1
|
Pittaluga AM, Ortiz-Fraguada MY, Parker AJ, Relling AE. Effects of calcium salts of palm oil inclusion and ad libitum feeding regimen on growth performance, carcass characteristics, and plasma glucose-dependent insulinotropic polypeptide concentration of feedlot steers. J Anim Sci 2022; 100:6643318. [PMID: 35830482 PMCID: PMC9495499 DOI: 10.1093/jas/skac239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/12/2022] [Indexed: 12/24/2022] Open
Abstract
Sixty Angus × SimAngus-crossbred steers (body weight [BW] 279 ± 16 kg) were used to evaluate the effect of calcium salts of palm oil inclusion (CPO) and the amount of feed offered (AFO) on plasma glucose-dependent insulinotropic polypeptide (GIP) concentration and its association with energy metabolism and marbling score (MS) in feedlot steers. Steers were blocked by BW and gain to feed (G:F) and randomly assigned to individual feedlot pens. Treatments (2 × 2 factorial) consisted of ad libitum-fed steers without (ANF) or with (AWF) the inclusion of CPO or restricted-fed steers (85% of the ad libitum intake of ANF) without (RNF) or with the inclusion of CPO (RWF). After weaning, steers were adapted to individual pens and fed a corn silage-based diet for 30 d and subsequently placed in a ground corn (GC)-based diet. Diets were given ad libitum or at 85% of the ANF intake and with or without CPO. After 59 d on the finishing diet, all steers had ad libitum access to the finishing diet until harvest. Measurements of CO2 emission and O2 consumption to estimate respiratory quotient (RQ) were taken (n = 9/treatment). Correlations between plasma GIP and insulin concentrations and RQ were analyzed. A linear regression was performed to evaluate the association of plasma GIP and MS. All data were analyzed using the PROC MIXED procedure of SAS. During the first 103 d of the trial, there were AFO × CPO interactions (P ≤ 0.01) for BW, dry matter intake (DMI), average daily gain (ADG), and net energy for maintenance (NEm) intake. Ad libitum-fed steers without CPO presented the greatest DMI among dietary treatments and had greater BW and ADG compared with steers in the RWF and RNF treatments. After all steers had ad libitum access to dietary treatments, steers that were previously restricted showed a 30% and 19% increase (P ≤ 0.01) in ADG and G:F, respectively. There was a three-way interaction time × CPO × AFO (P = 0.04) for plasma GIP concentration. There was no correlation (P = 0.96) of GIP with RQ, whereas insulin demonstrated marginal significance for a positive (P = 0.07) and negative (P = 0.08) correlation with plasma GIP and RQ, respectively. There was no association (P = 0.30) between GIP and MS. These data indicate that GIP secretion results from an interaction between CPO and energy intake depending on the time relative to feed intake that GIP might indirectly regulate energy metabolism through insulin secretion, and that GIP does not appear to be associated with MS.
Collapse
|
2
|
Christensen MB, Gasbjerg LS, Heimbürger SM, Stensen S, Vilsbøll T, Knop FK. GIP's involvement in the pathophysiology of type 2 diabetes. Peptides 2020; 125:170178. [PMID: 31682875 DOI: 10.1016/j.peptides.2019.170178] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023]
Abstract
During the past four decades derangements in glucose-dependent insulinotropic polypeptide (GIP) biology has been viewed upon as contributing factors to various parts of the pathophysiology type 2 diabetes. This overview outlines and discusses the impaired insulin responses to GIP as well as the effect of GIP on glucagon secretion and the potential involvement of GIP in the obesity and bone disease associated with type 2 diabetes. As outlined in this review, it is unlikely that the impaired insulinotropic effect of GIP occurs as a primary event in the development of type 2 diabetes, but rather develops once the diabetic state is present and beta cells are unable to maintain normoglycemia. In various models, GIP has effects on glucagon secretion, bone and lipid homeostasis, but whether these effects contribute substantially to the pathophysiology of type 2 diabetes is at present controversial. The review also discusses the substantial uncertainty surrounding the translation of preclinical data relating to the GIP system and outline future research directions.
Collapse
Affiliation(s)
- Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sebastian M Heimbürger
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Signe Stensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Gentofte Hospital, Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Gentofte Hospital, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Kolodziejski PA, Sassek M, Chalupka D, Leciejewska N, Nogowski L, Mackowiak P, Jozefiak D, Stadnicka K, Siwek M, Bednarczyk M, Szwaczkowski T, Pruszynska-Oszmalek E. GLP1 and GIP are involved in the action of synbiotics in broiler chickens. J Anim Sci Biotechnol 2018; 9:13. [PMID: 29416857 PMCID: PMC5785812 DOI: 10.1186/s40104-017-0227-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 12/22/2017] [Indexed: 12/25/2022] Open
Abstract
Background In order to discover new strategies to replace antibiotics in the post-antibiotic era in meat-type chicken production, two new synbiotics were tested: (Lactobacillus salivarius IBB3154 plus galactooligosaccharide (Syn1) and Lactobacillus plantarum IBB3036 plus raffinose family oligosaccharides (Syn2). Methods The synbiotics were administered via syringe, using a special automatic system, into the egg air chamber of Cobb 500 broiler chicks on the 12th day of egg incubation (2 mg of prebiotics + 105 cfu bacteria per egg). Hatched roosters (total 2,400) were reared on an experimental farm, kept in pens (75 animals per pen), with free access to feed and water. After 42 d animals were slaughtered. Blood serum, pancreas, duodenum and duodenum content were collected. Results Syn2 increased trypsin activity by 2.5-fold in the pancreas and 1.5-fold in the duodenal content. In the duodenum content, Syn2 resulted in ca 30% elevation in lipase activity and 70% reduction in amylase activity. Syn1 and Syn2 strongly decreased expression of mRNA for GLP-1 and GIP in the duodenum and for GLP-1 receptors in the pancreas. Simultaneously, concentrations of the incretins significantly diminished in the blood serum (P < 0.05). The decreased expression of incretins coincides with changed activity of digestive enzymes in the pancreas and in the duodenal content. The results indicate that incretins are involved in the action of Syn1 and Syn2 or that they may even be their target. No changes were observed in key hormones regulating metabolism (insulin, glucagon, corticosterone, thyroid hormones, and leptin) or in metabolic indices (glucose, NEFA, triglycerides, cholesterol). Additionally, synbiotics did not cause significant changes in the activities of alanine and aspartate aminotransferases in broiler chickens. Simultaneously, the activity of alkaline phosphatase and gamma glutamyl transferase diminished after Syn2 and Syn1, respectively. Conclusion The selected synbiotics may be used as in ovo additives for broiler chickens, and Syn2 seems to improve their potential digestive proteolytic and lipolytic ability. Our results suggest that synbiotics can be directly or indirectly involved in incretin secretion and reception.
Collapse
Affiliation(s)
- Pawel Antoni Kolodziejski
- 1Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland
| | - Maciej Sassek
- 1Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland
| | - Daniela Chalupka
- 1Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland
| | - Natalia Leciejewska
- 1Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland
| | - Leszek Nogowski
- 1Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland
| | - Pawel Mackowiak
- 1Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland
| | - Damian Jozefiak
- 2Department of Animal Nutrition and Feed Management, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Katarzyna Stadnicka
- 4Department of Animal Biochemistry and Biotechnology, UTP University of Science and Technology, 85-084 Bydgoszcz, Poland
| | - Maria Siwek
- 4Department of Animal Biochemistry and Biotechnology, UTP University of Science and Technology, 85-084 Bydgoszcz, Poland
| | - Marek Bednarczyk
- 4Department of Animal Biochemistry and Biotechnology, UTP University of Science and Technology, 85-084 Bydgoszcz, Poland
| | - Tomasz Szwaczkowski
- 3Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Ewa Pruszynska-Oszmalek
- 1Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland
| |
Collapse
|
4
|
Huber B, Czaja AM, Kluger PJ. Influence of epidermal growth factor (EGF) and hydrocortisone on the co-culture of mature adipocytes and endothelial cells for vascularized adipose tissue engineering. Cell Biol Int 2016; 40:569-78. [DOI: 10.1002/cbin.10595] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 02/14/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Birgit Huber
- Institute for Interfacial Process Engineering and Plasma Technology; University of Stuttgart; Nobelstraße 12 Stuttgart 70569 Germany
| | - Alina Maria Czaja
- Esslingen University of Applied Sciences; Kanalstraße 33 Esslingen 73728 Germany
| | - Petra Juliane Kluger
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB; Nobelstraße 12 Stuttgart 70569 Germany
- Reutlingen University; Alteburgstr. 150 Reutlingen 72762 Germany
| |
Collapse
|
5
|
Relling A, Crompton L, Loerch S, Reynolds C. Short communication: Plasma concentration of glucose-dependent insulinotropic polypeptide may regulate milk energy production in lactating dairy cows. J Dairy Sci 2014; 97:2440-3. [DOI: 10.3168/jds.2013-7574] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/17/2013] [Indexed: 12/16/2022]
|
6
|
Rigamonti AE, Sartorio A, Bonomo SM, Giunta M, Grassi G, Perotti M, Cella SG, Müller EE, Pincelli AI. Effect of a somatostatin infusion on circulating levels of adipokines in obese women. Metabolism 2012; 61:1797-802. [PMID: 22784430 DOI: 10.1016/j.metabol.2012.05.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/31/2012] [Accepted: 05/31/2012] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Changes in circulating levels of many adipocyte-derived peptides, including adipokines such as adiponectin, leptin and tumor necrosis factor alpha (TNF-α), have been reported in obesity (OB). Somatostatin (SRIF) inhibits circulating levels of adiponectin and leptin in lean (LN) subjects, but the effect of a SRIF infusion on these adipokines, including TNF-α, in OB is to date unknown. METHODS Ten young women (5 OB and 5 LN) were studied. All subjects underwent an infusion of SRIF (9 μg/kg/h i.v., over 60 min), with blood samples drawn prior to and at different time intervals after SRIF administration. Plasma levels of adiponectin, leptin and TNF-α were measured at each interval. RESULTS Basal levels of leptin and TNF-α were significantly higher in OB than LN women, whereas levels of adiponectin were significantly lower in OB than LN subjects. SRIF significantly inhibited plasma concentrations of adiponectin (at 60 min) in both OB and LN women, without affecting those of leptin and TNF-α in either group. In LN subjects, the inhibitory effect of SRIF on plasma adiponectin persisted up to 150 min, whereas SRIF infusion withdrawal in OB women resulted in a prompt restoration of basal levels of the adipokine. CONCLUSIONS Plasma concentrations of leptin and TNF-α, which are higher in OB than LN subjects, are unaffected by a SRIF infusion, which, in contrast, inhibits circulating levels of adiponectin in both groups, with a delayed return to the baseline secretion of the adipokine in LN subjects.
Collapse
Affiliation(s)
- Antonello E Rigamonti
- University of Milan, Department of Medical Pharmacology, via Vanvitelli 32, 20129 Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Boschmann M, Engeli S, Dobberstein K, Budziarek P, Strauss A, Boehnke J, Sweep FCGJ, Luft FC, He Y, Foley JE, Jordan J. Dipeptidyl-peptidase-IV inhibition augments postprandial lipid mobilization and oxidation in type 2 diabetic patients. J Clin Endocrinol Metab 2009; 94:846-52. [PMID: 19088168 DOI: 10.1210/jc.2008-1400] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CONTEXT Dipeptidyl-peptidase-IV (DPP-4) inhibition increases endogenous GLP-1 activity, resulting in improved glycemic control in patients with type 2 diabetes mellitus. The metabolic response may be explained in part by extrapancreatic mechanisms. OBJECTIVE We tested the hypothesis that DPP-4 inhibition with vildagliptin elicits changes in adipose tissue and skeletal muscle metabolism. DESIGN AND SETTING We conducted a randomized, double-blind, crossover study at an academic clinical research center. PATIENTS Twenty patients with type 2 diabetes, body mass index between 28 and 40 kg/m(2), participated. INTERVENTION INTERVENTION included 7 d treatment with the selective DPP-4 inhibitor vildagliptin or placebo and a standardized test meal on d 7. MAIN OUTCOME MEASURES Venous DPP-4 activity, catecholamines, free fatty acids, glycerol, glucose, (pro)insulin, dialysate glucose, lactate, pyruvate, glycerol were measured. RESULTS Fasting and postprandial venous insulin, glucose, glycerol, triglycerides, and free fatty acid concentrations were not different with vildagliptin and with placebo. Vildagliptin augmented the postprandial increase in plasma norepinephrine. Furthermore, vildagliptin increased dialysate glycerol and lactate concentrations in adipose tissue while suppressing dialysate lactate and pyruvate concentration in skeletal muscle. The respiratory quotient increased with meal ingestion but was consistently lower with vildagliptin. CONCLUSIONS Our study is the first to suggest that DPP-4 inhibition augments postprandial lipid mobilization and oxidation. The response may be explained by sympathetic activation rather than a direct effect on metabolic status.
Collapse
Affiliation(s)
- Michael Boschmann
- Franz-Volhard Clinical Research Center, Helios Klinikum and Medical Faculty of the Charité, D-13125 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Faraj M, Beauregard G, Tardif A, Loizon E, Godbout A, Cianflone K, Vidal H, Rabasa-Lhoret R. Regulation of leptin, adiponectin and acylation-stimulating protein by hyperinsulinaemia and hyperglycaemia in vivo in healthy lean young men. DIABETES & METABOLISM 2008; 34:334-42. [DOI: 10.1016/j.diabet.2008.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 01/18/2008] [Accepted: 01/25/2008] [Indexed: 10/21/2022]
|
10
|
Althage MC, Ford EL, Wang S, Tso P, Polonsky KS, Wice BM. Targeted ablation of glucose-dependent insulinotropic polypeptide-producing cells in transgenic mice reduces obesity and insulin resistance induced by a high fat diet. J Biol Chem 2008; 283:18365-76. [PMID: 18420580 DOI: 10.1074/jbc.m710466200] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The K cell is a specific sub-type of enteroendocrine cell located in the proximal small intestine that produces glucose-dependent insulinotropic polypeptide (GIP), xenin, and potentially other unknown hormones. Because GIP promotes weight gain and insulin resistance, reducing hormone release from K cells could lead to weight loss and increased insulin sensitivity. However, the consequences of coordinately reducing circulating levels of all K cell-derived hormones are unknown. To reduce the number of functioning K cells, regulatory elements from the rat GIP promoter/gene were used to express an attenuated diphtheria toxin A chain in transgenic mice. K cell number, GIP transcripts, and plasma GIP levels were profoundly reduced in the GIP/DT transgenic mice. Other enteroendocrine cell types were not ablated. Food intake, body weight, and blood glucose levels in response to insulin or intraperitoneal glucose were similar in control and GIP/DT mice fed standard chow. In contrast to single or double incretin receptor knock-out mice, the incretin response was absent in GIP/DT animals suggesting K cells produce GIP plus an additional incretin hormone. Following high fat feeding for 21-35 weeks, the incretin response was partially restored in GIP/DT mice. Transgenic versus wild-type mice demonstrated significantly reduced body weight (25%), plasma leptin levels (77%), and daily food intake (16%) plus enhanced energy expenditure (10%) and insulin sensitivity. Regardless of diet, long term glucose homeostasis was not grossly perturbed in the transgenic animals. In conclusion, studies using GIP/DT mice demonstrate an important role for K cells in the regulation of body weight and insulin sensitivity.
Collapse
Affiliation(s)
- Matthew C Althage
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
11
|
O'Harte FPM, Hunter K, Gault VA, Irwin N, Green BD, Greer B, Harriott P, Bailey CJ, Flatt PR. Antagonistic effects of two novel GIP analogs, (Hyp3)GIP and (Hyp3)GIPLys16PAL, on the biological actions of GIP and longer-term effects in diabetic ob/ob mice. Am J Physiol Endocrinol Metab 2007; 292:E1674-82. [PMID: 17299087 DOI: 10.1152/ajpendo.00391.2006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examines the actions of the novel enzyme-resistant, NH2-terminally modified GIP analog (Hyp(3))GIP and its fatty acid-derivatized analog (Hyp(3))GIPLys(16)PAL. Acute effects are compared with the established GIP receptor antagonist (Pro(3))GIP. All three peptides exhibited DPP IV resistance, and significantly inhibited GIP stimulated cAMP formation and insulin secretion in GIP receptor-transfected fibroblasts and in clonal pancreatic BRIN-BD11 cells, respectively. Likewise, in obese diabetic ob/ob mice, intraperitoneal administration of GIP analogs significantly inhibited the acute antihyperglycemic and insulin-releasing effects of native GIP. Administration of once daily injections of (Hyp(3))GIP or (Hyp(3))GIPLys(16)PAL for 14 days resulted in significantly lower plasma glucose levels (P < 0.05) after (Hyp(3))GIP on days 12 and 14 and enhanced glucose tolerance (P < 0.05) and insulin sensitivity (P < 0.05 to P < 0.001) in both groups by day 14. Both (Hyp(3))GIP and (Hyp(3))GIPLys(16)PAL treatment also reduced pancreatic insulin (P < 0.05 to P < 0.01) without affecting islet number. These data indicate that (Hyp(3))GIP and (Hyp(3))GIPLys(16)PAL function as GIP receptor antagonists with potential for ameliorating obesity-related diabetes. Acylation of (Hyp(3))GIP to extend bioactivity does not appear to be of any additional benefit.
Collapse
Affiliation(s)
- Finbarr P M O'Harte
- School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, Northern Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Li L, Wice BM. Bombesin and nutrients independently and additively regulate hormone release from GIP/Ins cells. Am J Physiol Endocrinol Metab 2005; 288:E208-15. [PMID: 15383372 DOI: 10.1152/ajpendo.00346.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) regulates glucose homeostasis and high-fat diet-induced obesity and insulin resistance. Therefore, elucidating the mechanisms that regulate GIP release is important. GIP is produced by K cells, a specific subtype of small intestinal enteroendocrine (EE) cell. Bombesin-like peptides produced by enteric neurons and luminal nutrients stimulate GIP release in vivo. We previously showed that PMA, bombesin, meat hydrolysate, glyceraldehyde, and methylpyruvate increase hormone release from a GIP-producing EE cell line (GIP/Ins cells). Here we demonstrate that bombesin and nutrients additively stimulate hormone release from GIP/Ins cells. In various cell systems, bombesin and PMA regulate cell physiology by activating PKD signaling in a PKC-dependent fashion, whereas nutrients regulate cell physiology by inhibiting AMPK signaling. Western blot analyses of GIP/Ins cells using antibodies specific for activated and/or phosphorylated forms of PKD and AMPK and one substrate for each kinase revealed that bombesin and PMA, but not nutrients, activated PKC, but not PKD. Conversely, nutrients, but not bombesin or PMA, inhibited AMPK activity. Pharmacological studies showed that PKC inhibition blocked bombesin- and PMA-stimulated hormone release, but AMPK activation failed to suppress nutrient-stimulated hormone secretion. Forced expression of constitutively active vs. dominant negative PKDs or AMPKs failed to perturb bombesin- or nutrient-stimulated hormone release. Thus, in GIP/Ins cells, PKC regulates bombesin-stimulated hormone release, whereas nutrients may control hormone release by regulating the activity of AMPK-related kinases, rather than AMPK itself. These results strongly suggest that K cells in vivo independently respond to neuronal vs. nutritional stimuli via two distinct signaling pathways.
Collapse
Affiliation(s)
- Lin Li
- Department of Internal Medicine, Division of Endocrinology, Diabetes & Metabolism, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
13
|
Gault VA, O'Harte FPM, Flatt PR. Glucose-dependent insulinotropic polypeptide (GIP): anti-diabetic and anti-obesity potential? Neuropeptides 2003; 37:253-63. [PMID: 14607102 DOI: 10.1016/j.npep.2003.09.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP or gastric inhibitory polypeptide) is a gastrointestinal hormone, which modulates physiological insulin secretion. Due to its insulinotropic activity, there has been a considerable increase of interest in utilising the hormone as a potential therapy for type 2 diabetes. One of the difficulties in attempting to harness the insulinotropic activity of GIP into an effective therapeutic agent is its short biological half-life in the circulation. However, recent years have witnessed the development of a substantial number of designer enzyme-resistant 'super GIP' molecules with potent insulinotropic and anti-diabetic properties. In addition, observations in transgenic GIP receptor deficient mice indicate that GIP directly links overnutrition to obesity, therein playing a crucial role in the development of obesity and related metabolic disorders. The present review aims to highlight the rapidly emerging potential therapeutic applications of GIP, and especially, enzyme-resistant GIP analogues.
Collapse
Affiliation(s)
- Victor A Gault
- School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK.
| | | | | |
Collapse
|
14
|
Holst JJ. Gastric inhibitory polypeptide analogues: do they have a therapeutic role in diabetes mellitus similar to that of glucagon-like Peptide-1? BioDrugs 2003; 16:175-81. [PMID: 12102645 DOI: 10.2165/00063030-200216030-00002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gastric inhibitory polypeptide (GIP, also called glucose-dependent insulinotropic polypeptide) and glucagon-like peptide-1 (GLP-1) are peptide hormones from the gut that enhance nutrient-stimulated insulin secretion (the 'incretin' effect). Judging from experiments in mice with targeted deletions of GIP and GLP-1 receptors, the incretin effect is essential for normal glucose tolerance. In patients with type 2 diabetes mellitus it turns out that the incretin effect is severely impaired or abolished. The explanation seems to be that both the secretion of GLP-1 and the effect of GIP are impaired (whereas both the secretion of GIP and the effect of GLP-1 are near normal). The impaired GLP-1 secretion is probably a consequence of diabetic metabolic disturbances. The known genetic variations in the GIP receptor sequence are not associated with type 2 diabetes mellitus, but a defective insulinotropic effect of GIP may be found in first degree relatives of the patients, suggesting a genetic background for the defect. The molecular nature of the defect is not known and given the close similarity of the two receptors and their signalling, the dissociation of their effects is remarkable. Whereas GLP-1 and its analogues are attractive as therapeutic agents for type 2 diabetes mellitus, analogues of GIP are unlikely to be effective. On the other hand, GIP seems to play an important role in lipid metabolism, promoting the disposal of ingested lipids, and mice with a targeted deletion of the GIP receptor do not become obese when exposed to a high-fat diet. Therefore, antagonistic analogues of GIP may be speculated to have a role in the pharmaceutical management of obesity.
Collapse
Affiliation(s)
- Jens J Holst
- Department of Medical Physiology, University of Copenhagen, The Panum Institute, Copenhagen, Denmark.
| |
Collapse
|