/07/2016] [Indexed: 12/04/2022] Open
Abstract
Pain serves an important protective role. However, it can also have debilitating adverse effects if dysfunctional, such as in pathological pain conditions. As part of the thalamocortical circuit, the thalamic reticular nucleus (TRN) has been implicated to have important roles in controlling nociceptive signal transmission. However studies on how TRN neurons, especially how TRN neuronal subtypes categorized by temporal bursting firing patterns—typical bursting, atypical bursting and non-bursting TRN neurons—contribute to nociceptive signal modulation is not known. To reveal the relationship between TRN neuronal subtypes and modulation of nociception, we simultaneously recorded behavioral responses and TRN neuronal activity to formalin induced nociception in freely moving mice. We found that typical bursting TRN neurons had the most robust response to nociception; changes in tonic firing rate of typical TRN neurons exactly matched changes in behavioral nociceptive responses, and burst firing rate of these neurons increased significantly when behavioral nociceptive responses were reduced. This implies that typical TRN neurons could critically modulate ascending nociceptive signals. The role of other TRN neuronal subtypes was less clear; atypical bursting TRN neurons decreased tonic firing rate after the second peak of behavioral nociception and the firing rate of non-bursting TRN neurons mostly remained at baseline level. Overall, our results suggest that different TRN neuronal subtypes contribute differentially to processing formalin induced sustained nociception in freely moving mice.
Collapse
Affiliation(s)
- Yeowool Huh
- Center for Neural Science, Korea Institute of Science and TechnologySeoul, South Korea; Department of Neuroscience, University of Science and TechnologyDaejeon, South Korea
| | - Jeiwon Cho
- Center for Neural Science, Korea Institute of Science and TechnologySeoul, South Korea; Department of Neuroscience, University of Science and TechnologyDaejeon, South Korea
| |
Collapse
|
15
|
Antinociceptive Effects of Spinal Manipulative Therapy on Nociceptive Behavior of Adult Rats during the Formalin Test. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:520454. [PMID: 26693243 PMCID: PMC4674607 DOI: 10.1155/2015/520454] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 10/26/2015] [Accepted: 11/09/2015] [Indexed: 01/08/2023]
Abstract
Optimizing pain relief resulting from spinal manipulative therapies, including low velocity variable amplitude spinal manipulation (LVVA-SM), requires determining their mechanisms. Pain models that incorporate simulated spinal manipulative therapy treatments are needed for these studies. The antinociceptive effects of a single LVVA-SM treatment on rat nociceptive behavior during the commonly used formalin test were investigated. Dilute formalin was injected subcutaneously into a plantar hindpaw. Licking behavior was video-recorded for 5 minutes. Ten minutes of LVVA-SM at 20° flexion was administered with a custom-made device at the lumbar (L5) vertebra of isoflurane-anesthetized experimental rats (n = 12) beginning 10 minutes after formalin injection. Hindpaw licking was video-recorded for 60 minutes beginning 5 minutes after LVVA-SM. Control rats (n = 12) underwent the same methods except for LVVA-SM. The mean times spent licking the formalin-injected hindpaw of both groups 1–5 minutes after injection were not different. The mean licking time during the first 20 minutes post-LVVA-SM of experimental rats was significantly less than that of control rats (P < 0.001). The mean licking times of both groups during the second and third 20 minutes post-LVVA-SM were not different. Administration of LVVA-SM had a short-term, remote antinociceptive effect similar to clinical findings. Therefore, mechanistic investigations using this experimental approach are warranted.
Collapse
|
16
|
Qu CL, Dang YH, Tang JS. Administration of somatostatin analog octreotide in the ventrolateral orbital cortex produces sex-related antinociceptive effects on acute and formalin-induced nociceptive behavior in rats. Neurochem Int 2015; 87:77-84. [PMID: 26055971 DOI: 10.1016/j.neuint.2015.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 05/10/2015] [Accepted: 06/02/2015] [Indexed: 12/23/2022]
Abstract
The present study was designed to examine whether somatostatin analog octreotide (OCT) was involved in antinociception in the ventrolateral orbital cortex (VLO) and determine whether this effect had a sex difference between male and female rats. The radiant heat-evoked tail flick (TF) reflex was used as an index of acute nociceptive response in lightly anesthetized rats. The number of flinches evoked by formalin injection into the hindpaw was used to evaluate inflammatory persistent pain in conscious rats. Administration of OCT (2.0, 5.0 10.0 ng in 0.5 µl) into the VLO depressed the TF reflex in a dose-dependent manner only in female rats, but not male rats. Pretreatment with a nonselective somatostatin receptor antagonist cyclo-somatostatin (c-SOM) (25.0 µg in 0.5 µl) into the VLO antagonized 10.0 ng OCT-induced inhibition of the TF reflex in female rats. Similarly, application of high dose of OCT (10.0 ng in 0.5 µl) into the VLO depressed formalin-induced flinching response in the early and late phases only in female rats, and had no any effects in male rats. Pretreatment with c-SOM (25.0 µg in 0.5 µl) into the VLO totally antagonized the 10 ng OCT-induced inhibition of the flinches in both phases in female rats. Additionally, single administration of c-SOM into the VLO failed to alter tail reflex latencies and formalin-induced nociceptive behaviors in female rats. The results provide the first valuable evidence that somatostatin and its receptors are involved in antinociception in acute heat-evoked nociception and inflammatory persistent pain only in female rats, not male rats, in the VLO.
Collapse
Affiliation(s)
- Chao-Ling Qu
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China.
| | - Yong-Hui Dang
- Department of Forensic Medicine, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University School of Medicine, Yanta Road West 76#, Xi'an, Shaanxi 710061, China
| | - Jing-Shi Tang
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| |
Collapse
|
17
|
Zouikr I, Ahmed AF, Horvat JC, Beagley KW, Clifton VL, Ray A, Thorne RF, Jarnicki AG, Hansbro PM, Hodgson DM. Programming of formalin-induced nociception by neonatal LPS exposure: Maintenance by peripheral and central neuroimmune activity. Brain Behav Immun 2015; 44:235-46. [PMID: 25449583 DOI: 10.1016/j.bbi.2014.10.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/10/2014] [Accepted: 10/23/2014] [Indexed: 12/22/2022] Open
Abstract
The immune and nociceptive systems are shaped during the neonatal period where they undergo fine-tuning and maturation. Painful experiences during this sensitive period of development are known to produce long-lasting effects on the immune and nociceptive responses. It is less clear, however, whether inflammatory pain responses are primed by neonatal exposure to mild immunological stimuli, such as with lipopolysaccharide (LPS). Here, we examine the impact of neonatal LPS exposure on inflammatory pain responses, peripheral and hippocampal interleukin-1β (IL-1β), as well as mast cell number and degranulation in preadolescent and adult rats. Wistar rats were injected with LPS (0.05mg/kg IP, Salmonella enteritidis) or saline on postnatal days (PNDs) 3 and 5 and later subjected to the formalin test at PNDs 22 and 80-97. At both time-points, and one-hour after formalin injection, blood and hippocampus were collected for measuring circulating and central IL-1β levels using ELISA and Western blot, respectively. Paw tissue was also isolated to assess mast cell number and degree of degranulation using Toluidine Blue staining. Behavioural analyses indicate that at PND 22, LPS-challenged rats displayed enhanced flinching (p<.01) and licking (p<.01) in response to formalin injection. At PNDs 80-97, LPS-challenged rats exhibited increased flinching (p<.05), an effect observed in males only. Furthermore, neonatal LPS exposure enhanced circulating IL-1β and mast cell degranulation in preadolescent but not adult rats following formalin injection. Hippocampal IL-1β levels were increased in LPS-treated adult but not preadolescent rats in response to formalin injection. These data suggest neonatal LPS exposure produces developmentally regulated changes in formalin-induced behavioural responses, peripheral and central IL-1β levels, as well as mast cell degranulation following noxious stimulation later in life. These findings highlight the importance of immune activation during the neonatal period in shaping immune response and pain sensitivity later in life. This is of clinical relevance given the high prevalence of bacterial infection during the neonatal period, particularly in the vulnerable population of preterm infants admitted to neonatal intensive care units.
Collapse
Affiliation(s)
- Ihssane Zouikr
- Laboratory of Neuroimmunology, School of Psychology, University of Newcastle, Newcastle, New South Wales, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia; Hunter Medical Research Institute, Newcastle, New South Wales, Australia.
| | - Abdulrzag F Ahmed
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Jay C Horvat
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia; Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Kenneth W Beagley
- Institute of Health Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Vicki L Clifton
- Robinson Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Allyson Ray
- Laboratory of Neuroimmunology, School of Psychology, University of Newcastle, Newcastle, New South Wales, Australia
| | - Rick F Thorne
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia; Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Andrew G Jarnicki
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Deborah M Hodgson
- Laboratory of Neuroimmunology, School of Psychology, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
18
|
Anti-hypernociceptive effect of mangiferin in persistent and neuropathic pain models in rats. Pharmacol Biochem Behav 2014; 124:311-9. [DOI: 10.1016/j.pbb.2014.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 11/21/2022]
|
19
|
Zouikr I, James MH, Campbell EJ, Clifton VL, Beagley KW, Dayas CV, Hodgson DM. Altered formalin-induced pain and Fos induction in the periaqueductal grey of preadolescent rats following neonatal LPS exposure. PLoS One 2014; 9:e98382. [PMID: 24878577 PMCID: PMC4039471 DOI: 10.1371/journal.pone.0098382] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/02/2014] [Indexed: 11/18/2022] Open
Abstract
Animal and human studies have demonstrated that early pain experiences can produce alterations in the nociceptive systems later in life including increased sensitivity to mechanical, thermal, and chemical stimuli. However, less is known about the impact of neonatal immune challenge on future responses to noxious stimuli and the reactivity of neural substrates involved in analgesia. Here we demonstrate that rats exposed to Lipopolysaccharide (LPS; 0.05 mg/kg IP, Salmonella enteritidis) during postnatal day (PND) 3 and 5 displayed enhanced formalin-induced flinching but not licking following formalin injection at PND 22. This LPS-induced hyperalgesia was accompanied by distinct recruitment of supra-spinal regions involved in analgesia as indicated by significantly attenuated Fos-protein induction in the rostral dorsal periaqueductal grey (DPAG) as well as rostral and caudal axes of the ventrolateral PAG (VLPAG). Formalin injections were associated with increased Fos-protein labelling in lateral habenula (LHb) as compared to medial habenula (MHb), however the intensity of this labelling did not differ as a result of neonatal immune challenge. These data highlight the importance of neonatal immune priming in programming inflammatory pain sensitivity later in development and highlight the PAG as a possible mediator of this process.
Collapse
Affiliation(s)
- Ihssane Zouikr
- Laboratory of Neuroimmunology, School of Psychology, University of Newcastle, Newcastle, New South Wales, Australia
- * E-mail:
| | - Morgan H. James
- Neurobiology of Addiction Laboratory, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Erin J. Campbell
- Neurobiology of Addiction Laboratory, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Vicki L. Clifton
- Robinson Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Kenneth W. Beagley
- Institute of Health Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Christopher V. Dayas
- Neurobiology of Addiction Laboratory, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Deborah M. Hodgson
- Laboratory of Neuroimmunology, School of Psychology, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
20
|
Garrido-Suárez BB, Garrido G, García ME, Delgado-Hernández R. Antihyperalgesic Effects of an Aqueous Stem Bark Extract ofMangifera indicaL.: Role of Mangiferin Isolated from the Extract. Phytother Res 2014; 28:1646-53. [DOI: 10.1002/ptr.5177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/28/2014] [Accepted: 04/29/2014] [Indexed: 01/14/2023]
Affiliation(s)
- Bárbara B. Garrido-Suárez
- Laboratorio de Farmacología Molecular; Centro de Investigación y Desarrollo de Medicamentos; Ave. 26 No. 1605, Nuevo Vedado La Habana Cuba
| | - Gabino Garrido
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Edificio Ñ3; Universidad Católica del Norte; Angamos 0610 Antofagasta Chile
| | - Mary Elena García
- Laboratorio de Farmacología Molecular; Centro de Investigación y Desarrollo de Medicamentos; Ave. 26 No. 1605, Nuevo Vedado La Habana Cuba
| | - René Delgado-Hernández
- Laboratorio de Farmacología Molecular; Centro de Investigación y Desarrollo de Medicamentos; Ave. 26 No. 1605, Nuevo Vedado La Habana Cuba
| |
Collapse
|
21
|
Zouikr I, Tadros MA, Barouei J, Beagley KW, Clifton VL, Callister RJ, Hodgson DM. Altered nociceptive, endocrine, and dorsal horn neuron responses in rats following a neonatal immune challenge. Psychoneuroendocrinology 2014; 41:1-12. [PMID: 24495603 DOI: 10.1016/j.psyneuen.2013.11.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 01/16/2023]
Abstract
The neonatal period is characterized by significant plasticity where the immune, endocrine, and nociceptive systems undergo fine-tuning and maturation. Painful experiences during this period can result in long-term alterations in the neurocircuitry underlying nociception, including increased sensitivity to mechanical or thermal stimuli. Less is known about the impact of neonatal exposure to mild inflammatory stimuli, such as lipopolysaccharide (LPS), on subsequent inflammatory pain responses. Here we examine the impact of neonatal LPS exposure on inflammatory pain sensitivity and HPA axis activity during the first three postnatal weeks. Wistar rats were injected with LPS (0.05mg/kg IP, Salmonella enteritidis) or saline on postnatal days (PNDs) 3 and 5 and later subjected to the formalin test at PNDs 7, 13, and 22. One hour after formalin injection, blood was collected to assess corticosterone responses. Transverse spinal cord slices were also prepared for whole-cell patch clamp recording from lumbar superficial dorsal horn neurons (SDH). Brains were obtained at PND 22 and the hypothalamus was isolated to measure glucocorticoid (GR) and mineralocorticoid receptor (MR) transcript expression using qRT-PCR. Behavioural analyses indicate that at PND 7, no significant differences were observed between saline- or LPS-challenged rats. At PND 13, LPS-challenged rats exhibited enhanced licking (p<.01), and at PND 22, increased flinching in response to formalin injection (p<.05). LPS-challenged rats also displayed increased plasma corticosterone at PND 7 and PND 22 (p<.001) but not at PND 13 following formalin administration. Furthermore, at PND 22 neonatal LPS exposure induced decreased levels of GR mRNA and increased levels of MR mRNA in the hypothalamus. The intrinsic properties of SDH neurons were similar at PND 7 and PND 13. However, at PND 22, ipsilateral SDH neurons in LPS-challenged rats had a lower input resistance compared to their saline-challenged counterparts (p<.05). These data suggest neonatal LPS exposure produces developmentally regulated changes in formalin-induced behavioural responses, corticosterone levels, and dorsal horn neuron properties following noxious stimulation later in life. These findings highlight the importance of immune activation during the neonatal period in shaping pain sensitivity later in life. This programming involves both spinal cord neurons and the HPA axis.
Collapse
Affiliation(s)
- Ihssane Zouikr
- Laboratory of Neuroimmunology, School of Psychology, University of Newcastle, Newcastle, New South Wales, Australia
| | - Melissa A Tadros
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Javad Barouei
- Laboratory of Neuroimmunology, School of Psychology, University of Newcastle, Newcastle, New South Wales, Australia
| | - Kenneth W Beagley
- Institute of Health Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Vicki L Clifton
- Robinson Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Robert J Callister
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Deborah M Hodgson
- Laboratory of Neuroimmunology, School of Psychology, University of Newcastle, Newcastle, New South Wales, Australia.
| |
Collapse
|
22
|
Sushko BS. Interaction between Antinociceptive Effects of Preventive Microwave Irradiation of an Acupuncture Point and Pharmacological Blocking of NO Synthase in Mice. NEUROPHYSIOLOGY+ 2013. [DOI: 10.1007/s11062-013-9353-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Low formalin concentrations induce fine-tuned responses that are sex and age-dependent: a developmental study. PLoS One 2013; 8:e53384. [PMID: 23308208 PMCID: PMC3538774 DOI: 10.1371/journal.pone.0053384] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 11/27/2012] [Indexed: 11/19/2022] Open
Abstract
The formalin test is increasingly applied as a model of inflammatory pain using high formalin concentrations (5–15%). However, little is known about the effects of low formalin concentrations on related behavioural responses. To examine this, rat pups were subjected to various concentrations of formalin at four developmental stages: 7, 13, 22, and 82 days of age. At postnatal day (PND) 7, sex differences in flinching but not licking responses were observed with 0.5% formalin evoking higher flinching in males than in females. A dose response was evident in that 0.5% formalin also produced higher licking responses compared to 0.3% or 0.4% formalin. At PND 13, a concentration of 0.8% formalin evoked a biphasic response. At PND 22, a concentration of 1.1% evoked higher flinching and licking responses during the late phase (10–30 min) in both males and females. During the early phase (0–5 min), 1.1% evoked higher licking responses compared to 0.9% or 1% formalin. 1.1% formalin produced a biphasic response that was not evident with 0.9 or 1%. At PND 82, rats displayed a biphasic pattern in response to three formalin concentrations (1.25%, 1.75% and 2.25%) with the presence of an interphase for both 1.75% and 2.25% but not for 1.25%. These data suggest that low formalin concentrations induce fine-tuned responses that are not apparent with the high formalin concentration commonly used in the formalin test. These data also show that the developing nociceptive system is very sensitive to subtle changes in formalin concentrations.
Collapse
|
24
|
Sharma M, Garigipati S, Kundu B, Vanamala D, Semwal A, Sriram D, Yogeeswari P. Discovery of Novel 1,2,4-Triazol-5-Ones as Tumor Necrosis Factor-Alpha Inhibitors for the Treatment of Neuropathic Pain. Chem Biol Drug Des 2012; 80:961-70. [DOI: 10.1111/cbdd.12049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
25
|
Discovery of Fused Triazolo-thiadiazoles as Inhibitors of TNF-alpha: Pharmacophore Hybridization for Treatment of Neuropathic Pain. Pain Ther 2012; 1:3. [PMID: 25134932 PMCID: PMC4107862 DOI: 10.1007/s40122-012-0003-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Indexed: 12/14/2022] Open
Abstract
Introduction Neuropathic pain is a complex, chronic pain state that is usually accompanied by tissue injury. With neuropathic pain, the nerve fibers themselves may be damaged, dysfunctional, or injured. Methods A series of pharmacophoric hybrids of substituted aryl semicarbazides incorporated into a fused triazolo-thiadiazole nucleus were synthesized and evaluated for neuropathic pain activity. After the assessment of neurotoxicity and peripheral analgesic activity, the compounds were evaluated in two peripheral neuropathic pain models, the chronic constriction injury and partial sciatic nerve ligation, to assess their antiallodynic and antihyperalgesic potential. Results Selected compounds exhibiting promising efficacies (4b, 6a, and 7e) revealed median effective dose (ED50) values ranging from 7.62–28.71 mg/kg in four behavioral assays of allodynia and hyperalgesia (spontaneous pain, tactile allodynia, cold allodynia, and mechanical hyperalgesia). Studies carried out to assess the underlying mechanism revealed that compounds suppressed the inflammatory component of the neuropathic pain by inhibiting tumor necrosis factor (TNF)-alpha and preventing oxidative and nitrosative stress. Conclusion Using a hybrid design approach, the present study identified novel chemical compounds that could be a potential lead for the treatment of neuropathic pain.
Collapse
|
26
|
Dyuizen IV, Kotsyuba EP, Lamash NE. Changes in the nitric oxide system in the shore crab Hemigrapsus sanguineus (Crustacea, decapoda) CNS induced by a nociceptive stimulus. J Exp Biol 2012; 215:2668-76. [DOI: 10.1242/jeb.066845] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Using NADPH-diaphorase (NADPH-d) histochemistry, inducible nitric oxide synthase (iNOS)-immunohistochemistry and immunoblotting, we characterized the nitric oxide (NO)-producing neurons in the brain and thoracic ganglion of a shore crab subjected to a nociceptive chemical stimulus. Formalin injection into the cheliped evoked specific nociceptive behavior and neurochemical responses in the brain and thoracic ganglion of experimental animals. Within 5–10 min of injury, the NADPH-d activity increased mainly in the neuropils of the olfactory lobes and the lateral antenna I neuropil on the side of injury. Later, the noxious-induced expression of NADPH-d and iNOS was detected in neurons of the brain, as well as in segmental motoneurons and interneurons of the thoracic ganglion. Western blotting analysis showed that an iNOS antiserum recognized a band at 120 kDa, in agreement with the expected molecular mass of the protein. The increase in nitrergic activity induced by nociceptive stimulation suggests that the NO signaling system may modulate nociceptive behavior in crabs.
Collapse
Affiliation(s)
- Inessa V. Dyuizen
- A. V. Zhirmunsky Institute of Marine Biology, Far East Branch of Russian Academy of Sciences, 17 Palchevsky Street, Vladivostok 690041, Russia
- Far Eastern Federal University, Sukhanova Street, Vladivostok 690950, Russia
| | - Elena P. Kotsyuba
- A. V. Zhirmunsky Institute of Marine Biology, Far East Branch of Russian Academy of Sciences, 17 Palchevsky Street, Vladivostok 690041, Russia
| | - Nina E. Lamash
- A. V. Zhirmunsky Institute of Marine Biology, Far East Branch of Russian Academy of Sciences, 17 Palchevsky Street, Vladivostok 690041, Russia
- Far Eastern Federal University, Sukhanova Street, Vladivostok 690950, Russia
| |
Collapse
|
27
|
Watanabe C, Mizoguchi H, Bagetta G, Sakurada S. The involvement of the spinal release of glutamate and nitric oxide in peripheral noxious stimulation-induced pain-related behaviors—Study in mouse spinal microdialysis. Neurosci Lett 2012; 515:111-4. [DOI: 10.1016/j.neulet.2012.02.091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 02/25/2012] [Accepted: 02/28/2012] [Indexed: 01/10/2023]
|
28
|
Effects of Electroacupuncture at BL60 on Formalin-Induced Pain in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:324039. [PMID: 22550540 PMCID: PMC3328898 DOI: 10.1155/2012/324039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 11/23/2011] [Accepted: 12/23/2011] [Indexed: 11/21/2022]
Abstract
Acupuncture was used to treat symptoms of pain in the ancient orient. The present study was conducted to determine the effects of electroacupuncture (EA) at the BL60 acupoint on male Sprague-Dawley rats. Each rat received EA at BL60 acupoint before formalin injection. Behavioral responses were recorded using a video camera and c-Fos immunohistochemistry was performed thereafter. Treatment of EA at BL60 significantly inhibited flinching behavior and c-fos expression induced by formalin injection into the paw, compared to a control group. These results suggest that electroacupuncture at BL60 acupoint may be effective in relieving inflammatory pain.
Collapse
|
29
|
Dmitrieva N, Rodríguez-Malaver AJ, Pérez J, Hernández L. Differential release of neurotransmitters from superficial and deep layers of the dorsal horn in response to acute noxious stimulation and inflammation of the rat paw. Eur J Pain 2012; 8:245-52. [PMID: 15109975 DOI: 10.1016/j.ejpain.2003.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2003] [Accepted: 09/01/2003] [Indexed: 11/29/2022]
Abstract
Experimental evidence suggests that release of neurotransmitters in response to acute noxious stimulation and inflammation can differ in superficial and deeper dorsal horn (DH) laminae. Using two different microdialysis probes, we studied changes in levels of glutamate, aspartate, arginine and GABA in dialysates collected from the surface of the spinal cord and within the DH induced by pinching the paw or paw inflammation. In penthotal anaesthetized rats, a flexible microdialysis probe was placed on the dorsal surface of the L4-L5 or L6-S2 spinal segments. In other rats, a rigid microdialysis probe was implanted within the DH of the same segments. Samples were collected every minute before, during and after pinching the hind paw (acute pain), and every half an hour after injecting either carrageenan or saline into the same paw (inflammation-induced pain). Amino acids were measured by capillary zone electrophoresis with laser-induced fluorescence detection (CZE-LIFD). Pinching the paw induced a significant but short lasting increase in extracellular glutamate and aspartate in dialysates from the surface of the DH. Carrageenan, but not saline, injected into the paw significantly increased concentrations of glutamate, aspartate and arginine both on the surface and within the DH of L4-L5 and also within the DH of the L6-S2 segments. The GABA level was significantly increased following carrageenan only within the DH. The maximum increase on the surface was detected 60-120 min after the onset of inflammation whereas the response within the DH reached a maximum between 150 and 180 min after carrageenan. These results indicate that unlike acute mechanical noxious stimulation which enhances amino acid neurotransmitters in surface dialysate, inflammation induced neurotransmitter release in all layers of the DH suggesting sensitization of the DH.
Collapse
Affiliation(s)
- Natalia Dmitrieva
- Program in Neuroscience, Florida State University, Tallahassee, FL 32306-1270, USA.
| | | | | | | |
Collapse
|
30
|
Forebrain medial septum region facilitates nociception in a rat formalin model of inflammatory pain. Pain 2011; 152:2528-2542. [DOI: 10.1016/j.pain.2011.07.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 06/16/2011] [Accepted: 07/26/2011] [Indexed: 12/25/2022]
|
31
|
Garrido-Suárez B, Garrido G, Delgado R, Bosch F, del C. Rabí M. Case Series in Patients with Zoster-Associated Pain Using Mangifera indica L. Extract. ACTA ACUST UNITED AC 2011; 18:345-50. [DOI: 10.1159/000335124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
A Mangifera indica L. extract could be used to treat neuropathic pain and implication of mangiferin. Molecules 2010; 15:9035-45. [PMID: 21150823 PMCID: PMC6259159 DOI: 10.3390/molecules15129035] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 11/29/2010] [Accepted: 12/01/2010] [Indexed: 01/15/2023] Open
Abstract
It has been accepted that neuroinflammation, oxidative stress and glial activation are involved in the central sensitization underlying neuropathic pain. Vimang is an aqueous extract of Mangifera indica L. traditionally used in Cuba for its analgesic, anti-inflammatory, antioxidant and immunomodulatory properties. Several formulations are available, and also for mangiferin, its major component. Preclinical studies demonstrated that these products prevented tumor necrosis factor α -induced IκB degradation and the binding of nuclear factor κB to DNA, which induces the transcription of genes implicated in the expression of some mediators and enzymes involved in inflammation, pain, oxidative stress and synaptic plasticity. In this paper we propose its potential utility in the neuropathic pain treatment. This hypothesis is supported in the cumulus of preclinical and clinical evidence around the extract and mangiferin, its major component, and speculates about the possible mechanism of action according to recent advances in the physiopathology of neuropathic pain.
Collapse
|
33
|
Huo FQ, Huang FS, Lv BC, Chen T, Feng J, Qu CL, Tang JS, Li YQ. Activation of serotonin 1A receptors in ventrolateral orbital cortex depresses persistent nociception: A presynaptic inhibition mechanism. Neurochem Int 2010; 57:749-55. [DOI: 10.1016/j.neuint.2010.08.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/24/2010] [Accepted: 08/11/2010] [Indexed: 11/30/2022]
|
34
|
Katsuyama S, Mizoguchi H, Komatsu T, Nagaoka K, Sakurada S, Sakurada T. The cannabinoid 1 receptor antagonist AM251 produces nocifensive behavior via activation of ERK signaling pathway. Neuropharmacology 2010; 59:534-41. [DOI: 10.1016/j.neuropharm.2010.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 07/06/2010] [Accepted: 07/14/2010] [Indexed: 11/29/2022]
|
35
|
Feng J, Jia N, Han LN, Huang FS, Xie YF, Liu J, Tang JS. Microinjection of morphine into thalamic nucleus submedius depresses bee venom-induced inflammatory pain in the rat. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.60.10.0012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Previous studies have provided evidence of the existence of a pain modulatory feedback pathway consisting of thalamic nucleus submedius (Sm)–ventrolateral orbital cortex-periaqueductal grey pathway, which is activated during acute pain and leads to depression of transmission of nociceptive information in the spinal dorsal horn. The aim of this study was to test the hypothesis that morphine microinjection into the Sm decreased spontaneous pain and bilateral thermal hyperalgesia, as well as ipsilateral mechanical allodynia, induced by subcutaneous injections of bee venom into the rat hind paw. Morphine (1.0, 2.5 or 5.0 m̀g in 0.5 μL) injected into the Sm, contralateral to the bee venominjected paw, depressed spontaneous nociceptive behaviour in a dose-dependent manner. Furthermore, morphine significantly decreased bilateral thermal hyperalgesia and ipsilateral mechanical allodynia 2 h after bee venom injection. These morphine-induced effects were antagonized by 1.0 μg naloxone (an opioid antagonist) microinjected into the Sm 5 min before morphine administration. The results provided further support for the important role of the Sm and Sm-opioid receptors in inhibiting nociceptive behaviour and indicated for the first time that Sm opioid receptors were also effective in inhibiting the hypersensitivity provoked by bee venom-induced inflammation.
Collapse
Affiliation(s)
- Jie Feng
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Ning Jia
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Ling-Na Han
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Fen-Sheng Huang
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Yu-Feng Xie
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Jian Liu
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Jing-Shi Tang
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
36
|
Akbari Z, Rohani MH, Behzadi G. NADPH-d/NOS reactivity in the lumbar dorsal horn of congenitally hypothyroid pups before and after formalin pain induction. Int J Dev Neurosci 2009; 27:779-87. [PMID: 19720128 DOI: 10.1016/j.ijdevneu.2009.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Revised: 06/22/2009] [Accepted: 08/24/2009] [Indexed: 11/16/2022] Open
Abstract
We have previously demonstrated that congenitally hypothyroid rat pups exhibit altered behavioral response to formalin pain induction during postnatal period. In the present study, using NADPH-diaphorase histochemistry and NOS immunostaining, we investigated the effect of congenital hypothyroidism on the NOS expression in spinal cord of intact neonates at postnatal days of 15 and 21. We also examined the effect of thyroid dysfunction on the NADPH-d/NOS expression in response to formalin nociception. Congenital hypothyroidism induced by propylthiouracil (PTU) treatment started from gestational day 16 and continued to postnatal day 15 or 21. Congenitally hypothyroid pups exhibited marked reduction in NADPH-d reactive cells (84% and 66% in P15 and P21, respectively; P<0.001) and NOS-ir cells (52% and 91% in P15 and P21, respectively; P<0.001) in superficial lumbar dorsal horn laminae (I-II) as compared to that of normal pups. Moreover, in congenitally hypothyroid pups the NADPH-d/NOS expression following hindpaw formalin injection did not change significantly. Our results demonstrate that congenital hypothyroidism affect developmental expression of NOS in spinal dorsal horn, which may in part explain the altered behavioral pain response as we previously reported in hypothyroid pups.
Collapse
Affiliation(s)
- Zahra Akbari
- Neuroscience Research Center, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
37
|
Antinociceptive effects of (O-methyl)-N-benzoyl tyramine (riparin I) from Aniba riparia (Nees) Mez (Lauraceae) in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2009; 380:337-44. [DOI: 10.1007/s00210-009-0433-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 06/08/2009] [Accepted: 06/09/2009] [Indexed: 10/20/2022]
|
38
|
Feng J, Huo F, Jia N, Qu C, Liu J, Li Y, Tang JS. Activation of mu-opioid receptors in thalamic nucleus submedius depresses bee venom–evoked spinal c-Fos expression and flinching behavior. Neuroscience 2009; 161:554-60. [DOI: 10.1016/j.neuroscience.2009.03.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 03/25/2009] [Accepted: 03/25/2009] [Indexed: 12/01/2022]
|
39
|
Lee JS, Zhang Y, Ro JY. Involvement of neuronal, inducible and endothelial nitric oxide synthases in capsaicin-induced muscle hypersensitivity. Eur J Pain 2008; 13:924-8. [PMID: 19084437 DOI: 10.1016/j.ejpain.2008.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 10/01/2008] [Accepted: 11/02/2008] [Indexed: 01/11/2023]
Abstract
Nitric oxide, which has been implicated in the development of hyperalgesia in the spinal system, has not been systematically studied in the trigeminal system, especially in the context of inflammatory muscle pain condition. In this study, we investigated the functional role of centrally released nitric oxide in the pathogenesis of orofacial muscle pain. Specifically, we examined the contribution of neuronal, inducible and endothelial nitric oxide synthases, nNOS, iNOS and eNOS, respectively, in mediating masseter hypersensitivity under acute inflammatory condition. Time-dependent changes in nNOS, iNOS and eNOS protein expression in the subnucleus caudalis (Vc) were assessed following capsaicin injection in the masseter muscle of male Sprague Dawley rats. The expression of all three nitric oxide synthases was significantly up-regulated 30-60 min following capsaicin stimulation, which paralleled the time course of the development of capsaicin-induced masseter hypersensitivity. Pretreatment with each NOS inhibitor significantly attenuated the masseter hypersensitivity. These data showed that all three NOS in the Vc are functionally important for the development of craniofacial muscle hyperalgesia and suggest that the three NOS are closely orchestrated to regulate the level of nitric oxide under normal and pathologic conditions.
Collapse
Affiliation(s)
- Jong-Seok Lee
- Department of Neural and Pain Sciences, University of Maryland Baltimore, School of Dentistry, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
40
|
Jalalvand E, Javan M, Haeri-Rohani A, Ahmadiani A. Stress- and non-stress-mediated mechanisms are involved in pain-induced apoptosis in hippocampus and dorsal lumbar spinal cord in rats. Neuroscience 2008; 157:446-52. [DOI: 10.1016/j.neuroscience.2008.08.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 08/23/2008] [Accepted: 08/26/2008] [Indexed: 12/12/2022]
|
41
|
Lee ATH, Shah JJ, Li L, Cheng Y, Moore PK, Khanna S. A nociceptive-intensity-dependent role for hydrogen sulphide in the formalin model of persistent inflammatory pain. Neuroscience 2008; 152:89-96. [PMID: 18248901 DOI: 10.1016/j.neuroscience.2007.11.052] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 11/30/2007] [Accepted: 11/30/2007] [Indexed: 10/22/2022]
Abstract
The present study investigated the hypothesis that hydrogen sulfide (H2S) is pro-nociceptive in the formalin model of persistent inflammatory pain in the adult rat. Hind paw injection of formalin evoked a concentration-dependent increase in the hind paw concentration of H2S. Increased concentration of H2S was found in homogenates prepared from hind paws injected with 5% (but not 1.25%) formalin. Correspondingly, animal nociceptive flinching and hind paw edema were maximal with 5% formalin. Both nociceptive flinching and hind paw edema induced by injection of 5% formalin were attenuated by pretreatment with DL-propargylglycine (PPG; 50 mg/kg, i.p.) which is an inhibitor of the H2S synthesizing enzyme cystathionine-gamma-lyase (CSE). The effect of pretreatment with PPG was selective and the drug did not influence animal behavior or hind-paw edema with injection of 1.25% formalin. Furthermore, PPG pretreatment attenuated the induction of c-Fos in spinal laminae I-II following injection of 5% formalin. In contrast, co-injection of 1.25% formalin with sodium hydrogen sulfide (NaHS; 1 nmol/0.1 ml), a H2S donor, into the hind paw increased animal nociceptive behavior. Collectively, these findings show that the effect of peripheral H2S in the pathogenesis of inflammatory pain depends, at least in part, on the nociceptive intensity level.
Collapse
Affiliation(s)
- A T H Lee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore 117597
| | | | | | | | | | | |
Collapse
|
42
|
Liu T, Pang XY, Bai ZT, Chai ZF, Jiang F, Ji YH. Intrathecal injection of glutamate receptor antagonists/agonist selectively attenuated rat pain-related behaviors induced by the venom of scorpion Buthus martensi Karsch. Toxicon 2007; 50:1073-84. [PMID: 17850839 DOI: 10.1016/j.toxicon.2007.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 07/03/2007] [Accepted: 07/24/2007] [Indexed: 10/23/2022]
Abstract
The present study investigated the involvement of spinal glutamate receptors in the induction and maintenance of the pain-related behaviors induced by the venom of scorpion Buthus martensi Karsch (BmK). (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5-10-imine hydrogen maleate (MK-801; 40nmol; a non-competitive NMDA receptor antagonist), 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 40nmol; a non-NMDA receptor antagonist), dl-amino-3-phosphonopropionic acid (dl-AP3; 100nmol; a group I metabotropic glutamate receptor antagonist) and 4-aminopyrrolidine-2,4-dicarboxylate (APDC; 100nmol; a group II metabotropic glutamate receptor agonist) were employed. On intrathecal injection of glutamate receptor antagonists/agonist before BmK venom administration by 10min, BmK venom-induced spontaneous nociceptive responses could be suppressed by all tested agents. Primary thermal hyperalgesia could be inhibited by MK-801 and dl-AP3, while bilateral mechanical hyperalgesia could be inhibited by CNQX and dl-AP3 and contralateral mechanical hyperalgesia could be inhibited by APDC. On intrathecal injection of glutamate receptor antagonists/agonist after BmK venom injection by 4.5h, primary thermal hyperalgesia could be partially reversed by all tested agents, while bilateral mechanical hyperalgesia could only be inhibited by APDC. The results suggest that the role of spinal glutamate receptors may be different on the various manifestations of BmK venom-induced pain-related behaviors.
Collapse
Affiliation(s)
- Tong Liu
- Graduate School of the Chinese Academy of Sciences, Institute of Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Historically, analgesics were applied by the topical route of administration. With the advent of oral formulations of drugs, topical application became less popular among physicians, although patients still rated this method of drug delivery as efficacious and practical. We now appreciate that peripheral mechanisms of actions of a variety of preparations rationalizes their topical application and gives further opportunity to target peripheral receptors and neural pathways that previously required systemic administration to achieve therapeutic effect. Therefore, a peripheral effect can be generated by using locally applied drug and, consequently, systemic concentrations of that drug may not reach the level at which systemic side effects can occur.
Collapse
Affiliation(s)
- Gary McCleane
- Rampark Pain Centre, 2 Rampark Dromore Road, Lurgan BT66 7JH, Northern Ireland, UK. gary@
| |
Collapse
|
44
|
Lin YR, Chen HH, Ko CH, Chan MH. Effects of honokiol and magnolol on acute and inflammatory pain models in mice. Life Sci 2007; 81:1071-8. [PMID: 17826802 DOI: 10.1016/j.lfs.2007.08.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 08/01/2007] [Accepted: 08/10/2007] [Indexed: 11/27/2022]
Abstract
The antinociceptive actions of honokiol and magnolol, two major bioactive constituents of the bark of Magnolia officinalis, were evaluated using tail-flick, hot-plate and formalin tests in mice. The effects of honokiol and magnolol on the formalin-induced c-Fos expression in the spinal cord dorsal horn as well as motor coordination and cognitive function were examined. Data showed that honokiol and magnolol did not produce analgesia in tail-flick, hot-plate paw-shaking and neurogenic phase of the overt nociception induced by intraplantar injection of formalin. However, honokiol and magnolol reduced the inflammatory phase of formalin-induced licking response. Consistently, honokiol and magnolol significantly decreased formalin-induced c-Fos protein expression in superficial (I-II) laminae of the L4-L5 lumbar dorsal horn. However, honokiol and magnolol did not elicit motor incoordination and memory dysfunction at doses higher than the analgesic dose. These results demonstrate that honokiol and magnolol effectively alleviate the formalin-induced inflammatory pain without motor and cognitive side effects, suggesting their therapeutic potential in the treatment of inflammatory pain.
Collapse
Affiliation(s)
- Yi-Ruu Lin
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | | | | | | |
Collapse
|
45
|
Oliveira ACP, Bertollo CM, Rocha LTS, Nascimento EB, Costa KA, Coelho MM. Antinociceptive and antiedematogenic activities of fenofibrate, an agonist of PPAR alpha, and pioglitazone, an agonist of PPAR gamma. Eur J Pharmacol 2007; 561:194-201. [PMID: 17343847 DOI: 10.1016/j.ejphar.2006.12.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 12/20/2006] [Accepted: 12/21/2006] [Indexed: 10/23/2022]
Abstract
Peroxisome proliferator activated receptors (PPAR) are ligand-regulated transcription factors that control the expression of many genes. The antiinflammatory activity of fibrates, PPARalpha agonists, and thiazolidinediones, PPARgamma agonists, has been demonstrated in many in vitro and a few in vivo studies. In the present study, we evaluated the effect of acute (100 or 300 mg/kg, p.o.) or prolonged (100 or 300 mg/kg day, 7 days, p.o.) treatment with fenofibrate and acute treatment with pioglitazone (doses ranging from 1 to 50 mg/kg, i.p.), PPARalpha and PPARgamma agonists, respectively, on experimental models of nociception and edema, in order to expand the knowledge of their potential antiinflammatory activities. Fenofibrate and pioglitazone did not inhibit the nociceptive response in the hot-plate model and the first phase of formaldehyde induced nociceptive response in mice. However, treatment with pioglitazone and prolonged treatment with fenofibrate inhibited the second phase of this response. Mechanical allodynia induced by carrageenan in rats was inhibited by prolonged treatment with fenofibrate, but not by acute treatment with pioglitazone or fenofibrate. Both drugs inhibited paw edema induced by carrageenan in rats. Fenofibrate did not inhibit mechanical allodynia or paw edema induced by phorbol-12,13-didecanoate (PDD), a protein kinase C activator, in rats. Pioglitazone inhibited paw edema, but not mechanical allodynia, induced by PDD. The results represent the first demonstration of the antinociceptive and antiedematogenic activities of fenofibrate and pioglitazone and give further support to the potential use of PPAR agonists in the treatment of different inflammatory diseases.
Collapse
Affiliation(s)
- Antônio Carlos P Oliveira
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627 31270-91 Belo Horizonte, MG, Brazil
| | | | | | | | | | | |
Collapse
|
46
|
Komatsu T, Sakurada C, Sasaki M, Sanai K, Tsuzuki M, Bagetta G, Sakurada S, Sakurada T. Extracellular signal-regulated kinase (ERK) and nitric oxide synthase mediate intrathecal morphine-induced nociceptive behavior. Neuropharmacology 2007; 52:1237-43. [PMID: 17353023 DOI: 10.1016/j.neuropharm.2007.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 12/22/2006] [Accepted: 01/03/2007] [Indexed: 11/16/2022]
Abstract
Intrathecal (i.t.) administration of morphine at a high dose of 60nmol into the spinal lumbar space in mice produces a severe hindlimb scratching followed by biting and licking. Nitric oxide (NO) is thought to play an important role in signal transduction pathways that enhance nociceptive transmission in the spinal cord. The present study was designed to determine whether high-dose i.t. morphine could influence the activation of the extracellular signal-regulated kinase (ERK), a mitogen-activated protein (MAP) kinase in neuronal nitric oxide synthase (nNOS) and inducible NOS (iNOS) activation. Both 7-NI and TRIM, selective inhibitors of nNOS, resulted in a dose-dependent inhibition of high-dose i.t. morphine-induced behavior. The selective iNOS inhibitor W1400 in relatively large doses inhibited in a non dose-dependent manner. The i.t. injection of morphine evoked a definite activation of ERK in the lumbar dorsal spinal cord. Behavioral experiments showed that U0126 (0.5-2.5nmol), a MAP kinase-ERK inhibitor, dose-dependently attenuated the behavioral response to i.t. morphine. In mice treated with high-dose morphine, 7-NI was very effective in blocking ERK activation, whereas W1400 had no effect. Taken together, these results suggest that the behavioral response to high-dose i.t. morphine may be triggered by the nNOS-ERK pathway in the dorsal spinal cord.
Collapse
Affiliation(s)
- Takaaki Komatsu
- Department of Biochemistry, Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Our knowledge and understanding of the pathophysiology and treatment of pain is increasing; however, we should not lose sight of the simple opportunities that exist for intercepting pain at peripheral targets. Although systemic medication often has peripheral and central modes of action, the appeal for provision of medication close to where these peripheral targets exist should be high. If these sites can be attacked with relatively high concentrations of active drug while keeping systemic levels of that drug below the level at which systemic side effects become apparent, then this should lead to desirable outcomes. Even though the number of true topical agents with an indication for this use is small, a number of other topical agents are available that evidence suggests have the possibility of being effective. Given the increased understanding of pain, the likelihood of further topical agents becoming available is high.
Collapse
Affiliation(s)
- Gary McCleane
- Rampark Pain Centre, 2 Rampark Dromore Road, Lurgan BT66 7JH, Northern Ireland, UK.
| |
Collapse
|
48
|
Pryor SC, Zhu W, Cadet P, Bianchi E, Guarna M, Stefano GB. Endogenous morphine: opening new doors for the treatment of pain and addiction. Expert Opin Biol Ther 2006; 5:893-906. [PMID: 16018736 DOI: 10.1517/14712598.5.7.893] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nitric oxide (NO) signalling is at the forefront of intense research interest because its many effects remain controversial and seemingly contradictory. This paper examines its role as a potential mediator of pain and tolerance. Within this context discussion covers endogenous morphine, documenting its ability to be made in animal tissues, including nervous tissue, and in diverse animal phyla. Supporting morphine as an endogenous signalling molecule is the presence of the newly cloned mu3 opiate receptor subtype found in animal (including human) immune, vascular and neural tissues, which is coupled to NO release. Importantly, this mu opiate receptor subtype is morphine-selective and opioid peptide-insensitive, further highlighting the presence of morphinergic signalling coupled to NO release. These findings provide novel insights into pain and tolerance as morphinergic signalling exhibits many similarities with NO actions. Taken together, a select morphinergic signalling system utilising NO opens the gate for the development of novel pharmaceuticals and/or the use of old pharmaceuticals in new ways.
Collapse
Affiliation(s)
- Stephen C Pryor
- State University of New York--College at Old Westbury, Neuroscience Research Institute, Old Westbury, NY 11568, USA
| | | | | | | | | | | |
Collapse
|
49
|
Huang J, Chang JY, Woodward DJ, Baccalá LA, Han JS, Wang JY, Luo F. Dynamic neuronal responses in cortical and thalamic areas during different phases of formalin test in rats. Exp Neurol 2006; 200:124-34. [PMID: 16603156 DOI: 10.1016/j.expneurol.2006.01.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 01/11/2006] [Accepted: 01/17/2006] [Indexed: 11/29/2022]
Abstract
Although formalin-induced activity in primary afferent fibers and spinal dorsal horn is well described, the forebrain neural basis underlying each phase of behavior in formalin test has not yet been clarified. The present study was designed to investigate the cortical and thalamic neuronal responses and interactions among forebrain areas during different phases after subcutaneous injection of formalin. Formalin-induced neuronal activities were simultaneously recorded from primary somatosensory cortex (SI), anterior cingulate cortex (ACC) and medial dorsal (MD) and ventral posterior (VP) thalamus during different phases (i.e., first phase, interphase, second phase and third recovery phase starting from 70 min after injection) of formalin test, using a multi-channel, single-unit recording technique. Our results showed that, (i) unlike the responses in primary afferent fibers and spinal dorsal horn, many forebrain neurons displayed monophasic excitatory responses in the first hour after formalin injection, except a small portion of neurons which exhibited biphasic responses; (ii) the response patterns of many cortical and thalamic neurons changed from excitatory to inhibitory at the end of the second phase; (iii) the direction of information flow also changed dramatically, i.e., from cortex to thalamus and from the medial to the lateral pathway in the first hour, but reversed in phase 3. These results indicate that the changes of activity pattern in forebrain networks may underlie the emerging and subsiding of central sensitization-induced pain behavior in the second phase of formalin test.
Collapse
Affiliation(s)
- Jin Huang
- Neuroscience Research Institute, Peking University Health Science Center, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Rocha LTS, Costa KA, Oliveira ACP, Nascimento EB, Bertollo CM, Araújo F, Teixeira LR, Andrade SP, Beraldo H, Coelho MM. Antinociceptive, antiedematogenic and antiangiogenic effects of benzaldehyde semicarbazone. Life Sci 2006; 79:499-505. [PMID: 16600310 DOI: 10.1016/j.lfs.2006.01.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 01/17/2006] [Accepted: 01/23/2006] [Indexed: 11/18/2022]
Abstract
Semicarbazones induce an anticonvulsant effect in different experimental models. As some anticonvulsant drugs also have anti-inflammatory activity, the effects of benzaldehyde semicarbazone (BS) on models of nociception, edema and angiogenesis were investigated. BS (10, 25 or 50 mg/kg, i.p.) markedly inhibited the second phase of nociceptive response induced by formaldehyde (0.34%, 20 microl) in mice, but only the highest dose inhibited the first phase of this response. The thermal hyperalgesia and mechanical allodynia induced by carrageenan (1%, 50 microl, i.pl.) in rats were also inhibited by BS (50 mg/kg, i.p.). However, treatment of mice with BS did not induce an antinociceptive effect in the hot-plate model. The paw edema induced by carrageenan (1%, 50 microl, i.pl.) in rats was inhibited by BS (25 or 50 mg/kg, i.p.). Treatment of mice with BS (0.25, 0.5 or 2.5 mg/kg/day, i.p., 7 days) also inhibited angiogenesis induced by subcutaneous implantation of a sponge disc. It is unlikely that the antinociceptive effect induced by BS results from motor incoordination or a muscle relaxing effect, as the mice treated with this drug displayed no behavioral impairment in the rotarod apparatus. In conclusion, we demonstrated that BS presents antinociceptive, antiedematogenic and antiangiogenic activities. An extensive investigation of the pharmacological actions of BS and its derivatives is justified and may lead to the development of new clinically useful drugs.
Collapse
Affiliation(s)
- Leonardo Tadeu S Rocha
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|