1
|
Wang X, Huang P, Haacke EM, Liu Y, Zhang Y, Jin Z, Li Y, Xu Q, Liu P, Chen S, He N, Yan F. Locus coeruleus and substantia nigra neuromelanin magnetic resonance imaging differentiates Parkinson's disease and essential tremor. Neuroimage Clin 2023; 38:103420. [PMID: 37141646 PMCID: PMC10176060 DOI: 10.1016/j.nicl.2023.103420] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/04/2023] [Accepted: 04/23/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Differential diagnosis of essential tremor (ET) and Parkinson's disease (PD) can still be a challenge in clinical practice. These two tremor disorders may have different pathogenesis related to the substantia nigra (SN) and locus coeruleus (LC). Characterizing neuromelanin (NM) in these structures may help improve the differential diagnosis. METHODS Forty-three subjects with tremor-dominant PD (PDTD), 31 subjects with ET, and 30 age- and sex-matched healthy controls were included. All subjects were scanned with NM magnetic resonance imaging (NM-MRI). NM volume and contrast measures for the SN and contrast for the LC were evaluated. Logistic regression was used to calculate predicted probabilities by using the combination of SN and LC NM measures. The discriminative power of the NM measures in detecting subjects with PDTD from ET was assessed with a receiver operative characteristic curve, and the area under the curve (AUC) was calculated. RESULTS The NM contrast-to-noise ratio (CNR) of the LC, the NM volume, and CNR of the SN on the right and left sides were significantly lower in PDTD subjects than in ET subjects or healthy controls (all P < 0.05). Furthermore, when combining the best model constructed from the NM measures, the AUC reached 0.92 in differentiating PDTD from ET. CONCLUSION The NM volume and contrast measures of the SN and contrast for the LC provided a new perspective on the differential diagnosis of PDTD and ET, and the investigation of the underlying pathophysiology.
Collapse
Affiliation(s)
- Xinhui Wang
- From the Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai 200025, China
| | - Pei Huang
- From the Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai 200025, China
| | - Ewart Mark Haacke
- From the Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai 200025, China; Department of Biomedical Engineering, Wayne State University, 3990 John R, Detroit, MI, USA; Department of Radiology, Wayne State University, 3990 John R, Detroit, MI, USA; Department of Neurology, Wayne State University, 3990 John R, Detroit, MI, USA
| | - Yu Liu
- From the Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai 200025, China
| | - Youmin Zhang
- From the Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai 200025, China
| | - Zhijia Jin
- From the Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai 200025, China
| | - Yan Li
- From the Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai 200025, China
| | - Qiuyun Xu
- Department of Biomedical Engineering, Wayne State University, 3990 John R, Detroit, MI, USA
| | - Peng Liu
- From the Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai 200025, China
| | - Shengdi Chen
- From the Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai 200025, China.
| | - Naying He
- From the Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai 200025, China.
| | - Fuhua Yan
- From the Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai 200025, China.
| |
Collapse
|
2
|
Serotonergic modulation of effective connectivity in an associative relearning network during task and rest. Neuroimage 2022; 249:118887. [PMID: 34999203 DOI: 10.1016/j.neuroimage.2022.118887] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/29/2021] [Accepted: 01/05/2022] [Indexed: 11/21/2022] Open
Abstract
An essential core function of one's cognitive flexibility is the use of acquired knowledge and skills to adapt to ongoing environmental changes. Animal models have highlighted the influence serotonin has on neuroplasticity. These effects have been predominantly demonstrated during emotional relearning which is theorized as a possible model for depression. However, translation of these mechanisms is in its infancy. To this end, we assessed changes in effective connectivity at rest and during associative learning as a proxy of neuroplastic changes in healthy volunteers. 76 participants underwent 6 weeks of emotional or non-emotional (re)learning (face-matching or Chinese character-German noun matching). During relearning participants either self-administered 10 mg/day of the selective serotonin reuptake inhibitor (SSRI) escitalopram or placebo in a double-blind design. Associative learning tasks, resting-state and structural images were recorded before and after both learning phases (day 1, 21 and 42). Escitalopram intake modulated relearning changes in a network encompassing the right insula, anterior cingulate cortex and right angular gyrus. Here, the process of relearning during SSRI intake showed a greater decrease in effective connectivity from the right insula to both the anterior cingulate cortex and right angular gyrus, with increases in the opposite direction when compared to placebo. In contrast, intrinsic connections and those at resting-state were only marginally affected by escitalopram. Further investigation of gray matter volume changes in these functionally active regions revealed no significant SSRI-induced structural changes. These findings indicate that the right insula plays a central role in the process of relearning and SSRIs further potentiate this effect. In sum, we demonstrated that SSRIs amplify learning-induced effective connections rather than affecting the intrinsic task connectivity or that of resting-state.
Collapse
|
3
|
Reed MB, Vanicek T, Seiger R, Klöbl M, Spurny B, Handschuh P, Ritter V, Unterholzner J, Godbersen GM, Gryglewski G, Kraus C, Winkler D, Hahn A, Lanzenberger R. Neuroplastic effects of a selective serotonin reuptake inhibitor in relearning and retrieval. Neuroimage 2021; 236:118039. [PMID: 33852940 PMCID: PMC7610799 DOI: 10.1016/j.neuroimage.2021.118039] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/19/2021] [Accepted: 04/02/2021] [Indexed: 12/17/2022] Open
Abstract
Animal studies using selective serotonin reuptake inhibitors (SSRIs) and learning paradigms have demonstrated that serotonin is important for flexibility in executive functions and learning. SSRIs might facilitate relearning through neuroplastic processes and thus exert their clinical effects in psychiatric diseases where cognitive functioning is affected. However, translation of these mechanisms to humans is missing. In this randomized placebo-controlled trial, we assessed functional brain activation during learning and memory retrieval in healthy volunteers performing associative learning tasks aiming to translate facilitated relearning by SSRIs. To this extent, seventy-six participants underwent three MRI scanning sessions: (1) at baseline, (2) after three weeks of daily associative learning and subsequent retrieval (face-matching or Chinese character–noun matching) and (3) after three weeks of relearning under escitalopram (10 mg/day) or placebo. Associative learning and retrieval tasks were performed during each functional MRI (fMRI) session. Statistical modeling was done using a repeated-measures ANOVA, to test for content-by-treatment-by-time interaction effects. During the learning task, a significant substance-by-time interaction was found in the right insula showing a greater deactivation in the SSRI cohort after 21 days of relearning compared to the learning phase. In the retrieval task, there was a significant content-by-time interaction in the left angular gyrus (AG) with an increased activation in face-matching compared to Chinese-character matching for both learning and relearning phases. A further substance-by-time interaction was found in task performance after 21 days of relearning, indicating a greater decrease of performance in the placebo group. Our findings that escitalopram modulate insula activation demonstrates successful translation of relearning as a mechanism of SSRIs in human. Furthermore, we show that the left AG is an active component of correct memory retrieval, which coincides with previous literature. We extend the function of this region by demonstrating its activation is not only stimulus dependent but also time constrained. Finally, we were able to show that escitalopram aids in relearning, irrespective of content.
Collapse
Affiliation(s)
- M B Reed
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - T Vanicek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - R Seiger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - M Klöbl
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - B Spurny
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - P Handschuh
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - V Ritter
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - J Unterholzner
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - G M Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - G Gryglewski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - C Kraus
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - D Winkler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - A Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - R Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria.
| |
Collapse
|
4
|
Hoshijima H, Takeuchi R, Kikuchi K, Mizuta K. Anesthetic management in MAO-A and MAO-B deficiency: a case report. J Anesth 2020; 34:773-776. [DOI: 10.1007/s00540-020-02808-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/30/2020] [Indexed: 11/30/2022]
|
5
|
Burke MW, Fillion M, Mejia J, Ervin FR, Palmour RM. Perinatal MAO Inhibition Produces Long-Lasting Impairment of Serotonin Function in Offspring. Brain Sci 2018; 8:brainsci8060106. [PMID: 29891804 PMCID: PMC6025445 DOI: 10.3390/brainsci8060106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/07/2018] [Accepted: 06/09/2018] [Indexed: 12/13/2022] Open
Abstract
In addition to transmitter functions, many neuroamines have trophic or ontogenetic regulatory effects important to both normal and disordered brain development. In previous work (Mejia et al., 2002), we showed that pharmacologically inhibiting monoamine oxidase (MAO) activity during murine gestation increases the prevalence of behaviors thought to reflect impulsivity and aggression. The goal of the present study was to determine the extent to which this treatment influences dopamine and serotonin innervation of murine cortical and subcortical areas, as measured by regional density of dopamine (DAT) and serotonin transporters (SERT). We measured DAT and SERT densities at 3 developmental times (PND 14, 35 and 90) following inhibition of MAO A, or MAO B or both throughout murine gestation and early post-natal development. DAT binding was unaltered within the nigrostriatal pathway, but concurrent inhibition of MAO-A and MAO-B significantly and specifically reduced SERT binding by 10–25% in both the frontal cortex and raphe nuclei. Low levels of SERT binding persisted (PND 35, 90) after the termination (PND 21) of exposure to MAO inhibitors and was most marked in brain structures germane to the previously described behavioral changes. The relatively modest level of enzyme inhibition (25–40%) required to produce these effects mandates care in the use of any compound which might inhibit MAO activity during gestation.
Collapse
Affiliation(s)
- Mark W Burke
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA.
| | - Myriam Fillion
- Departments of Biology, McGill University, Montréal, QC H3A 1A1, Canada.
| | - Jose Mejia
- Department of Psychiatry, Dalhousie University, Halifax, NS B3J 3T4, Canada.
| | - Frank R Ervin
- Department of Psychiatry, McGill University, Montréal, QC H3A 1A1, Canada.
| | - Roberta M Palmour
- Departments of Biology, McGill University, Montréal, QC H3A 1A1, Canada.
- Department of Psychiatry, McGill University, Montréal, QC H3A 1A1, Canada.
- Human Genetics, McGill University, Montréal, QC H3A 1A1, Canada.
| |
Collapse
|
6
|
Fox MA, Panessiti MG, Moya PR, Tolliver TJ, Chen K, Shih JC, Murphy DL. Mutations in monoamine oxidase (MAO) genes in mice lead to hypersensitivity to serotonin-enhancing drugs: implications for drug side effects in humans. THE PHARMACOGENOMICS JOURNAL 2013; 13:551-7. [PMID: 22964922 PMCID: PMC3562558 DOI: 10.1038/tpj.2012.35] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/18/2012] [Accepted: 07/23/2012] [Indexed: 12/16/2022]
Abstract
A possible side effect of serotonin-enhancing drugs is the serotonin syndrome, which can be lethal. Here we examined possible hypersensitivity to two such drugs, the serotonin precursor 5-hydroxy-L-tryptophan (5-HTP) and the atypical opioid tramadol, in mice lacking the genes for both monoamine oxidase A (MAOA) and MAOB. MAOA/B-knockout (KO) mice displayed baseline serotonin syndrome behaviors, and these behavioral responses were highly exaggerated following 5-HTP or tramadol versus baseline and wild-type (WT) littermates. Compared with MAOA/B-WT mice, baseline tissue serotonin levels were increased ∼2.6-3.9-fold in MAOA/B-KO mice. Following 5-HTP, serotonin levels were further increased ∼4.5-6.2-fold in MAOA/B-KO mice. These exaggerated responses are in line with the exaggerated responses following serotonin-enhancing drugs that we previously observed in mice lacking the serotonin transporter (SERT). These findings provide a second genetic mouse model suggestive of possible human vulnerability to the serotonin syndrome in individuals with lesser-expressing MAO or SERT polymorphisms that confer serotonergic system changes.
Collapse
Affiliation(s)
- MA Fox
- Laboratory of Clinical Science (LCS), National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - MG Panessiti
- Laboratory of Clinical Science (LCS), National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - PR Moya
- Laboratory of Clinical Science (LCS), National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - TJ Tolliver
- Laboratory of Clinical Science (LCS), National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - K Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - JC Shih
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - DL Murphy
- Laboratory of Clinical Science (LCS), National Institute of Mental Health, NIH, Bethesda, MD, USA
| |
Collapse
|
7
|
Soliman A, Bagby RM, Wilson AA, Miler L, Clark M, Rusjan P, Sacher J, Houle S, Meyer JH. Relationship of monoamine oxidase A binding to adaptive and maladaptive personality traits. Psychol Med 2011; 41:1051-1060. [PMID: 20810002 DOI: 10.1017/s0033291710001601] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Monoamine oxidase A (MAOA) is an important enzyme that metabolizes monoamines such as serotonin, norepinephrine and dopamine in the brain. In prefrontal cortex, low MAOA binding is associated with aggression and high binding is associated with major depressive disorder (MDD) and also risk for recurrence of depressive episodes. In rodent models, low MAOA levels are associated with increased aggression and fear conditioning, and decreased social and exploratory investigative behaviors. Our objective was to measure MAOA binding in prefrontal cortex and concurrently evaluate a broad range of validated personality traits. We hypothesized that prefrontal MAOA binding would correlate negatively with angry-hostility, a trait related to aggression/anger, and positively with traits intuitively related to adaptive investigative behavior. METHOD Participants were aged 19-49 years, healthy and non-smoking. MAOA binding was measured with [11C]harmine positron emission tomography (PET) in prefrontal brain regions and personality traits were measured with the NEO Personality Inventory Revised (NEO PI-R). RESULTS Prefrontal MAOA binding correlated negatively with angry-hostility (r=-0.515, p=0.001) and positively with deliberation (r=0.514, p=0.001). In a two-factor regression model, these facets explained 38% of variance in prefrontal MAOA binding. A similar relationship was found in prefrontal cortex subregions. CONCLUSIONS We propose a new continuum describing the relationship between personality and MAOA: deliberate/thoughtful contrasting aggressive/impulsive. Additionally, the association between high MAOA binding and greater deliberation may explain why some people have moderately high levels of MAOA, although very high levels occur during MDD. In health, higher MAOA binding is associated with an adaptive personality facet.
Collapse
Affiliation(s)
- A Soliman
- Vivian M. Rakoff PET Imaging Centre, Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Atlan M, Forget BC, Boccara AC, Vitalis T, Rancillac A, Dunn AK, Gross M. Cortical blood flow assessment with frequency-domain laser Doppler microscopy. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:024019. [PMID: 17477734 DOI: 10.1117/1.2715184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We report the assessment of cerebral blood flow (CBF) changes with a wide-field laser Doppler imager based on a CCD camera detection scheme, in vivo, in mice. The setup enables the acquisition of data in minimally invasive conditions. In contrast with conventional laser Doppler velocimeters and imagers, the Doppler signature of moving scatterers is measured in the frequency domain, by detuning a heterodyne optical detection. The quadratic mean of the measured frequency shift is used as an indicator of CBF. We observe a significant variability of this indicator in an experiment designed to induce blood flow changes.
Collapse
Affiliation(s)
- Michael Atlan
- Université Pierre et Marie Curie, Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Laboratoire d'Optique, CNRS UPR A0005, 10 rue Vauquelin, F-75231 Paris cedex 05, France.
| | | | | | | | | | | | | |
Collapse
|
9
|
Ginovart N, Meyer JH, Boovariwala A, Hussey D, Rabiner EA, Houle S, Wilson AA. Positron emission tomography quantification of [11C]-harmine binding to monoamine oxidase-A in the human brain. J Cereb Blood Flow Metab 2006; 26:330-44. [PMID: 16079787 DOI: 10.1038/sj.jcbfm.9600197] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This article describes the kinetic modeling of [(11)C]-harmine binding to monoamine oxidase A (MAO-A) binding sites in the human brain using positron emission tomography (PET). Positron emission tomography studies were performed in healthy volunteers at placebo conditions and after treatment with clinical doses of moclobemide. In either condition, a two-tissue compartment model (2CM) provided better fits to the data than a one-tissue model. Estimates of k(3)/k(4) values from an unconstrained 2CM were highly variable. In contrast, estimates of the specifically bound radioligand distribution volume (DV(B)) from an unconstrained 2CM were exceptionally stable, correlated well with the known distribution of MAO-A in the brain (cerebellum <frontal cortex approximately putamen <temporal cortex approximately cingulate <thalamus) and thus provided reliable indices of MAO-A density. Total distribution volume (DV) values were also highly stable and not different from those estimated with the Logan approach. Fixing the DV of free and nonspecifically bound radiotracer (DV(F + NS)) or coupling DV(F + NS) between brain regions enabled more stable estimates of k(3)/k(4) as compared with an unconstrained 2CM. Moclobemide treatment leads to a 64% to 79% MAO-A blockade across brain regions, a result that supports the specificity of [(11)C]-harmine binding to MAO-A. The stability and reliability of DV(B) values obtained from an unconstrained 2CM, together with the computational simplicity associated with this method, support the use of DV(B) as an appropriate outcome measure for [(11)C]-harmine. These results indicate the suitability of using [(11)C]-harmine for quantitative evaluation of MAO-A densities using PET and should enable further studies of potential MAO-A dysregulation in several psychiatric and neurologic illnesses.
Collapse
Affiliation(s)
- Nathalie Ginovart
- PET Centre, Centre for Addiction and Mental Health, Toronto, Canada.
| | | | | | | | | | | | | |
Collapse
|
10
|
Holschneider DP, Maarek JMI, Harimoto J, Yang J, Scremin OU. An implantable bolus infusion pump for use in freely moving, nontethered rats. Am J Physiol Heart Circ Physiol 2002; 283:H1713-9. [PMID: 12234827 PMCID: PMC4103617 DOI: 10.1152/ajpheart.00362.2002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One of the current constraints on functional neuroimaging in animals is that to avoid movement artifacts during data acquisition, subjects need to be immobilized, sedated, or anesthetized. Such measures limit the behaviors that can be examined, and introduce the additional variables of stress or anesthetic agents that may confound meaningful interpretation. This study provides a description of the design and characteristics of a self-contained, implantable microbolus infusion pump (MIP) that allows triggering of a bolus injection at a distance in conscious, behaving rats that are not restrained or tethered. The MIP is externally triggered by a pulse of infrared light and allows in vivo bolus drug delivery. We describe application of this technology to the intravenous bolus delivery of iodo[(14)C]antipyrine in a freely moving animal, followed immediately by lethal injection, rapid removal of the brain, and analysis of regional cerebral blood flow tissue radioactivity with the use of autoradiography. The ability to investigate changes in brain activation in nonrestrained animals makes the MIP a powerful tool for evaluation of complex behaviors.
Collapse
Affiliation(s)
- D P Holschneider
- Department of Psychiatry and the Behavioral Sciences, University of Southern California School of Medicine, Los Angeles 90095, USA.
| | | | | | | | | |
Collapse
|
11
|
Abstract
The neurotransmitter norepinephrine has been the focus of intense investigation for nearly a century. With advances in technology come novel approaches for testing hypotheses about the physiological roles of norepinephrine and the genes involved in norepinephrine (NE) biosynthesis, metabolism, and noradrenergic signaling. Homologous recombination techniques, which generate mice deficient in specific gene products, aid the integrated physiologist and pharmacologist in the evaluation of protein function. Mouse models lacking proteins involved in NE biosynthesis or metabolism provide tools to expand the knowledge previously gleaned from pharmacologic studies. Removal of the biosynthetic enzymes tyrosine hydroxylase and dopamine-beta-hydroxylase yield animals deficient in norepinephrine and have been used to further examine the role of NE in diverse physiologic roles. Complete removal of the vesicular monoamine transporter has demonstrated that mobilizing neurotransmitters to vesicles is required for animal survival. Lastly, the generation of animals in which the ability to remove NE from the synapse is impaired (norepinephrine transporter deficiency and extraneuronal monoamine transporter deficiency) and in which the enzymes responsible for the metabolism of NE have been removed (catechol-O-methyltransferase and monoamine oxidase) has facilitated the study of the long-term physiological consequences of altered NE homeostasis.
Collapse
Affiliation(s)
- Robert P Carson
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-2195, USA
| | | |
Collapse
|
12
|
Holschneider DP, Scremin OU, Roos KP, Chialvo DR, Chen K, Shih JC. Increased baroreceptor response in mice deficient in monoamine oxidase A and B. Am J Physiol Heart Circ Physiol 2002; 282:H964-72. [PMID: 11834493 DOI: 10.1152/ajpheart.00309.2001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The recent development of mice doubly deficient for monoamine oxidase A and B (MAO-A/B, respectively) has raised questions about the impact of these mutations on cardiovascular function, in so far as these animals demonstrate increased tissue levels of the vasoactive amines serotonin, norepinephrine, dopamine, and phenylethylamine. We recorded femoral arterial pressures and electrocardiograms in adult MAO-A/B-deficient mice during halothane-nitrous oxide anesthesia as well as 30 min postoperatively. During both anesthesia and recovery, systolic, diastolic, and mean arterial pressures were 10-15 mmHg lower in MAO-A/B-deficient mice compared with normal controls (P < 0.01). Mutants also showed a greater baroreceptor-mediated reduction in heart rate in response to hypertension after intravenous pulses of phenylephrine or angiotensin II. Tachycardia elicited in response to hypotension after nitroprusside was greater in mutants than in controls. Heart rate responsiveness to changes in arterial pressure was abolished after administration of glycopyrrolate, with no differences in this phenomenon noted between genotypes. These data suggest that prevention of hypertension may occur in chronic states of catecholaminergic/indoleaminergic excess by increased gain of the baroreflex.
Collapse
Affiliation(s)
- D P Holschneider
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, LAC-USC Hosp, University of Southern California Los Angeles 90024, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Recent pharmacological and genetic studies have dramatically expanded the list of neurotransmitters, hormones, cytokines, enzymes, growth factors, and signaling molecules that influence aggression. In spite of this expansion, serotonin (5-HT) remains the primary molecular determinant of inter-male aggression, whereas other molecules appear to act indirectly through 5-HT signaling. We review evidence of interactions among these molecules and aggressive behavior. Slight modulations in 5-HT levels, turnover, and metabolism, or in receptor subtype activation, density, and binding affinity affect aggression. Activation of specific 5-HT receptors evokes distinct, but highly interacting, second messenger systems and multiple effectors. Understanding the interactions between 5-HT receptor subtypes should lead to novel insights into the molecular mechanisms of aggression.
Collapse
Affiliation(s)
- R J Nelson
- Dept of Psychology, The Ohio State University, Columbus, OH 43210, USA.
| | | |
Collapse
|
14
|
Holschneider DP, Chen K, Seif I, Shih JC. Biochemical, behavioral, physiologic, and neurodevelopmental changes in mice deficient in monoamine oxidase A or B. Brain Res Bull 2001; 56:453-62. [PMID: 11750790 PMCID: PMC4109811 DOI: 10.1016/s0361-9230(01)00613-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The availability of mutant mice that lack either MAO A or MAO B has created unique profiles in the central and peripheral availability of serotonin, norepinephrine, dopamine, and phenylethylamine. This paper summarizes some of the current known phenotypic findings in MAO A knock-out mice and contrast these with those of MAO B knock-out mice. Differences are discussed in relation to the biochemical, behavioral, and physiologic changes investigated to date, as well as the role played by redundancy mechanisms, adaptational responses, and alterations in neurodevelopment.
Collapse
Affiliation(s)
- D. P. Holschneider
- Department of Psychiatry and the Behavioral Sciences, USC School of Medicine, Los Angeles, CA, USA
- Department of Neurology, USC School of Medicine, Los Angeles, CA, USA
- Greater Los Angeles VA Healthcare System, Los Angeles, CA, USA
- Address for correspondence: J. C. Shih, Ph.D., University of Southern California, School of Pharmacy, 1985 Zonal Ave., Rm. 528, Los Angeles, CA 90089, USA. Fax: (323) 442-3229;
| | - K. Chen
- Department of Molecular Pharmacology and Toxicology, USC School of Pharmacy, Los Angeles, CA, USA
| | - I. Seif
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 146, Institut Curie, Orsay, France
| | - J. C. Shih
- Department of Molecular Pharmacology and Toxicology, USC School of Pharmacy, Los Angeles, CA, USA
- Department of Cell and Neurobiology, USC School of Medicine, Los Angeles, CA, USA
| |
Collapse
|