1
|
Bulmer GS, Yuen FW, Begum N, Jones BS, Flitsch SL, van Munster JM. Biochemical characterization of a glycoside hydrolase family 43 β-D-galactofuranosidase from the fungus Aspergillus niger. Enzyme Microb Technol 2023; 164:110170. [PMID: 36521309 DOI: 10.1016/j.enzmictec.2022.110170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022]
Abstract
β-D-Galactofuranose (Galf) and its polysaccharides are found in bacteria, fungi and protozoa but do not occur in mammalian tissues, and thus represent a specific target for anti-pathogenic drugs. Understanding the enzymatic degradation of these polysaccharides is therefore of great interest, but the identity of fungal enzymes with exclusively galactofuranosidase activity has so far remained elusive. Here we describe the identification and characterization of a galactofuranosidase from the industrially important fungus Aspergillus niger. Analysis of glycoside hydrolase family 43 subfamily 34 (GH43_34) members via conserved unique peptide patterns and phylogeny, revealed the occurrence of distinct clusters and, by comparison with specificities of characterized bacterial members, suggested a basis for prediction of enzyme specificity. Using this rationale, in tandem with molecular docking, we identified a putative β-D-galactofuranosidase from A. niger which was recombinantly produced in Escherichia coli. The Galf-specific hydrolase, encoded by xynD demonstrates maximum activity at pH 5, 25 °C towards 4-nitrophenyl-β-galactofuranoside (pNP-β-Galf), with a Km of 17.9 ± 1.9 mM and Vmax of 70.6 ± 5.3 µM min-1. The characterization of this first fungal GH43 galactofuranosidase offers further molecular insight into the degradation of Galf-containing structures.
Collapse
Affiliation(s)
- Gregory S Bulmer
- Manchester Institute of Biotechnology (MIB) & School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Fang Wei Yuen
- Manchester Institute of Biotechnology (MIB) & School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Naimah Begum
- Manchester Institute of Biotechnology (MIB) & School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Bethan S Jones
- Manchester Institute of Biotechnology (MIB) & School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sabine L Flitsch
- Manchester Institute of Biotechnology (MIB) & School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Jolanda M van Munster
- Manchester Institute of Biotechnology (MIB) & School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom; Scotland's Rural College, West Mains Road, King's Buildings, Edinburgh EH9 3JG, United Kingdom.
| |
Collapse
|
2
|
Guo W, Yang J, Huang T, Liu D, Liu Q, Li J, Sun W, Wang X, Zhu L, Tian C. Synergistic effects of multiple enzymes from industrial Aspergillus niger strain O1 on starch saccharification. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:225. [PMID: 34838099 PMCID: PMC8627030 DOI: 10.1186/s13068-021-02074-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/13/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Starch is one of the most important renewable polysaccharides in nature for production of bio-ethanol. The starch saccharification step facilitates the depolymerization of starch to yield glucose for biofuels production. The filamentous fungus Aspergillus niger (A. niger) is the most used microbial cell factory for production of the commercial glucoamylase. However, the role of each component in glucoamylases cocktail of A. niger O1 for starch saccharification remains unclear except glucoamylase. RESULTS In this study, we identified the key enzymes contributing to the starch saccharification process are glucoamylase, α-amylase and acid α-amylase out of 29 glycoside hydrolases from the 6-day fermentation products of A. niger O1. Through the synergistic study of the multienzymes for the starch saccharification in vitro, we found that increasing the amount of α-amylase by 5-10 times enhanced the efficiency of starch saccharification by 14.2-23.2%. Overexpression of acid α-amylase in strain O1 in vivo increased the total glucoamylase activity of O1 cultures by 15.0%. CONCLUSIONS Our study clarifies the synergistic effects among the components of glucoamylases cocktail, and provides an effective approach to optimize the profile of saccharifying enzymes of strain O1 for improving the total glucoamylase activity.
Collapse
Affiliation(s)
- Wenzhu Guo
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Jianhua Yang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Tianchen Huang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Dandan Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Qian Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Jingen Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Wenliang Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Xingji Wang
- Longda Biotechnology Inc, Shandong, 276400, China
| | - Leilei Zhu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| | - Chaoguang Tian
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| |
Collapse
|
3
|
Abstract
Aspergilli have been widely used in the production of organic acids, enzymes, and secondary metabolites for almost a century. Today, several GRAS (generally recognized as safe) Aspergillus species hold a central role in the field of industrial biotechnology with multiple profitable applications. Since the 1990s, research has focused on the use of Aspergillus species in the development of cell factories for the production of recombinant proteins mainly due to their natively high secretion capacity. Advances in the Aspergillus-specific molecular toolkit and combination of several engineering strategies (e.g., protease-deficient strains and fusions to carrier proteins) resulted in strains able to generate high titers of recombinant fungal proteins. However, the production of non-fungal proteins appears to still be inefficient due to bottlenecks in fungal expression and secretion machinery. After a brief overview of the different heterologous expression systems currently available, this review focuses on the filamentous fungi belonging to the genus Aspergillus and their use in recombinant protein production. We describe key steps in protein synthesis and secretion that may limit production efficiency in Aspergillus systems and present genetic engineering approaches and bioprocessing strategies that have been adopted in order to improve recombinant protein titers and expand the potential of Aspergilli as competitive production platforms.
Collapse
|
4
|
Shinkawa S, Mitsuzawa S. Feasibility study of on-site solid-state enzyme production by Aspergillus oryzae. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:31. [PMID: 32127918 PMCID: PMC7045521 DOI: 10.1186/s13068-020-1669-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/28/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND The development of biorefinery systems that use lignocellulosic biomass as a renewable carbon source to produce fuels and chemicals is attracting increasing attention. The process cost of enzymatic saccharification of biomass is a major challenge for commercialization. To decrease this cost, researchers have proposed on-site solid-state fermentation (SSF). This study investigated the feasibility of using Aspergillus oryzae as a host microorganism for SSF recombinant enzyme production with ammonia-treated rice straw as model biomass. Eight A. oryzae strains were tested, all of which are used in the food industry. We evaluated the effects of acetic acid, a fermentation inhibitor. We also developed a platform strain for targeted recombinant enzyme production by gene engineering technologies. RESULTS The SSF validation test showed variation in the visibility of mycelium growth and secreted protein in all eight A. oryzae strains. The strains used to produce shoyu and miso grew better under test conditions. The ammonia-treated rice straw contained noticeable amounts of acetic acid. This acetic acid enhanced the protein production by A. oryzae in a liquid-state fermentation test. The newly developed platform strain successfully secreted three foreign saccharifying enzymes. CONCLUSIONS A. oryzae is a promising candidate as a host microorganism for on-site SSF recombinant enzyme production, which bodes well for the future development of a more cost-efficient saccharifying enzyme production system.
Collapse
Affiliation(s)
- Satoru Shinkawa
- Fundamental Technology Center, Honda R&D Co., Ltd., 1-4-1 Chuo, Wako-shi, Saitama, 351-0113 Japan
- Present Address: Honda Research Institute Japan Co., Ltd., 8-1 Honcho, Wako-shi, Saitama, 351-0188 Japan
| | - Shigenobu Mitsuzawa
- Fundamental Technology Center, Honda R&D Co., Ltd., 1-4-1 Chuo, Wako-shi, Saitama, 351-0113 Japan
- Present Address: Honda Research Institute Japan Co., Ltd., 8-1 Honcho, Wako-shi, Saitama, 351-0188 Japan
| |
Collapse
|
5
|
Arentshorst M, de Lange D, Park J, Lagendijk EL, Alazi E, van den Hondel CAMJJ, Ram AFJ. Functional analysis of three putative galactofuranosyltransferases with redundant functions in galactofuranosylation in Aspergillus niger. Arch Microbiol 2019; 202:197-203. [PMID: 31372664 PMCID: PMC6949202 DOI: 10.1007/s00203-019-01709-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/05/2019] [Accepted: 07/20/2019] [Indexed: 10/27/2022]
Abstract
Galactofuranose (Galf)-containing glycostructures are important to secure the integrity of the fungal cell wall. Golgi-localized Galf-transferases (Gfs) have been identified in Aspergillus nidulans and Aspergillus fumigatus. BLASTp searches identified three putative Galf-transferases in Aspergillus niger. Phylogenetic analysis showed that they group in three distinct groups. Characterization of the three Galf-transferases in A. niger by constructing single, double, and triple mutants revealed that gfsA is most important for Galf biosynthesis. The growth phenotypes of the ΔgfsA mutant are less severe than that of the ΔgfsAC mutant, indicating that GfsA and GfsC have redundant functions. Deletion of gfsB did not result in any growth defect and combining ΔgfsB with other deletion mutants did not exacerbate the growth phenotype. RT-qPCR experiments showed that induction of the agsA gene was higher in the ΔgfsAC and ΔgfsABC compared to the single mutants, indicating a severe cell wall stress response after multiple gfs gene deletions.
Collapse
Affiliation(s)
- Mark Arentshorst
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Davina de Lange
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Joohae Park
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Ellen L Lagendijk
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.,Koppert Biological Systems, Veilingweg 14, 2651 BE, Berkel en Rodenrijs, The Netherlands
| | - Ebru Alazi
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.,Dutch DNA Biotech, Hugo R Kruytgebouw 4-Noord, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Cees A M J J van den Hondel
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Arthur F J Ram
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| |
Collapse
|
6
|
Dotsenko AS, Gusakov AV, Volkov PV, Rozhkova AM, Sinitsyn AP. N-linked glycosylation of recombinant cellobiohydrolase I (Cel7A) fromPenicillium verruculosumand its effect on the enzyme activity. Biotechnol Bioeng 2015; 113:283-91. [DOI: 10.1002/bit.25812] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/07/2015] [Accepted: 08/16/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Anna S. Dotsenko
- Department of Chemistry; M. V. Lomonosov Moscow State University; Vorobyovy Gory 1/11 Moscow 119899 Russia
| | - Alexander V. Gusakov
- Department of Chemistry; M. V. Lomonosov Moscow State University; Vorobyovy Gory 1/11 Moscow 119899 Russia
- A. N. Bach Institute of Biochemistry; Russian Academy of Sciences; Leninsky Pr. 33 Moscow 119991 Russia
| | - Pavel V. Volkov
- A. N. Bach Institute of Biochemistry; Russian Academy of Sciences; Leninsky Pr. 33 Moscow 119991 Russia
| | - Aleksandra M. Rozhkova
- Department of Chemistry; M. V. Lomonosov Moscow State University; Vorobyovy Gory 1/11 Moscow 119899 Russia
- A. N. Bach Institute of Biochemistry; Russian Academy of Sciences; Leninsky Pr. 33 Moscow 119991 Russia
| | - Arkady P. Sinitsyn
- Department of Chemistry; M. V. Lomonosov Moscow State University; Vorobyovy Gory 1/11 Moscow 119899 Russia
- A. N. Bach Institute of Biochemistry; Russian Academy of Sciences; Leninsky Pr. 33 Moscow 119991 Russia
| |
Collapse
|
7
|
Identification and Characterization of a Novel Galactofuranose-Specific β-D-Galactofuranosidase from Streptomyces Species. PLoS One 2015; 10:e0137230. [PMID: 26340350 PMCID: PMC4560423 DOI: 10.1371/journal.pone.0137230] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/14/2015] [Indexed: 12/02/2022] Open
Abstract
β-D-galactofuranose (Galf) is a component of polysaccharides and glycoconjugates and its transferase has been well analyzed. However, no β-D-galactofuranosidase (Galf-ase) gene has been identified in any organism. To search for a Galf-ase gene we screened soil samples and discovered a strain, identified as a Streptomyces species by the 16S ribosomal RNA gene analysis, that exhibits Galf-ase activity for 4-nitrophenyl β-D-galactofuranoside (pNP-β-D-Galf) in culture supernatants. By draft genome sequencing of the strain, named JHA19, we found four candidate genes encoding Galf-ases. Using recombinant proteins expressed in Escherichia coli, we found that three out of four candidates displayed the activity of not only Galf-ase but also α-L-arabinofuranosidase (Araf-ase), whereas the other one showed only the Galf-ase activity. This novel Galf-specific hydrolase is encoded by ORF1110 and has an optimum pH of 5.5 and a Km of 4.4 mM for the substrate pNP-β-D-Galf. In addition, this enzyme was able to release galactose residue from galactomannan prepared from the filamentous fungus Aspergillus fumigatus, suggesting that natural polysaccharides could be also substrates. By the BLAST search using the amino acid sequence of ORF1110 Galf-ase, we found that there are homolog genes in both prokaryotes and eukaryotes, indicating that Galf-specific Galf-ases widely exist in microorganisms.
Collapse
|
8
|
Greene ER, Himmel ME, Beckham GT, Tan Z. Glycosylation of Cellulases: Engineering Better Enzymes for Biofuels. Adv Carbohydr Chem Biochem 2015; 72:63-112. [PMID: 26613815 DOI: 10.1016/bs.accb.2015.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cellulose in plant cell walls is the largest reservoir of renewable carbon on Earth. The saccharification of cellulose from plant biomass into soluble sugars can be achieved using fungal and bacterial cellulolytic enzymes, cellulases, and further converted into fuels and chemicals. Most fungal cellulases are both N- and O-glycosylated in their native form, yet the consequences of glycosylation on activity and structure are not fully understood. Studying protein glycosylation is challenging as glycans are extremely heterogeneous, stereochemically complex, and glycosylation is not under direct genetic control. Despite these limitations, many studies have begun to unveil the role of cellulase glycosylation, especially in the industrially relevant cellobiohydrolase from Trichoderma reesei, Cel7A. Glycosylation confers many beneficial properties to cellulases including enhanced activity, thermal and proteolytic stability, and structural stabilization. However, glycosylation must be controlled carefully as such positive effects can be dampened or reversed. Encouragingly, methods for the manipulation of glycan structures have been recently reported that employ genetic tuning of glycan-active enzymes expressed from homogeneous and heterologous fungal hosts. Taken together, these studies have enabled new strategies for the exploitation of protein glycosylation for the production of enhanced cellulases for biofuel production.
Collapse
|
9
|
Gómez-Mendoza DP, Junqueira M, do Vale LHF, Domont GB, Ferreira Filho EX, Sousa MVD, Ricart CAO. Secretomic survey of Trichoderma harzianum grown on plant biomass substrates. J Proteome Res 2014; 13:1810-22. [PMID: 24593137 DOI: 10.1021/pr400971e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The present work aims at characterizing T. harzianum secretome when the fungus is grown in synthetic medium supplemented with one of the four substrates: glucose, cellulose, xylan, and sugarcane bagasse (SB). The characterization was done by enzymatic assays and proteomic analysis using 2-DE/MALDI-TOF and gel-free shotgun LC-MS/MS. The results showed that SB induced the highest cellulolytic and xylanolytic activities when compared with the other substrates, while remarkable differences in terms of number and distribution of protein spots in 2-DE gels were also observed among the samples. Additionally, treatment of the secretomes with PNGase F revealed that most spot trails in 2-DE gels corresponded to N-glycosylated proteoforms. The LC-MS/MS analysis of the samples identified 626 different protein groups, including carbohydrate-active enzymes and accessory, noncatalytic, and cell-wall-associated proteins. Although the SB-induced secretome displayed the highest cellulolytic and xylanolytic activities, it did not correspond to a higher proteome complexity because CM-cellulose-induced secretome was significantly more diverse. Among the identified proteins, 73% were exclusive to one condition, while only 5% were present in all samples. Therefore, this study disclosed the variation of T. harzianum secretome in response to different substrates and revealed the diversity of the fungus enzymatic toolbox.
Collapse
Affiliation(s)
- Diana Paola Gómez-Mendoza
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, University of Brasilia , Asa Norte, Brasília, 70910-900 DF, Brazil
| | | | | | | | | | | | | |
Collapse
|
10
|
Zhang T, Peng Y, Yu Q, Wang J, Tang K. Characterization of the 5' flanking region of lipase gene from Penicillium expansum and its application in molecular breeding. Biotechnol Appl Biochem 2014; 61:493-500. [PMID: 24502561 DOI: 10.1002/bab.1214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/03/2014] [Indexed: 11/09/2022]
Abstract
A major challenge for further promotion of lipase productivity in Penicillium expansum PE-12 is to find a suitable promoter that can function efficiently in this industrial strain. In this study, the 5' flanking region of P. expansum lipase (Ppel) containing a putative novel promoter sequence was characterized by fusing to β-glucuronidase (GUS) and subsequently introducing into P. expansum. As a result, all the transformants showed blue color quickly after incubation in GUS detection buffer, suggesting a strong promoter activity of this fragment. Glucose repression was identified for the promoter, whereas olive oil acted as a positive regulator. Facilitated by this novel promoter, P. expansum PE-12 was genetically modified, with an improved lipase yield, via a recombinant plasmid with P. expansum lipase gene (PEL) under the control of Ppel promoter and TtrpC terminator. The highest lipase yield among the modified strains could attain 2,100 U/mL, which is more than twofold of the previous industrial strain (900 U/mL). The engineered strain through molecular breeding method as well as this new promoter has great value in lipase industry.
Collapse
Affiliation(s)
- Tian Zhang
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
11
|
Komachi Y, Hatakeyama S, Motomatsu H, Futagami T, Kizjakina K, Sobrado P, Ekino K, Takegawa K, Goto M, Nomura Y, Oka T. GfsA encodes a novel galactofuranosyltransferase involved in biosynthesis of galactofuranose antigen of O-glycan in Aspergillus nidulans and Aspergillus fumigatus. Mol Microbiol 2013; 90:1054-1073. [PMID: 24118544 PMCID: PMC3907285 DOI: 10.1111/mmi.12416] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2013] [Indexed: 11/30/2022]
Abstract
The cells walls of filamentous fungi in the genus Aspergillus have galactofuranose (Galf)-containing polysaccharides and glycoconjugates, including O-glycans, N-glycans, fungal-type galactomannan and glycosylinositolphosphoceramide, which are important for cell wall integrity. Here, we attempted to identify galactofuranosyltransferases that couple Galf monomers onto other wall components in Aspergillus nidulans. Using reverse-genetic and biochemical approaches, we identified that the AN8677 gene encoded a galactofuranosyltransferase, which we called GfsA, involved in Galf antigen biosynthesis. Disruption of gfsA reduced binding of β-Galf-specific antibody EB-A2 to O-glycosylated WscA protein and galactomannoproteins. The results of an in-vitro Galf antigen synthase assay revealed that GfsA has β1,5- or β1,6-galactofuranosyltransferase activity for O-glycans in glycoproteins, uses UDP-d-Galf as a sugar donor, and requires a divalent manganese cation for activity. GfsA was found to be localized at the Golgi apparatus based on cellular fractionation experiments. ΔgfsA cells exhibited an abnormal morphology characterized by poor hyphal extension, hyphal curvature and limited formation of conidia. Several gfsA orthologues were identified in members of the Pezizomycotina subphylum of Ascomycota, including the human pathogen Aspergillus fumigatus. To our knowledge, this is the first characterization of a fungal β-galactofuranosyltransferase, which was shown to be involved in Galf antigen biosynthesis of O-glycans in the Golgi.
Collapse
Affiliation(s)
- Yuji Komachi
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Japan
| | - Shintaro Hatakeyama
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Japan
| | - Haruka Motomatsu
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Japan
| | - Taiki Futagami
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Karina Kizjakina
- Department of Biochemistry, Virginia Tech Blacksburg, VA, United States
| | - Pablo Sobrado
- Department of Biochemistry, Virginia Tech Blacksburg, VA, United States
| | - Keisuke Ekino
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Japan
| | - Kaoru Takegawa
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Masatoshi Goto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yoshiyuki Nomura
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Japan
| | - Takuji Oka
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Japan
| |
Collapse
|
12
|
Gusakov AV, Sinitsyna OA, Rozhkova AM, Sinitsyn AP. N-Glycosylation patterns in two α-l-arabinofuranosidases from Penicillium canescens belonging to the glycoside hydrolase families 51 and 54. Carbohydr Res 2013; 382:71-6. [DOI: 10.1016/j.carres.2013.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/15/2013] [Accepted: 08/28/2013] [Indexed: 10/26/2022]
|
13
|
Liu Y, Li QS, Zhu HL, Meng ZL, Xiang HY, Xie QH. Purification and characterization of two thermostable glucoamylases produced from Aspergillus niger B-30. Chem Res Chin Univ 2013. [DOI: 10.1007/s40242-013-3074-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Tefsen B, Ram AF, van Die I, Routier FH. Galactofuranose in eukaryotes: aspects of biosynthesis and functional impact. Glycobiology 2011; 22:456-69. [DOI: 10.1093/glycob/cwr144] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
15
|
Bredenkamp A, Velankar H, van Zyl WH, Görgens JF. Effect of dimorphic regulation on heterologous glucose oxidase production by Mucor circinelloides. Yeast 2010; 27:849-60. [DOI: 10.1002/yea.1793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
16
|
Proteomics of plant pathogenic fungi. J Biomed Biotechnol 2010; 2010:932527. [PMID: 20589070 PMCID: PMC2878683 DOI: 10.1155/2010/932527] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 02/03/2010] [Accepted: 03/01/2010] [Indexed: 12/15/2022] Open
Abstract
Plant pathogenic fungi cause important yield losses in crops. In order to develop efficient and environmental friendly crop protection strategies, molecular studies of the fungal biological cycle, virulence factors, and interaction with its host are necessary. For that reason, several approaches have been performed using both classical genetic, cell biology, and biochemistry and the modern, holistic, and high-throughput, omic techniques. This work briefly overviews the tools available for studying Plant Pathogenic Fungi and is amply focused on MS-based Proteomics analysis, based on original papers published up to December 2009. At a methodological level, different steps in a proteomic workflow experiment are discussed. Separate sections are devoted to fungal descriptive (intracellular, subcellular, extracellular) and differential expression proteomics and interactomics. From the work published we can conclude that Proteomics, in combination with other techniques, constitutes a powerful tool for providing important information about pathogenicity and virulence factors, thus opening up new possibilities for crop disease diagnosis and crop protection.
Collapse
|
17
|
Kumar P, Satyanarayana T. Microbial glucoamylases: characteristics and applications. Crit Rev Biotechnol 2009; 29:225-55. [DOI: 10.1080/07388550903136076] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Jørgensen TR, Goosen T, Hondel CAMJJVD, Ram AFJ, Iversen JJL. Transcriptomic comparison of Aspergillus niger growing on two different sugars reveals coordinated regulation of the secretory pathway. BMC Genomics 2009; 10:44. [PMID: 19166577 PMCID: PMC2639373 DOI: 10.1186/1471-2164-10-44] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 01/23/2009] [Indexed: 11/24/2022] Open
Abstract
Background The filamentous fungus, Aspergillus niger, responds to nutrient availability by modulating secretion of various substrate degrading hydrolases. This ability has made it an important organism in industrial production of secreted glycoproteins. The recent publication of the A. niger genome sequence and availability of microarrays allow high resolution studies of transcriptional regulation of basal cellular processes, like those of glycoprotein synthesis and secretion. It is known that the activities of certain secretory pathway enzymes involved N-glycosylation are elevated in response to carbon source induced secretion of the glycoprotein glucoamylase. We have investigated whether carbon source dependent enhancement of protein secretion can lead to upregulation of secretory pathway elements extending beyond those involved in N-glycosylation. Results This study compares the physiology and transcriptome of A. niger growing at the same specific growth rate (0.16 h-1) on xylose or maltose in carbon-limited chemostat cultures. Transcription profiles were obtained using Affymetrix GeneChip analysis of six replicate cultures for each of the two growth-limiting carbon sources. The production rate of extracellular proteins per gram dry mycelium was about three times higher on maltose compared to xylose. The defined culture conditions resulted in high reproducibility, discriminating even low-fold differences in transcription, which is characteristic of genes encoding basal cellular functions. This included elements in the secretory pathway and central metabolic pathways. Increased protein secretion on maltose was accompanied by induced transcription of > 90 genes related to protein secretion. The upregulated genes encode key elements in protein translocation to the endoplasmic reticulum (ER), folding, N-glycosylation, quality control, and vesicle packaging and transport between ER and Golgi. The induction effect of maltose resembles the unfolded protein response (UPR), which results from ER-stress and has previously been defined by treatment with chemicals interfering with folding of glycoproteins or by expression of heterologous proteins. Conclusion We show that upregulation of secretory pathway genes also occurs in conditions inducing secretion of endogenous glycoproteins – representing a more normal physiological state. Transcriptional regulation of protein synthesis and secretory pathway genes may thus reflect a general mechanism for modulation of secretion capacity in response to the conditional need for extracellular enzymes.
Collapse
Affiliation(s)
- Thomas R Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark.
| | | | | | | | | |
Collapse
|
19
|
Developing Aspergillus as a host for heterologous expression. Biotechnol Adv 2009; 27:53-75. [DOI: 10.1016/j.biotechadv.2008.09.001] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/04/2008] [Accepted: 09/07/2008] [Indexed: 12/11/2022]
|
20
|
A novel screening method for cell wall mutants in Aspergillus niger identifies UDP-galactopyranose mutase as an important protein in fungal cell wall biosynthesis. Genetics 2008; 178:873-81. [PMID: 18245853 DOI: 10.1534/genetics.107.073148] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To identify cell wall biosynthetic genes in filamentous fungi and thus potential targets for the discovery of new antifungals, we developed a novel screening method for cell wall mutants. It is based on our earlier observation that the Aspergillus niger agsA gene, which encodes a putative alpha-glucan synthase, is strongly induced in response to cell wall stress. By placing the agsA promoter region in front of a selectable marker, the acetamidase (amdS) gene of A. nidulans, we reasoned that cell wall mutants with a constitutively active cell wall stress response pathway could be identified by selecting mutants for growth on acetamide as the sole nitrogen source. For the genetic screen, a strain was constructed that contained two reporter genes controlled by the same promoter: the metabolic reporter gene PagsA-amdS and PagsA-H2B-GFP, which encodes a GFP-tagged nuclear protein. The primary screen yielded 161 mutants that were subjected to various cell wall-related secondary screens. Four calcofluor white-hypersensitive, osmotic-remediable thermosensitive mutants were selected for complementation analysis. Three mutants were complemented by the same gene, which encoded a protein with high sequence identity with eukaryotic UDP-galactopyranose mutases (UgmA). Our results indicate that galactofuranose formation is important for fungal cell wall biosynthesis and represents an attractive target for the development of antifungals.
Collapse
|
21
|
N-Glycosylation in Chrysosporium lucknowense enzymes. Carbohydr Res 2008; 343:48-55. [DOI: 10.1016/j.carres.2007.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 10/16/2007] [Accepted: 10/18/2007] [Indexed: 11/19/2022]
|
22
|
Abstract
Filamentous fungi have been recognized as extraordinary producers of secreted proteins and are known to produce novel proteins and enzymes through dispensable metabolic pathways. Here, methods are described for the isolation and enrichment of samples of secreted proteins from cultures of filamentous fungi for analysis by gel electrophoresis and mass spectrometry techniques. These methods can be readily applied to the study of differential protein expression and secretion and metabolic pathways in filamentous fungi by proteomic approaches.
Collapse
|
23
|
Abstract
The production by filamentous fungi of therapeutic glycoproteins intended for use in mammals is held back by the inherent difference in protein N-glycosylation and by the inability of the fungal cell to modify proteins with mammalian glycosylation structures. Here, we report protein N-glycan engineering in two Aspergillus species. We functionally expressed in the fungal hosts heterologous chimeric fusion proteins containing different localization peptides and catalytic domains. This strategy allowed the isolation of a strain with a functional alpha-1,2-mannosidase producing increased amounts of N-glycans of the Man5GlcNAc2 type. This strain was further engineered by the introduction of a functional GlcNAc transferase I construct yielding GlcNAcMan5GlcNac2 N-glycans. Additionally, we deleted algC genes coding for an enzyme involved in an early step of the fungal glycosylation pathway yielding Man3GlcNAc2 N-glycans. This modification of fungal glycosylation is a step toward the ability to produce humanized complex N-glycans on therapeutic proteins in filamentous fungi.
Collapse
|
24
|
Goto M. Protein O-glycosylation in fungi: diverse structures and multiple functions. Biosci Biotechnol Biochem 2007; 71:1415-27. [PMID: 17587671 DOI: 10.1271/bbb.70080] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein glycosylation is essential for eukaryotic cells from yeasts to humans. When compared to N-glycosylation, O-glycosylation is variable in sugar components and the mode of linkages connecting the sugars. In fungi, secretory proteins are commonly mannosylated by protein O-mannosyltransferase (PMT) in the endoplasmic reticulum, and subsequently glycosylated by several glycosyltransferases in the Golgi apparatus to form glycoproteins with diverse O-glycan structures. Protein O-glycosylation has roles in modulating the function of secretory proteins by enhancing the stability and solubility of the proteins, by affording protection from protease degradation, and by acting as a sorting determinant in yeasts. In filamentous fungi, protein O-glycosylation contributes to proper maintenance of fungal morphology, hyphal development, and differentiation. This review describes recent studies of the structure and function of protein O-glycosylation in industrially and medically important fungi.
Collapse
Affiliation(s)
- Masatoshi Goto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Japan.
| |
Collapse
|
25
|
Oka T, Sameshima Y, Koga T, Kim H, Goto M, Furukawa K. Protein O-mannosyltransferase A of Aspergillus awamori is involved in O-mannosylation of glucoamylase I. MICROBIOLOGY-SGM 2005; 151:3657-3667. [PMID: 16272387 DOI: 10.1099/mic.0.28088-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Industrially important extracellular enzymes from filamentous fungi are often O-mannosylated. The structure and function of the pmtA (AapmtA) gene encoding the protein O-D-mannosyltransferase of Aspergillus awamori were characterized. The AapmtA disruptant, designated AaPMTA, was constructed by homologous recombination. The strain AaPMTA exhibited fragile cell morphology with respect to hyphal extension, as well as swollen hyphae formation and conidia formation in potato dextrose medium. Moreover, the AapmtA disruptant showed increased sensitivity to high temperature and Congo red. Thus, the AaPmtA protein is involved in the formation of the normal cell wall. The strain AaPMTA could grow well in liquid synthetic medium and secrete glucoamylase I (GAI-AaPMTA) to a similar extent to the wild-type strain (GAI-WT). Matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of the GAIs revealed that approximately 33 mannose moieties of GAI were absent in strain AaPMTA. This result indicates that the AaPmtA protein is responsible for the transfer of mannose to GAI. Structural analysis of the O-linked oligosaccharides of GAI also demonstrated that the AapmtA disruption resulted in a reduction of the amounts of O-linked oligosaccharides, such as D-mannose and alpha-1,2-mannotriose, in GAI-AaPMTA. However, the amount of alpha-1,2-mannobiose was comparable between GAI-WT and GAI-AaPMTA. The result suggests the presence of a compensatory mechanism in the synthetic pathway of O-mannosylation in A. awamori.
Collapse
Affiliation(s)
- Takuji Oka
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Yuka Sameshima
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Tomoko Koga
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Hoon Kim
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Masatoshi Goto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Kensuke Furukawa
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| |
Collapse
|
26
|
Abstract
MS/MS techniques in proteomics make possible the identification of proteins from organisms with little or no genome sequence information available. Peptide sequences are obtained from tandem mass spectra by matching peptide mass and fragmentation information to protein sequence information from related organisms, including unannotated genome sequence data. This peptide identification data can then be grouped and reconstructed into protein data. In this study, we have used this approach to study protein secretion by Aspergillus flavus, a filamentous fungus for which very little genome sequence information is available. A. flavus is capable of degrading the flavonoid rutin (quercetin 3-O-glycoside), as the only source of carbon via an extracellular enzyme system. In this continuing study, a proteomic analysis was used to identify secreted proteins from A. flavus when grown on rutin. The growth media glucose and potato dextrose were used to identify differentially expressed secreted proteins. The secreted proteins were analyzed by 1- and 2-DE and MS/MS. A total of 51 unique A. flavus secreted proteins were identified from the three growth conditions. Ten proteins were unique to rutin-, five to glucose- and one to potato dextrose-grown A. flavus. Sixteen secreted proteins were common to all three media. Fourteen identifications were of hypothetical proteins or proteins of unknown functions. To our knowledge, this is the first extensive proteomic study conducted to identify the secreted proteins from a filamentous fungus.
Collapse
Affiliation(s)
- Martha L Medina
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA
| | | | | | | |
Collapse
|
27
|
Nevalainen KMH, Te'o VSJ, Bergquist PL. Heterologous protein expression in filamentous fungi. Trends Biotechnol 2005; 23:468-74. [PMID: 15967521 DOI: 10.1016/j.tibtech.2005.06.002] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 05/06/2005] [Accepted: 06/07/2005] [Indexed: 10/25/2022]
Abstract
Filamentous fungi are commonly used in the fermentation industry for the large-scale production of proteins--mainly industrial enzymes. Recent advances in fungal genomics and related experimental technologies such as gene arrays and proteomics are rapidly changing the approaches to the development and use of filamentous fungi as hosts for the production of both homologous and heterologous gene products. The emphasis is moving towards sourcing new genes of interest through database mining and unravelling the circuits related to fungal gene regulation, applying, for example, transcriptomics. However, although heterologous fungal proteins are efficiently expressed, expression of gene products from other organisms is subject to several bottlenecks that reduce yield. Current approaches emphasize the study of pathways involved in protein modification and degradation in general rather than gene-by-gene approaches.
Collapse
Affiliation(s)
- K M Helena Nevalainen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney NSW 2109, Australia.
| | | | | |
Collapse
|
28
|
De Groot PWJ, Ram AF, Klis FM. Features and functions of covalently linked proteins in fungal cell walls. Fungal Genet Biol 2005; 42:657-75. [PMID: 15896991 DOI: 10.1016/j.fgb.2005.04.002] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 04/04/2005] [Accepted: 04/05/2005] [Indexed: 10/25/2022]
Abstract
The cell walls of many ascomycetous yeasts consist of an internal network of stress-bearing polysaccharides, which serve as a scaffold for a dense external layer of glycoproteins. GPI-modified proteins are the most abundant cell wall proteins and often display a common organization. Their C-terminus can link them covalently to the polysaccharide network, they possess an internal serine- and threonine-rich spacer domain, and the N-terminal region contains a functional domain. Other proteins bind to the polysaccharide network through a mild-alkali-sensitive linkage. Many cell wall proteins are carbohydrate/glycan-modifying enzymes; adhesion proteins are prominent; proteins involved in iron uptake are present, and also specialized proteins that probably help the fungus to survive in its natural environment. The protein composition of the cell wall depends on environmental conditions and developmental stage. We present evidence that the cell wall of mycelial species of the Ascomycotina is similarly organized and contains glycoproteins with comparable functions.
Collapse
Affiliation(s)
- Piet W J De Groot
- Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| | | | | |
Collapse
|
29
|
Nevalainen H, Te'o V, Penttilä M, Pakula T. Heterologous Gene Expression in Filamentous Fungi: A Holistic View. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1874-5334(05)80011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
30
|
Oka T, Hamaguchi T, Sameshima Y, Goto M, Furukawa K. Molecular characterization of protein O-mannosyltransferase and its involvement in cell-wall synthesis in Aspergillus nidulans. Microbiology (Reading) 2004; 150:1973-1982. [PMID: 15184583 DOI: 10.1099/mic.0.27005-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ProteinO-glycosylation is essential for protein modification and plays important roles in eukaryotic cells.O-Mannosylation of proteins occurs in the filamentous fungusAspergillus. The structure and function of thepmtAgene, encoding proteinO-d-mannosyltransferase, which is responsible for the initialO-mannosylation reaction inAspergillus nidulans, was characterized. Disruption of thepmtAgene resulted in the reduction ofin vitroproteinO-d-mannosyltransferase activity to 6 % of that of the wild-type strain and led to underglycosylation of an extracellular glucoamylase. ThepmtAdisruptant exhibited abnormal cell morphology and alteration in carbohydrate composition, particularly reduction in the skeletal polysaccharides in the cell wall. The results indicate that PmtA is required for the formation of a normal cell wall inA. nidulans.
Collapse
Affiliation(s)
- Takuji Oka
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Tetsu Hamaguchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Yuka Sameshima
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Masatoshi Goto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Kensuke Furukawa
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| |
Collapse
|
31
|
Medina ML, Kiernan UA, Francisco WA. Proteomic analysis of rutin-induced secreted proteins from Aspergillus flavus. Fungal Genet Biol 2004; 41:327-35. [PMID: 14761793 DOI: 10.1016/j.fgb.2003.11.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2003] [Accepted: 11/26/2003] [Indexed: 11/20/2022]
Abstract
Few studies have been conducted to identify the extracellular proteins and enzymes secreted by filamentous fungi, particularly with respect to dispensable metabolic pathways. Proteomic analysis has proven to be the most powerful method for identification of proteins in complex mixtures and is suitable for the study of the alteration of protein expression under different environmental conditions. The filamentous fungus Aspergillus flavus can degrade the flavonoid rutin as the only source of carbon via an extracellular enzyme system. In this study, a proteomic analysis was used to differentiate and identify the extracellular rutin-induced and non-induced proteins secreted by A. flavus. The secreted proteins were analyzed by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. While 15 rutin-induced proteins and 7 non-induced proteins were identified, more than 90 protein spots remain unidentified, indicating that these proteins are either novel proteins or proteins that have not yet been sequenced.
Collapse
Affiliation(s)
- Martha L Medina
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA
| | | | | |
Collapse
|
32
|
van de Vondervoort PJI, Poulsen BR, Ruijter GJG, Schuleit T, Visser J, Iversen JJL. Isolation of a fluffy mutant ofAspergillus niger from chemostat culture and its potential use as a morphologically stable host for protein production. Biotechnol Bioeng 2004; 86:301-7. [PMID: 15083510 DOI: 10.1002/bit.20046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Chemostat cultivation of Aspergillus niger and other filamentous fungi is often hindered by the spontaneous appearance of morphologic mutants. Using the Variomixing bioreactor and applying different chemostat conditions we tried to optimize morphologic stability in both ammonium- and glucose-limited cultures. In most cultivations mutants with fluffy (aconidial) morphology became dominant. From an ammonium-limited culture, a fluffy mutant was isolated and genetically characterized using the parasexual cycle. The mutant contained a single morphological mutation, causing an increased colony radial growth rate. The fluffy mutant was subjected to transformation and finally conidiospores from a forced heterokaryon were shown to be a proper inoculum for fluffy strain cultivation.
Collapse
Affiliation(s)
- Peter J I van de Vondervoort
- Section Molecular Genetics of Industrial Microorganisms, Wageningen University, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
33
|
Wallis GL, Swift RJ, Atterbury R, Trappe S, Rinas U, Hemming FW, Wiebe MG, Trinci AP, Peberdy JF. The effect of pH on glucoamylase production, glycosylation and chemostat evolution of Aspergillus niger. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1527:112-22. [PMID: 11479027 DOI: 10.1016/s0304-4165(01)00145-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of ambient pH on production and glycosylation of glucoamylase (GAM) and on the generation of a morphological mutant produced by Aspergillus niger strain B1 (a transformant containing an additional 20 copies of the homologous GAM glaA gene) was studied. We have shown that a change in the pH from 4 to 5.4 during continuous cultivation of the A. niger B1 strain instigates or accelerates the spontaneous generation of a morphological mutant (LB). This mutant strain produced approx. 50% less extracellular protein and GAM during both chemostat and batch cultivation compared to another strain with parental-type morphology (PS). The intracellular levels of GAM were also lower in the LB strain. In addition, cultivation of the original parent B1 strain in a batch-pulse bioreactor at pH 5.5 resulted in a 9-fold drop in GAM production and a 5-fold drop in extracellular protein compared to that obtained at pH 4. Glycosylation analysis of the glucoamylases purified from shake-flask cultivation showed that both principal forms of GAM secreted by the LB strain possessed enhanced galactosylation (2-fold), compared to those of the PS. Four diagnostic methods (immunostaining, mild methanolysis, mild acid hydrolysis and beta-galactofuranosidase digestion) provided evidence that the majority of this galactose was of the furanoic conformation. The GAMs produced during batch-pulse cultivation at pH 5.5 similarly showed an approx. 2-fold increase in galactofuranosylation compared to pH 4. Interestingly, in both cases the increased galactofuranosylation appears primarily restricted to the O-linked glycan component. Ambient pH therefore regulates both GAM production and influences its glycosylation.
Collapse
Affiliation(s)
- G L Wallis
- School of Biological, University of Nottingham, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wallis GL, Easton RL, Jolly K, Hemming FW, Peberdy JF. Galactofuranoic-oligomannose N-linked glycans of alpha-galactosidase A from Aspergillus niger. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4134-43. [PMID: 11488905 DOI: 10.1046/j.1432-1327.2001.02322.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Extracellular alpha-galactosidase A was purified from the culture filtrate of an over-producing strain of Aspergillus niger containing multiple copies of the encoding aglA gene under the control of the glucoamylase (glaA) promoter. Endoglycosidase digestion followed by SDS/PAGE, lectin and immunoblotting suggested that glycosylation accounted for approximately 25% of the molecular size of the purified protein. Monosaccharide analysis showed that this was composed of N-acetyl glucosamine, mannose and galactose. Mild acid hydrolysis, mild methanolysis, immunoblotting and exoglycosidase digestion indicated that the majority of the galactosyl component was in the furanoic conformation (beta-D-galactofuranose, Galf). At least 20 different N-linked oligosaccharides were fractionated by high-pH anion-exchange chromatography following release from the polypeptide by peptide-N-glycosidase F. The structures of these were subsequently determined by fast atom bombardment mass spectrometry to be a linear series of Hex(7-26)HexHA(c2). Indicating that oligosaccharides from GlcNA(c2)Man(7), increasing in molecular size up to GlcNA(c2)Man(24) were present. Each of these were additionally substituted with up to three beta-Galf residues. Linkage analysis confirmed the presence of mild acid labile terminal hexofuranose residues. These results show that filamentous fungi are capable of producing a heterogeneous mixture of high molecular-size N-linked glycans substituted with galactofuranoic residues, on a secreted glycoprotein.
Collapse
Affiliation(s)
- G L Wallis
- School of Biological Sciences, University of Nottingham, Nottingham UK.
| | | | | | | | | |
Collapse
|
35
|
Conesa A, Punt PJ, van Luijk N, van den Hondel CA. The secretion pathway in filamentous fungi: a biotechnological view. Fungal Genet Biol 2001; 33:155-71. [PMID: 11495573 DOI: 10.1006/fgbi.2001.1276] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The high capacity of the secretion machinery of filamentous fungi has been widely exploited for the production of homologous and heterologous proteins; however, our knowledge of the fungal secretion pathway is still at an early stage. Most of the knowledge comes from models developed in yeast and higher eukaryotes, which have served as reference for the studies on fungal species. In this review we compile the data accumulated in recent years on the molecular basis of fungal secretion, emphasizing the relevance of these data for the biotechnological use of the fungal cell and indicating how this information has been applied in attempts to create improved production strains. We also present recent emerging approaches that promise to provide answers to fundamental questions on the molecular genetics of the fungal secretory pathway.
Collapse
Affiliation(s)
- A Conesa
- Department of Applied Microbiology and Gene Technology, TNO Nutrition and Food Research, Zeist, 3700 AJ, The Netherlands
| | | | | | | |
Collapse
|
36
|
Wallis GL, Hemming FW, Peberdy JF. Beta-galactofuranoside glycoconjugates on conidia and conidiophores of Aspergillus niger. FEMS Microbiol Lett 2001; 201:21-7. [PMID: 11445162 DOI: 10.1111/j.1574-6968.2001.tb10727.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Galactose in the furanoic conformation appears to be limited to bacteria and lower eukaryotes. Galactofuranoic (Galf)-containing glycoconjugates that occur in organisms pathogenic or allergenic to man are frequently antigenic and immunodominant. We have used an immunochemical approach, employing a monoclonal antibody that recognises Galf epitopes, to investigate the presence of Galf-containing glycoconjugates within conidia and conidiophores of Aspergillus niger. ELISA and immunofluorescence microscopy indicated that specific and saturable binding sites were found on both. Inhibition studies confirmed that this binding was to Galf-containing glycoconjugates. Interestingly, the conidiophore heads were particularly rich in these glycoconjugates. Western blotting identified a Galf glycoprotein of 150-200 kDa from disrupted conidia.
Collapse
Affiliation(s)
- G L Wallis
- School of Life and Environmental Sciences, The University of Nottingham, UK
| | | | | |
Collapse
|
37
|
Betancourt LH, García R, González J, Montesino R, Quintero O, Takao T, Shimonishi Y, Cremata JA. Dextranase (alpha-1,6 glucan-6-glucanohydrolase) from Penicillium minioluteum expressed in Pichia pastoris: two host cells with minor differences in N-glycosylation. FEMS Yeast Res 2001; 1:151-60. [PMID: 12702360 DOI: 10.1111/j.1567-1364.2001.tb00026.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Differences in glycosylation between the natural alpha-1,6 glucan-6-glucanohydrolase from Penicillium minioluteum and the heterologous protein expressed in the yeast Pichia pastoris were analyzed. Glycosylation profiling was carried out using fluorophore-assisted carbohydrate electrophoresis and amine absorption high-performance liquid chromatography (NH(2)-HPLC) in combination with matrix-assisted laser desorption-time of flight-mass spectrometry. Both microorganisms produce only oligomannosidic type structures, but the oligosaccharide population differs in both enzymes. The native enzyme has mainly short oligosaccharide chains ranging from Man(5)GlcNAc(2) to Man(9)GlcNAc(2), of which Man(8)GlcNAc(2) was the most represented oligosaccharide. The oligosaccharides linked to the protein produced in P. pastoris range from Man(7)GlcNAc(2) up to Man(14)GlcNAc(2), with Man(8)GlcNAc(2) and Man(9)GlcNAc(2) being the most abundant structures. In both enzymes the first glycosylation site (Asn(5)) is always glycosylated. However, Asn(537) and Asn(540) are only partially glycosylated in an alternate manner.
Collapse
Affiliation(s)
- L H Betancourt
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Larrondo LF, Lobos S, Stewart P, Cullen D, Vicuña R. Isoenzyme multiplicity and characterization of recombinant manganese peroxidases from Ceriporiopsis subvermispora and Phanerochaete chrysosporium. Appl Environ Microbiol 2001; 67:2070-5. [PMID: 11319083 PMCID: PMC92838 DOI: 10.1128/aem.67.5.2070-2075.2001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We expressed cDNAs coding for manganese peroxidases (MnPs) from the basidiomycetes Ceriporiopsis subvermispora (MnP1) and Phanerochaete chrysosporium (H4) under control of the alpha-amylase promoter from Aspergillus oryzae in Aspergillus nidulans. The recombinant proteins (rMnP1 and rH4) were expressed at similar levels and had molecular masses, both before and after deglycosylation, that were the same as those described for the MnPs isolated from the corresponding parental strains. Isoelectric focusing (IEF) analysis of rH4 revealed several isoforms with pIs between 4.83 and 4.06, and one of these pIs coincided with the pI described for H4 isolated from P. chrysosporium (pI 4.6). IEF of rMnP1 resolved four isoenzymes with pIs between 3.45 and 3.15, and the pattern closely resembled the pattern observed with MnPs isolated from C. subvermispora grown in solid-state cultures. We compared the abilities of recombinant MnPs to use various substrates and found that rH4 could oxidize o-dianisidine and p-anisidine without externally added manganese, a property not previously reported for this MnP isoenzyme from P. chrysosporium.
Collapse
Affiliation(s)
- L F Larrondo
- Departamento de Genética Molecular y Microbiologia, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | | | | | | | | |
Collapse
|
39
|
Wallis GL, Hemming FW, Peberdy JF. An extracellular beta-galactofuranosidase from Aspergillus niger and its use as a tool for glycoconjugate analysis. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1525:19-28. [PMID: 11342249 DOI: 10.1016/s0304-4165(00)00150-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aspergillus niger produces an extracellular beta-galactofuranosidase, which can specifically hydrolyse beta-D-galactofuranose (Galf) from glycoconjugates. The production of this enzyme can be induced by the addition of a Galf-containing A. niger mycelial wall extract. However, on other carbon sources accumulation occurred only during the starvation conditions of the late stationary phase. Extracellular glucoamylases from this stage of cultivation possessed significantly lower levels of Galf than those from the earlier exponential growth phase when beta-galactofuranosidase is absent, suggesting in situ beta-galactofuranosidic hydrolysis. The beta-galactofuranosidase responsible was subsequently purified to homogeneity and characterised. It is a glycoprotein of 90 kDa (determined by SDS-PAGE) with activity against beta-linked Galf residues, with a Km of 4 mM against p-nitrophenyl-beta-D-galactofuranoside and a pH optimum of 3-4. The preparation did not contain other contaminating glycosidase activities; p-nitrophenyl-beta-D- and -alpha-D-galactopyranose, and alpha-D-methyl-Galf were not hydrolysed. Results are presented to show that this enzyme could be employed as a useful tool for the analysis of glycoconjugates containing biologically important Galf components.
Collapse
Affiliation(s)
- G L Wallis
- School of Biological Sciences, University of Nottingham, UK.
| | | | | |
Collapse
|
40
|
Abstract
The knowledge base that will underpin the more efficient use of filamentous fungi as cell factories in food has increased during the past year in the areas of gene regulation, protein secretion, safety and synthesis of ingredients such as long-chain polyunsaturated fatty acids.
Collapse
Affiliation(s)
- D B Archer
- School of Life and Environmental Sciences, University of Nottingham, University Park, NG7 2RD, Nottingham, UK.
| |
Collapse
|