1
|
Bastos-Gonçalves R, Coimbra B, Rodrigues AJ. The mesopontine tegmentum in reward and aversion: From cellular heterogeneity to behaviour. Neurosci Biobehav Rev 2024; 162:105702. [PMID: 38718986 DOI: 10.1016/j.neubiorev.2024.105702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/06/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
The mesopontine tegmentum, comprising the pedunculopontine tegmentum (PPN) and the laterodorsal tegmentum (LDT), is intricately connected to various regions of the basal ganglia, motor systems, and limbic systems. The PPN and LDT can regulate the activity of different brain regions of these target systems, and in this way are in a privileged position to modulate motivated behaviours. Despite recent findings, the PPN and LDT have been largely overlooked in discussions about the neural circuits associated with reward and aversion. This review aims to provide a timely and comprehensive resource on past and current research, highlighting the PPN and LDT's connectivity and influence on basal ganglia and limbic, and motor systems. Seminal studies, including lesion, pharmacological, and optogenetic/chemogenetic approaches, demonstrate their critical roles in modulating reward/aversive behaviours. The review emphasizes the need for further investigation into the associated cellular mechanisms, in order to clarify their role in behaviour and contribution for different neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ricardo Bastos-Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
2
|
Gut NK, Mena-Segovia J. Dichotomy between motor and cognitive functions of midbrain cholinergic neurons. Neurobiol Dis 2019; 128:59-66. [PMID: 30213733 PMCID: PMC7176324 DOI: 10.1016/j.nbd.2018.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/18/2018] [Accepted: 09/09/2018] [Indexed: 12/15/2022] Open
Abstract
Cholinergic neurons of the pedunculopontine nucleus (PPN) are interconnected with all the basal ganglia structures, as well as with motor centers in the brainstem and medulla. Recent theories put into question whether PPN cholinergic neurons form part of a locomotor region that directly regulates the motor output, and rather suggest a modulatory role in adaptive behavior involving both motor and cognitive functions. In support of this, experimental studies in animals suggest that cholinergic neurons reinforce actions by signaling reward prediction and shape adaptations in behavior during changes of environmental contingencies. This is further supported by clinical studies proposing that decreased cholinergic transmission originated in the PPN is associated with impaired sensorimotor integration and perseverant behavior, giving rise to some of the symptoms observed in Parkinson's disease and progressive supranuclear palsy. Altogether, the evidence suggests that cholinergic neurons of the PPN, mainly through their interactions with the basal ganglia, have a leading role in action control.
Collapse
Affiliation(s)
- Nadine K Gut
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| | - Juan Mena-Segovia
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA.
| |
Collapse
|
3
|
Nelson KR. Near-death experience: arising from the borderlands of consciousness in crisis. Ann N Y Acad Sci 2014; 1330:111-9. [DOI: 10.1111/nyas.12576] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Kevin R. Nelson
- Department of Neurology; University of Kentucky; Lexington Kentucky
| |
Collapse
|
4
|
Gut NK, Winn P. The Role of the Pedunculopontine Tegmental Nucleus in Motor Disorders. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/978-1-61779-301-1_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
5
|
Bauer DJ, Kerr AL, Swain RA. Cerebellar dentate nuclei lesions reduce motivation in appetitive operant conditioning and open field exploration. Neurobiol Learn Mem 2011; 95:166-75. [DOI: 10.1016/j.nlm.2010.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 12/11/2010] [Accepted: 12/18/2010] [Indexed: 10/18/2022]
|
6
|
Bortolanza M, Wietzikoski EC, Boschen SL, Dombrowski PA, Latimer M, Maclaren DAA, Winn P, Da Cunha C. Functional disconnection of the substantia nigra pars compacta from the pedunculopontine nucleus impairs learning of a conditioned avoidance task. Neurobiol Learn Mem 2010; 94:229-39. [PMID: 20595069 DOI: 10.1016/j.nlm.2010.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/17/2010] [Accepted: 05/26/2010] [Indexed: 01/12/2023]
Abstract
The pedunculopontine tegmental nucleus (PPTg) targets nuclei in the basal ganglia, including the substantia nigra pars compacta (SNc), in which neuronal loss occurs in Parkinson's disease, a condition in which patients show cognitive as well as motor disturbances. Partial loss and functional abnormalities of neurons in the PPTg are also associated with Parkinson's disease. We hypothesized that the interaction of PPTg and SNc might be important for cognitive impairments and so investigated whether disrupting the connections between the PPTg and SNc impaired learning of a conditioned avoidance response (CAR) by male Wistar rats. The following groups were tested: PPTg unilateral; SNc unilateral; PPTg-SNc ipsilateral (ipsilateral lesions in PPTg and SNc); PPTg-SNc contralateral (contralateral lesions in PPTg and SNc); sham lesions (of each type). SNc lesions were made with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine HCl (MPTP, 0.6micromol); PPTg lesions with ibotenate (24nmol). After recovery, all rats underwent 50-trial sessions of 2-way active avoidance conditioning for 3 consecutive days. Rats with unilateral lesions in PPTg or SNc learnt this, however rats with contralateral (but not ipsilateral) combined lesions in both structures presented no sign of learning. This effect was not likely to be due to sensorimotor impairment because lesions did not affect reaction time to the tone or footshock during conditioning. However, an increased number of non-responses were observed in the rats with contralateral lesions. The results support the hypothesis that a functional interaction between PPTg and SNc is needed for CAR learning and performance.
Collapse
Affiliation(s)
- Mariza Bortolanza
- Laboratorio de Fisiologia e Farmacologia do Sistema Nervoso Central, Departamento de Farmacologia, Universidade Federal do Parana (UFPR), C.P. 19031, 81531-980 Curitiba, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Wilson DIG, MacLaren DAA, Winn P. Bar pressing for food: differential consequences of lesions to the anterior versus posterior pedunculopontine. Eur J Neurosci 2009; 30:504-13. [DOI: 10.1111/j.1460-9568.2009.06836.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Winn P. Experimental studies of pedunculopontine functions: Are they motor, sensory or integrative? Parkinsonism Relat Disord 2008; 14 Suppl 2:S194-8. [DOI: 10.1016/j.parkreldis.2008.04.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
An assessment of the contributions of the pedunculopontine tegmental and cuneiform nuclei to anxiety and neophobia. Neuroscience 2007; 150:273-90. [DOI: 10.1016/j.neuroscience.2007.09.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 08/22/2007] [Accepted: 09/12/2007] [Indexed: 11/18/2022]
|
10
|
Kobayashi Y, Okada KI. Reward prediction error computation in the pedunculopontine tegmental nucleus neurons. Ann N Y Acad Sci 2007; 1104:310-23. [PMID: 17344541 DOI: 10.1196/annals.1390.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this article, we address the role of neuronal activity in the pathways of the brainstem-midbrain circuit in reward and the basis for believing that this circuit provides advantages over previous reinforcement learning theory. Several lines of evidence support the reward-based learning theory proposing that midbrain dopamine (DA) neurons send a teaching signal (the reward prediction error signal) to control synaptic plasticity of the projection area. However, the underlying mechanism of where and how the reward prediction error signal is computed still remains unclear. Since the pedunculopontine tegmental nucleus (PPTN) in the brainstem is one of the strongest excitatory input sources to DA neurons, we hypothesized that the PPTN may play an important role in activating DA neurons and reinforcement learning by relaying necessary signals for reward prediction error computation to DA neurons. To investigate the involvement of the PPTN neurons in computation of reward prediction error, we used a visually guided saccade task (VGST) during recording of neuronal activity in monkeys. Here, we predict that PPTN neurons may relay the excitatory component of tonic reward prediction and phasic primary reward signals, and derive a new computational theory of the reward prediction error in DA neurons.
Collapse
Affiliation(s)
- Yasushi Kobayashi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Machikaneyama, Toyonaka 560-8531, Japan.
| | | |
Collapse
|
11
|
Rada P, Hernandez L, Hoebel BG. Feeding and systemic D-amphetamine increase extracellular acetylcholine in the medial thalamus: a possible reward enabling function. Neurosci Lett 2007; 416:184-7. [PMID: 17337121 DOI: 10.1016/j.neulet.2007.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 12/13/2006] [Accepted: 02/02/2007] [Indexed: 12/19/2022]
Abstract
Acetylcholine neurons that project forward from the midbrain are known to enable dopaminergic reward functions in the ventral tegmental area. The question is whether acetylcholine might also be released in the mediodorsal thalamus for the same general purposes. Rats with a microdialysis probe lodged in the mediodorsal thalamus were allowed to eat chow for 20 min after 16-h food deprivation or were given varying doses of D-amphetamine when fed ad libitum. The result in both cases was a significant increase in extracellular acetylcholine. During feeding, acetylcholine increased to 177% of baseline. In response to d-amphetamine (2.5 mg/kg), acetylcholine increased to 184%, and with a higher dose (5 mg/kg) to 400% of baseline. It is concluded that midbrain projections to limbic portions of the thalamus provide acetylcholine for behavioral activation. This cholinergic function theoretically plays a role in enabling the limbic circuits that pass through the thalamus for reinforcement of feeding and psychostimulant abuse.
Collapse
Affiliation(s)
- P Rada
- Laboratory of Behavioral Physiology, School of Medicine, University of Los Andes, Mérida 5101, Venezuela.
| | | | | |
Collapse
|
12
|
Winn P. How best to consider the structure and function of the pedunculopontine tegmental nucleus: Evidence from animal studies. J Neurol Sci 2006; 248:234-50. [PMID: 16765383 DOI: 10.1016/j.jns.2006.05.036] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This review presents the hypothesis that the best way to consider the pedunculopontine tegmental nucleus is by analogy with the substantia nigra. The substantia nigra contains two main compartments: the pars compacta and the pars reticulata. The former contains dopamine neurons that project widely within the basal ganglia while the latter is in receipt of corticostriatal output. Similarly, the PPTg contains the Ch5 acetylcholine containing neurons that project to the thalamus and corticostriatal systems (notably the pars compacta of substantia nigra and the subthalamic nucleus) while the non-cholinergic neurons of the pedunculopontine are in receipt of corticostriatal output. Assessment of the location, composition and connections of the pedunculopontine tegmental nucleus is made to support the hypothesis that it has structural similarities with substantia nigra. Assessment of the motor, sensory and cognitive functions of the pedunculopontine is also made, suggesting functional similarities exist also. Having a clear model of pedunculopontine structure and function is a matter of some importance. It is clearly involved in Parkinson's disease and could potentially be a target for therapeutic intervention. If this is to be realized it will be best to have as clear an understanding as possible of pedunculopontine structure and function in order to maximize positive benefits.
Collapse
Affiliation(s)
- Philip Winn
- School of Psychology, University of St Andrews, St Mary's Quad, South Street, St Andrews, Fife KY16 9JP, United Kingdom.
| |
Collapse
|
13
|
Alderson HL, Latimer MP, Winn P. Intravenous self-administration of nicotine is altered by lesions of the posterior, but not anterior, pedunculopontine tegmental nucleus. Eur J Neurosci 2006; 23:2169-75. [PMID: 16630063 DOI: 10.1111/j.1460-9568.2006.04737.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reinforcing properties of nicotine involve actions at nicotinic acetylcholine receptors located on dopamine (DA) neurons in the ventral tegmental area (VTA). The pedunculopontine tegmental nucleus (PPTg) is involved in the regulation of these DA neurons, and those of the substantia nigra pars compacta (SNc). The PPTg can be subdivided into anterior (aPPTg) and posterior (pPPTg) regions on the basis of its innervation of midbrain DA neurons - the pPPTg innervates both VTA and SNc while the aPPTg innervates SNc. As the reinforcing actions of nicotine depend on its actions in the VTA more than SNc, it was hypothesized that excitotoxic lesions of pPPTg would alter nicotine reinforcement, measured by intravenous self-administration, while lesions of aPPTg would not. Rats were given ibotenate lesions of pPPTg or aPPTg, followed by intravenous catheterization. Intravenous self-administration (IVSA) of nicotine (0.03 mg/kg/inf) was carried out until a stable response baseline was reached. A dose-response function for nicotine was then established. There was no significant effect of aPPTg lesions on nicotine IVSA, while IVSA was significantly elevated following pPPTg lesions, compared with both sham lesioned controls and aPPTg excitotoxin lesioned rats. This was found across all doses, including saline, of the dose-response function. The differential effect of aPPTg lesions and pPPTg lesions suggests that disruption of regulatory innervation from pPPTg results in altered regulation of VTA DA neurons. The resulting change in nicotine self-administration behaviour was hypothesized to reflect either a reduction in intrinsic nicotine reward value, or enhancement of associative incentive salience.
Collapse
Affiliation(s)
- Helen L Alderson
- School of Psychology, St Andrews University, St Mary's Quad, South Street, St Andrews, Fife, KY16 9JP, UK.
| | | | | |
Collapse
|
14
|
Ainge JA, Keating GL, Latimer MP, Winn P. The pedunculopontine tegmental nucleus and responding for sucrose reward. Behav Neurosci 2006; 120:563-70. [PMID: 16768608 DOI: 10.1037/0735-7044.120.3.563] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pedunculopontine tegmental nucleus (PPTg) lesions in rodents lead to increased sucrose consumption, but the psychological deficit behind this remains uncertain. To understand better the relationship between consumption of, and motivation for, sucrose, the authors trained rats to traverse a runway for 20% or 4% sucrose solution; after 7 days, concentrations were reversed. Control rats consumed more 20% than 4% sucrose solution and promptly altered run times in response to concentration change. PPTg-lesioned rats consumed normal quantities of 4% but more 20% sucrose solution than controls and took longer to alter their runway time following the concentration change. These data suggest that lesions of the PPTg do not alter motivation per se and might be better understood as inducing a response selection deficit.
Collapse
Affiliation(s)
- James A Ainge
- School of PsychologyUniversity of St Andrews, St Andrews, United Kingdom.
| | | | | | | |
Collapse
|
15
|
Abstract
The neurophysiologic basis of near death experience (NDE) is unknown. Clinical observations suggest that REM state intrusion contributes to NDE. Support for the hypothesis follows five lines of evidence: REM intrusion during wakefulness is a frequent normal occurrence, REM intrusion underlies other clinical conditions, NDE elements can be explained by REM intrusion, cardiorespiratory afferents evoke REM intrusion, and persons with an NDE may have an arousal system predisposing to REM intrusion. To investigate a predisposition to REM intrusion, the life-time prevalence of REM intrusion was studied in 55 NDE subjects and compared with that in age/gender-matched control subjects. Sleep paralysis as well as sleep-related visual and auditory hallucinations were substantially more common in subjects with an NDE. These findings anticipate that under circumstances of peril, an NDE is more likely in those with previous REM intrusion. REM intrusion could promote subjective aspects of NDE and often associated syncope. Suppression of an activated locus ceruleus could be central to an arousal system predisposed to REM intrusion and NDE.
Collapse
Affiliation(s)
- Kevin R Nelson
- Department of Neurology, University of Kentucky, Lexington, KY, USA.
| | | | | | | |
Collapse
|
16
|
Steiniger-Brach B, Kretschmer BD. Different function of pedunculopontine GABA and glutamate receptors in nucleus accumbens dopamine, pedunculopontine glutamate and operant discriminative behavior. Eur J Neurosci 2005; 22:1720-30. [PMID: 16197512 DOI: 10.1111/j.1460-9568.2005.04361.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The nucleus accumbens, as the main input structure of the ventral basal ganglia loop, is described as a limbic-motor interface. Dopamine input to nucleus accumbens modulates processing of concurrent glutamate input from limbic structures carrying motor and motivational information. There is evidence that these dopamine/glutamate interactions are fundamentally involved in response selection processes. However, the pedunculopontine tegmental nucleus (PPTg) in the brainstem is connected with limbic structures as well as dopaminergic midbrain areas, which also project to the nucleus accumbens. Furthermore, behavioral studies implicate the PPTg in complex, motivated behavior. Thus, the PPTg might be involved in motivated behavior by influencing response selection processes in the nucleus accumbens. In this study we used in vivo microdialysis in freely moving rats in order to inhibit (100, 200, 300 and 400 microm baclofen) or stimulate [5, 12.5, 25 or 50 micromalpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA)] the PPTg in animals that are performing an operant discrimination task for food reward. The behavioral consequences were correlated with dopamine and glutamate levels in nucleus accumbens and PPTg, respectively. PPTg inhibition by local GABAB receptors impaired the response rate and accuracy of performance in the operant discrimination task. PPTg stimulation by local AMPA receptors exclusively impaired the response rate. Both treatments blocked the performance-driven dopamine signal in nucleus accumbens, whereas glutamate in PPTg was enhanced after AMPA administration only. The data indicate that the PPTg functionally participates in a network of subcortical and cortical structures, which is responsible for the execution of motivated behavior and response selection processes.
Collapse
|
17
|
Diederich K, Koch M. Role of the pedunculopontine tegmental nucleus in sensorimotor gating and reward-related behavior in rats. Psychopharmacology (Berl) 2005; 179:402-8. [PMID: 15821954 DOI: 10.1007/s00213-004-2052-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Accepted: 09/24/2004] [Indexed: 12/24/2022]
Abstract
RATIONALE The pedunculopontine tegmental nucleus (PPTg) is involved in the execution and regulation of a variety of behaviors. Most investigations used brain lesions that have certain disadvantages, such as functional compensation over time. OBJECTIVES In the present study, we investigated by temporary, reversible inhibition of neurons the role of the PPTg in sensorimotor gating, measured as prepulse inhibition (PPI) of the acoustic startle response (ASR) using variable interstimulus intervals (ISI). In a second set of experiments we examined by the same technique the role of the PPTg in a progressive-ratio instrumental response task. METHODS Local infusions of the GABA(A)-receptor agonist muscimol (0.05 microg and 0.5 microg/0.3 microl, or vehicle) were applied through indwelling microinfusion cannulae into the PPTg of freely moving rats. ASR and PPI were measured using acoustic stimuli of 100 dB (pulse) and 80 dB (prepulse) using ISIs of 25, 120, 520 and 1,020 ms. Instrumental behavior (lever pressing for casein pellets) was assessed in a Skinner box. Motor activity was measured in an open field. RESULTS Intra-PPTg infusions of muscimol dose-dependently attenuated PPI at ISIs of 120 ms and 520 ms, but not at longer or shorter ISIs. ASR magnitude in pulse-alone trials was not significantly affected. Intra-PPTg infusion of 0.5 microg muscimol reduced the break point of instrumental responding (testing sequence where the rats fail to respond according to an increased ratio of reinforcement). No effects on food-preference and open-field activity were found. CONCLUSIONS These findings suggest that GABAergic neurotransmission in the PPTg plays an important role for sensorimotor gating at intermediate ISIs and for response selection under demanding schedules of reinforcement.
Collapse
Affiliation(s)
- Kai Diederich
- Department of Neuropharmacology, Brain Research Institute, University of Bremen, FB 2, PO Box 33 04 40, 28334 Bremen, Germany.
| | | |
Collapse
|
18
|
Kozak R, Bowman EM, Latimer MP, Rostron CL, Winn P. Excitotoxic lesions of the pedunculopontine tegmental nucleus in rats impair performance on a test of sustained attention. Exp Brain Res 2004; 162:257-64. [PMID: 15558253 DOI: 10.1007/s00221-004-2143-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Accepted: 08/17/2004] [Indexed: 12/21/2022]
Abstract
Recent research has suggested that the pontomesencephalic tegmentum might be an important part of a network underlying sustained attention. The largest structure of the pontomesencephalic tegmentum is the pedunculopontine tegmental nucleus, which has ascending connections to thalamus and with corticostriatal systems. In this experiment we examined the performance of rats following bilateral excitotoxic lesions of the pedunculopontine tegmental nucleus on a test of sustained attention previously used to examine frontal cortical function. After an initial period of darkness, the rats had to attend continuously to a dim stimulus light that would, at unpredictable intervals, become transiently brighter. During this period of increased stimulus brightness the rats could press a lever to obtain a food reward. Rats were trained to a criterion level of performance before lesions were made. After surgery, sham lesioned rats (n=7) resumed accurate responding, with an average successful detection rate of approximately 70%. Pedunculopontine lesioned rats (n=7), however, only achieved a successful detection rate of approximately 40%. When the duration of the bright target stimulus was increased from 1.5 to 4 s, the performance of the pedunculopontine lesioned rats significantly improved. The observation that an increase in brightness duration caused a marked improvement in lesioned rats' performance suggests strongly that the impairment was in attention rather than motor ability or simple sensory processing. These data are taken to be consistent with the hypothesis that the pedunculopontine tegmental nucleus is an important part of a network maintaining attention.
Collapse
Affiliation(s)
- Rouba Kozak
- Department of Psychology, Ohio State University, 27 Townshend Hall, 1885 Neil Avenue, Columbus, OH 43210-1222 , USA
| | | | | | | | | |
Collapse
|
19
|
Alderson HL, Latimer MP, Blaha CD, Phillips AG, Winn P. An examination of d-amphetamine self-administration in pedunculopontine tegmental nucleus-lesioned rats. Neuroscience 2004; 125:349-58. [PMID: 15062978 DOI: 10.1016/j.neuroscience.2004.02.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2004] [Indexed: 11/21/2022]
Abstract
The pedunculopontine tegmental nucleus (PPTg) has long been suggested to have a role in reward-related behaviour, and there is particular interest in its possible role in drug reward systems. Previous work found increased i.v. self-administration (IVSA) of d-amphetamine following PPTg lesions when training had included both operant pre-training and priming injections. The present study examined the effect of excitotoxin lesions of the PPTg on d-amphetamine IVSA under three training conditions. Naive: no previous experience of d-amphetamine or operant responding. Pre-trained: given operant training with food before lesion surgery took place. Primed: given single non-contingent d-amphetamine infusion (0.1 mg/0.l ml) at the start of each session. Rats in all conditions were given either ibotenate or phosphate buffer control lesions of the PPTg before d-amphetamine (0.1 mg/0.1 ml infusion) IVSA training took place. Rats received eight sessions of training under a fixed ratio (FR2) schedule of d-amphetamine IVSA, followed by four sessions under a progressive ratio (PR5) schedule. In the naive condition, PPTg-lesioned rats were attenuated in their responding under FR2, and took significantly fewer infusions under PR5 than the control group. Under FR2 in the pre-trained condition, there was no difference between PPTg excitotoxin and control lesioned rats; however, PPTg-lesioned rats took significantly fewer infusions under the PR5 schedule. In the primed condition, there were no differences between PPTg-lesioned and control rats under either FR2 or PR5 schedules. These data demonstrate that operant training prior to PPTg lesion surgery corrects some, but not all, of the deficits seen in the naive condition. PPTg-lesioned rats in both naive and pre-trained conditions showed reduced responding for d-amphetamine under a PR5 schedule. These deficits are overcome by priming with d-amphetamine. We suggest that alterations in striatal dopamine activity following PPTg lesions underlie these effects.
Collapse
Affiliation(s)
- H L Alderson
- School of Psychology, University of St. Andrews, St Mary's Quad, St. Andrews, Fife, KY16 9JP, UK.
| | | | | | | | | |
Collapse
|