1
|
Sun X, Yin L, Qiao Z, Younus M, Chen G, Wu X, Li J, Kang X, Xu H, Zhou L, Li Y, Gao M, Du X, Hang Y, Lin Z, Sun L, Wang Q, Jiao R, Wang L, Hu M, Wang Y, Huang R, Li Y, Wu Q, Shang S, Guo S, Lei Q, Shu H, Zheng L, Wang S, Zhu F, Zuo P, Liu B, Wang C, Zhang Q, Zhou Z. Action Potential Firing Patterns Regulate Dopamine Release via Voltage-Sensitive Dopamine D2 Autoreceptors in Mouse Striatum In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412229. [PMID: 39731325 PMCID: PMC11831442 DOI: 10.1002/advs.202412229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/09/2024] [Indexed: 12/29/2024]
Abstract
Dopamine (DA) in the striatum is vital for motor and cognitive behaviors. Midbrain dopaminergic neurons generate both tonic and phasic action potential (AP) firing patterns in behavior mice. Besides AP numbers, whether and how different AP firing patterns per se modulate DA release remain largely unknown. Here by using in vivo and ex vivo models, it is shown that the AP frequency per se modulates DA release through the D2 receptor (D2R), which contributes up to 50% of total DA release. D2R has a voltage-sensing site at D131 and can be deactivated in a frequency-dependent manner by membrane depolarization. This voltage-dependent D2R inhibition of DA release is mediated via the facilitation of voltage-gated Ca2+ channels (VGCCs). Collectively, this work establishes a novel mechanism that APs per se modulate DA overflow by disinhibiting the voltage-sensitive autoreceptor D2R and thus the facilitation of VGCCs, providing a pivotal pathway and insight into mammalian DA-dependent functions in vivo.
Collapse
|
2
|
Rodenkirch C, Carmel JB, Wang Q. Rapid Effects of Vagus Nerve Stimulation on Sensory Processing Through Activation of Neuromodulatory Systems. Front Neurosci 2022; 16:922424. [PMID: 35864985 PMCID: PMC9294458 DOI: 10.3389/fnins.2022.922424] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/15/2022] [Indexed: 12/13/2022] Open
Abstract
After sensory information is encoded into neural signals at the periphery, it is processed through multiple brain regions before perception occurs (i.e., sensory processing). Recent work has begun to tease apart how neuromodulatory systems influence sensory processing. Vagus nerve stimulation (VNS) is well-known as an effective and safe method of activating neuromodulatory systems. There is a growing body of studies confirming VNS has immediate effects on sensory processing across multiple sensory modalities. These immediate effects of VNS on sensory processing are distinct from the more well-documented method of inducing lasting neuroplastic changes to the sensory pathways through repeatedly delivering a brief VNS burst paired with a sensory stimulus. Immediate effects occur upon VNS onset, often disappear upon VNS offset, and the modulation is present for all sensory stimuli. Conversely, the neuroplastic effect of pairing sub-second bursts of VNS with a sensory stimulus alters sensory processing only after multiple pairing sessions, this alteration remains after cessation of pairing sessions, and the alteration selectively affects the response properties of neurons encoding the specific paired sensory stimulus. Here, we call attention to the immediate effects VNS has on sensory processing. This review discusses existing studies on this topic, provides an overview of the underlying neuromodulatory systems that likely play a role, and briefly explores the potential translational applications of using VNS to rapidly regulate sensory processing.
Collapse
Affiliation(s)
- Charles Rodenkirch
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
- Jacobs Technion-Cornell Institute, Cornell Tech, New York, NY, United States
- *Correspondence: Charles Rodenkirch,
| | - Jason B. Carmel
- Department of Neurology and Orthopedics, Columbia University Medical Center, New York, NY, United States
| | - Qi Wang
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
- Qi Wang,
| |
Collapse
|
3
|
Di Miceli M, Husson Z, Ruel P, Layé S, Cota D, Fioramonti X, Bosch-Bouju C, Gronier B. In silico Hierarchical Clustering of Neuronal Populations in the Rat Ventral Tegmental Area Based on Extracellular Electrophysiological Properties. Front Neural Circuits 2020; 14:51. [PMID: 32903825 PMCID: PMC7438989 DOI: 10.3389/fncir.2020.00051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/15/2020] [Indexed: 11/13/2022] Open
Abstract
The ventral tegmental area (VTA) is a heterogeneous brain region, containing different neuronal populations. During in vivo recordings, electrophysiological characteristics are classically used to distinguish the different populations. However, the VTA is also considered as a region harboring neurons with heterogeneous properties. In the present study, we aimed to classify VTA neurons using in silico approaches, in an attempt to determine if homogeneous populations could be extracted. Thus, we recorded 291 VTA neurons during in vivo extracellular recordings in anesthetized rats. Initially, 22 neurons with high firing rates (>10 Hz) and short-lasting action potentials (AP) were considered as a separate subpopulation, in light of previous studies. To segregate the remaining 269 neurons, presumably dopaminergic (DA), we performed in silico analyses, using a combination of different electrophysiological parameters. These parameters included: (1) firing rate; (2) firing rate coefficient of variation (CV); (3) percentage of spikes in a burst; (4) AP duration; (5) Δt1 duration (i.e., time from initiation of depolarization until end of repolarization); and (6) presence of a notched AP waveform. Unsupervised hierarchical clustering revealed two neuronal populations that differed in their bursting activities. The largest population presented low bursting activities (<17.5% of total spikes in burst), while the remaining neurons presented higher bursting activities (>17.5%). Within non-high-firing neurons, a large heterogeneity was noted concerning AP characteristics. In conclusion, this analysis based on conventional electrophysiological criteria clustered two subpopulations of putative DA VTA neurons that are distinguishable by their firing patterns (firing rates and bursting activities) but not their AP properties.
Collapse
Affiliation(s)
- Mathieu Di Miceli
- Pharmacology and Neuroscience Research Group, Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom.,Laboratoire NutriNeuro, UMR INRAE 1286, Université de Bordeaux, Bordeaux, France
| | - Zoé Husson
- Laboratoire NutriNeuro, UMR INRAE 1286, Université de Bordeaux, Bordeaux, France.,INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, University of Bordeaux, Bordeaux, France.,IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Philippe Ruel
- Département de Mathématiques, Lycée Joffre, Académie de Montpellier, Montpellier, France
| | - Sophie Layé
- Laboratoire NutriNeuro, UMR INRAE 1286, Université de Bordeaux, Bordeaux, France
| | - Daniela Cota
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, University of Bordeaux, Bordeaux, France
| | - Xavier Fioramonti
- Laboratoire NutriNeuro, UMR INRAE 1286, Université de Bordeaux, Bordeaux, France
| | | | - Benjamin Gronier
- Pharmacology and Neuroscience Research Group, Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| |
Collapse
|
4
|
Silkstone M, Brudzynski SM. Dissimilar interaction between dopaminergic and cholinergic systems in the initiation of emission of 50-kHz and 22-kHz vocalizations. Pharmacol Biochem Behav 2020; 188:172815. [DOI: 10.1016/j.pbb.2019.172815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/09/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
|
5
|
Kiyatkin EA. Brain temperature and its role in physiology and pathophysiology: Lessons from 20 years of thermorecording. Temperature (Austin) 2019; 6:271-333. [PMID: 31934603 PMCID: PMC6949027 DOI: 10.1080/23328940.2019.1691896] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022] Open
Abstract
It is well known that temperature affects the dynamics of all physicochemical processes governing neural activity. It is also known that the brain has high levels of metabolic activity, and all energy used for brain metabolism is finally transformed into heat. However, the issue of brain temperature as a factor reflecting neural activity and affecting various neural functions remains in the shadow and is usually ignored by most physiologists and neuroscientists. Data presented in this review demonstrate that brain temperature is not stable, showing relatively large fluctuations (2-4°C) within the normal physiological and behavioral continuum. I consider the mechanisms underlying these fluctuations and discuss brain thermorecording as an important tool to assess basic changes in neural activity associated with different natural (sexual, drinking, eating) and drug-induced motivated behaviors. I also consider how naturally occurring changes in brain temperature affect neural activity, various homeostatic parameters, and the structural integrity of brain cells as well as the results of neurochemical evaluations conducted in awake animals. While physiological hyperthermia appears to be adaptive, enhancing the efficiency of neural functions, under specific environmental conditions and following exposure to certain psychoactive drugs, brain temperature could exceed its upper limits, resulting in multiple brain abnormalities and life-threatening health complications.
Collapse
Affiliation(s)
- Eugene A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
6
|
Lohani S, Martig AK, Deisseroth K, Witten IB, Moghaddam B. Dopamine Modulation of Prefrontal Cortex Activity Is Manifold and Operates at Multiple Temporal and Spatial Scales. Cell Rep 2019; 27:99-114.e6. [PMID: 30943418 PMCID: PMC11884507 DOI: 10.1016/j.celrep.2019.03.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/07/2019] [Accepted: 03/01/2019] [Indexed: 01/01/2023] Open
Abstract
Although the function of dopamine in subcortical structures is largely limited to reward and movement, dopamine neurotransmission in the prefrontal cortex (PFC) is critical to a multitude of temporally and functionally diverse processes, such as attention, working memory, behavioral flexibility, action planning, and sustained motivational and affective states. How does dopamine influence computation of these temporally complex functions? We find causative links between sustained and burst patterns of phasic dopamine neuron activation and modulation of medial PFC neuronal activity at multiple spatiotemporal scales. These include a multidirectional and weak impact on individual neuron rate activity but a robust influence on coordinated ensemble activity, gamma oscillations, and gamma-theta coupling that persisted for minutes. In addition, PFC network responses to burst pattern of dopamine firing were selectively strengthened in behaviorally active states. This multiplex mode of modulation by dopamine input may enable PFC to compute and generate spatiotemporally diverse and specialized outputs.
Collapse
Affiliation(s)
- Sweyta Lohani
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Neuroscience, Yale University, New Haven, CT 06520, USA
| | - Adria K Martig
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; New York Academy of Sciences, New York, NY 10007, USA
| | - Karl Deisseroth
- Howard Hughes Medical Institute, Stanford, CA 94305, USA; Department of Bioengineering, and Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Ilana B Witten
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ 08544, USA
| | - Bita Moghaddam
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; Behavioral Neuroscience Department, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
7
|
Pleasure: The missing link in the regulation of sleep. Neurosci Biobehav Rev 2018; 88:141-154. [PMID: 29548930 DOI: 10.1016/j.neubiorev.2018.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 01/22/2023]
Abstract
Although largely unrecognized by sleep scholars, sleeping is a pleasure. This report aims first, to fill the gap: sleep, like food, water and sex, is a primary reinforcer. The levels of extracellular mesolimbic dopamine show circadian oscillations and mark the "wanting" for pro-homeostatic stimuli. Further, the dopamine levels decrease during waking and are replenished during sleep, in opposition to sleep propensity. The wanting of sleep, therefore, may explain the homeostatic and circadian regulation of sleep. Accordingly, sleep onset occurs when the displeasure of excessive waking is maximal, coinciding with the minimal levels of mesolimbic dopamine. Reciprocally, sleep ends after having replenished the limbic dopamine levels. Given the direct relation between waking and mesolimbic dopamine, sleep must serve primarily to gain an efficient waking. Pleasant sleep (i.e. emotional sleep), can only exist in animals capable of feeling emotions. Therefore, although sleep-like states have been described in invertebrates and primitive vertebrates, the association sleep-pleasure clearly marks a difference between the sleep of homeothermic vertebrates and cool blooded animals.
Collapse
|
8
|
Kiyatkin EA. Brain temperature: from physiology and pharmacology to neuropathology. HANDBOOK OF CLINICAL NEUROLOGY 2018; 157:483-504. [DOI: 10.1016/b978-0-444-64074-1.00030-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
9
|
Wood J, Simon NW, Koerner FS, Kass RE, Moghaddam B. Networks of VTA Neurons Encode Real-Time Information about Uncertain Numbers of Actions Executed to Earn a Reward. Front Behav Neurosci 2017; 11:140. [PMID: 28848408 PMCID: PMC5550723 DOI: 10.3389/fnbeh.2017.00140] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/14/2017] [Indexed: 12/03/2022] Open
Abstract
Multiple and unpredictable numbers of actions are often required to achieve a goal. In order to organize behavior and allocate effort so that optimal behavioral policies can be selected, it is necessary to continually monitor ongoing actions. Real-time processing of information related to actions and outcomes is typically assigned to the prefrontal cortex and basal ganglia, but also depends on midbrain regions, especially the ventral tegmental area (VTA). We were interested in how individual VTA neurons, as well as networks within the VTA, encode salient events when an unpredictable number of serial actions are required to obtain a reward. We recorded from ensembles of putative dopamine and non-dopamine neurons in the VTA as animals performed multiple cued trials in a recording session where, in each trial, serial actions were randomly rewarded. While averaging population activity did not reveal a response pattern, we observed that different neurons were selectively tuned to low, medium, or high numbered actions in a trial. This preferential tuning of putative dopamine and non-dopamine VTA neurons to different subsets of actions in a trial allowed information about binned action number to be decoded from the ensemble activity. At the network level, tuning curve similarity was positively associated with action-evoked noise correlations, suggesting that action number selectivity reflects functional connectivity within these networks. Analysis of phasic responses to cue and reward revealed that the requirement to execute multiple and uncertain numbers of actions weakens both cue-evoked responses and cue-reward response correlation. The functional connectivity and ensemble coding scheme that we observe here may allow VTA neurons to cooperatively provide a real-time account of ongoing behavior. These computations may be critical to cognitive and motivational functions that have long been associated with VTA dopamine neurons.
Collapse
Affiliation(s)
- Jesse Wood
- Department of Psychiatry, University of PittsburghPittsburgh, PA, United States
| | - Nicholas W Simon
- Department of Psychology, University of MemphisMemphis, TN, United States
| | - F Spencer Koerner
- Department of Statistics, Carnegie Mellon UniversityPittsburgh, PA, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University and the University of PittsburghPittsburgh, PA, United States
| | - Robert E Kass
- Department of Statistics, Carnegie Mellon UniversityPittsburgh, PA, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University and the University of PittsburghPittsburgh, PA, United States.,Machine Learning Department, Carnegie Mellon UniversityPittsburgh, PA, United States
| | - Bita Moghaddam
- Department of Behavioral Neuroscience, Oregon Health and Sciences UniversityPortland, OR, United States
| |
Collapse
|
10
|
Paladini C, Tepper J. Neurophysiology of Substantia Nigra Dopamine Neurons: Modulation by GABA and Glutamate. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2016. [DOI: 10.1016/b978-0-12-802206-1.00017-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
11
|
Hondebrink L, Hermans EJ, Schmeink S, van Kleef RG, Meulenbelt J, Westerink RH. Structure-dependent inhibition of the human α 1 β 2 γ 2 GABA A receptor by piperazine derivatives: A novel mode of action. Neurotoxicology 2015; 51:1-9. [DOI: 10.1016/j.neuro.2015.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 09/02/2015] [Accepted: 09/02/2015] [Indexed: 10/23/2022]
|
12
|
A subpopulation of neurochemically-identified ventral tegmental area dopamine neurons is excited by intravenous cocaine. J Neurosci 2015; 35:1965-78. [PMID: 25653355 DOI: 10.1523/jneurosci.3422-13.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Systemic administration of cocaine is thought to decrease the firing rates of ventral tegmental area (VTA) dopamine (DA) neurons. However, this view is based on categorizations of recorded neurons as DA neurons using preselected electrophysiological characteristics lacking neurochemical confirmation. Without applying cellular preselection, we recorded the impulse activity of VTA neurons in response to cocaine administration in anesthetized adult rats. The phenotype of recorded neurons was determined by their juxtacellular labeling and immunohistochemical detection of tyrosine hydroxylase (TH), a DA marker. We found that intravenous cocaine altered firing rates in the majority of recorded VTA neurons. Within the cocaine-responsive neurons, half of the population was excited and the other half was inhibited. Both populations had similar discharge rates and firing regularities, and most neurons did not exhibit changes in burst firing. Inhibited neurons were more abundant in the posterior VTA, whereas excited neurons were distributed evenly throughout the VTA. Cocaine-excited neurons were more likely to be excited by footshock. Within the subpopulation of TH-positive neurons, 36% were excited by cocaine and 64% were inhibited. Within the subpopulation of TH-negative neurons, 44% were excited and 28% were inhibited. Contrary to the prevailing view that all DA neurons are inhibited by cocaine, we found a subset of confirmed VTA DA neurons that is excited by systemic administration of cocaine. We provide evidence indicating that DA neurons are heterogeneous in their response to cocaine and that VTA non-DA neurons play an active role in processing systemic cocaine.
Collapse
|
13
|
Brunelin J, Fecteau S, Suaud-Chagny MF. Abnormal striatal dopamine transmission in schizophrenia. Curr Med Chem 2014; 20:397-404. [PMID: 23157632 PMCID: PMC3866953 DOI: 10.2174/0929867311320030011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 09/05/2012] [Accepted: 09/26/2012] [Indexed: 11/23/2022]
Abstract
Despite numerous revisions and reformulations, dopamine (DA) hypothesis of schizophrenia remains a pivotal neurochemical hypothesis of this illness. The aim of this review is to expose and discuss findings from positron emission tomography (PET) or single-photon-emission computed tomography (SPECT) studies investigating DA function in the striatum of medicated, drug-naïve or drug-free patients with schizophrenia and in individuals at risk compared with healthy volunteers.
DA function was studied at several levels: i) at a presynaptic level where neuroimaging studies investigating DOPA uptake capacity clearly show an increase of DA synthesis in patients with schizophrenia; ii) at a synaptic level where neuroimaging studies investigating dopamine transporter availability (DAT) does not bring any evidence of dysfunction; iii) and finally, neuroimaging studies investigating DA receptor density show a mild increase of D2 receptor density in basic condition and, an hyperreactivity of DA system in dynamic condition.
These results are discussed regarding laterality, sub-regions of striatum and implications for the at-risk population. Striatal DA abnormalities are now clearly demonstrated in patients with schizophrenia and at risk population and could constitute an endophenotype of schizophrenia. Subtle sub-clinical striatal DA abnormalities in at risk population could be a biomarker of transition from a vulnerability state to the expression of frank psychosis.
Collapse
Affiliation(s)
- Jerome Brunelin
- Université de Lyon, Université Lyon 1, F-69003, Lyon, France.
| | | | | |
Collapse
|
14
|
Lenoir M, Kiyatkin EA. Intravenous nicotine injection induces rapid, experience-dependent sensitization of glutamate release in the ventral tegmental area and nucleus accumbens. J Neurochem 2013; 127:541-51. [PMID: 24032718 DOI: 10.1111/jnc.12450] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/20/2013] [Accepted: 09/10/2013] [Indexed: 11/28/2022]
Abstract
Although numerous data suggest that glutamate (GLU) is involved in mediating the neural effects of nicotine, direct data on nicotine-induced changes in GLU release are still lacking. Here, we used high-speed amperometry with enzyme-based GLU and enzyme-free GLU-null biosensors to examine changes in extracellular GLU levels in the ventral tegmental area (VTA) and nucleus accumbens shell (NAcc) induced by intravenous nicotine in a low, behaviorally active dose (30 μg/kg) in freely moving rats. Using this approach, we found that the initial nicotine injection in drug-naive conditions induces rapid, transient, and relatively small GLU release (~ 90 nM; latency ~ 15 s, duration ~ 60 s) that is correlative in the VTA and NAcc. Following subsequent nicotine injections within the same session, this phasic GLU release was supplemented by stronger tonic increases in GLU levels (100-300 nM) that paralleled increases in drug-induced locomotor activation. GLU responses induced by repeated nicotine injections were more phasic and stronger in the NAcc than in VTA. Therefore, GLU is phasically released within the brain's reinforcement circuit following intravenous nicotine administration. Robust enhancement of nicotine-induced GLU responses following repeated injections suggests this change as an important mediator of sensitized behavioral and neural effects of nicotine. By using high-speed amperometry with glutamate (GLU) biosensors, we show that i.v. nicotine at a low, behaviorally relevant dose induces rapid GLU release in the NAcc and VTA that is enhanced following repeated drug injections. This is the first study reporting second-scale fluctuations in extracellular GLU levels induced by nicotine in two critical structures of the motivation-reinforcement circuit and rapid sensitization of GLU responses coupled with locomotor sensitization.
Collapse
Affiliation(s)
- Magalie Lenoir
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS, Baltimore, Maryland, USA
| | | |
Collapse
|
15
|
Jennings KA. A comparison of the subsecond dynamics of neurotransmission of dopamine and serotonin. ACS Chem Neurosci 2013; 4:704-14. [PMID: 23627553 DOI: 10.1021/cn4000605] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The neuromodulators dopamine (DA) and serotonin (5-hydroxytryptamine; 5-HT) are similar in a number of ways. Both monoamines can act by volume transmission at metabotropic receptors to modulate synaptic transmission in brain circuits. Presynaptic regulation of 5-HT and DA is governed by parallel processes, and behaviorally, both exert control over emotional processing. However, differences are also apparent: more than twice as many 5-HT receptor subtypes mediate postsynaptic effects than DA receptors and different presynaptic regulation is also emerging. Monoamines are amenable to real-time electrochemical detection using fast scan cyclic voltammetry (FSCV), which allows resolution of the subsecond dynamics of release and reuptake in response to a single action potential. This approach has greatly enriched understanding of DA transmission and has facilitated an integrated view of how DA mediates behavioral control. However, technical challenges are associated with FSCV measurement of 5-HT and understanding of 5-HT transmission at subsecond resolution has not advanced at the same rate. As a result, how the actions of 5-HT at the level of the synapse translate into behavior is poorly understood. Recent technical advances may aid the study of 5-HT in real-time. It is timely, therefore, to compare and contrast what is currently understood of the subsecond characteristics of transmission for DA and 5-HT. In doing so, a number of areas are highlighted as being worthy of exploration for 5-HT.
Collapse
Affiliation(s)
- Katie A. Jennings
- Department of Physiology, Anatomy and Genetics, Oxford University, South Parks Road, Oxford, U.K. OX1
3PT
| |
Collapse
|
16
|
Hondebrink L, Tan S, Hermans E, van Kleef RG, Meulenbelt J, Westerink RH. Additive inhibition of human α1β2γ2 GABAA receptors by mixtures of commonly used drugs of abuse. Neurotoxicology 2013; 35:23-9. [DOI: 10.1016/j.neuro.2012.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 11/23/2012] [Accepted: 12/11/2012] [Indexed: 10/27/2022]
|
17
|
Abstract
The activity of ventral tegmental area (VTA) dopamine (DA) neurons promotes behavioral responses to rewards and environmental stimuli that predict them. VTA GABA inputs synapse directly onto DA neurons and may regulate DA neuronal activity to alter reward-related behaviors; however, the functional consequences of selective activation of VTA GABA neurons remains unknown. Here, we show that in vivo optogenetic activation of VTA GABA neurons disrupts reward consummatory behavior but not conditioned anticipatory behavior in response to reward-predictive cues. In addition, direct activation of VTA GABA projections to the nucleus accumbens (NAc) resulted in detectable GABA release but did not alter reward consumption. Furthermore, optogenetic stimulation of VTA GABA neurons directly suppressed the activity and excitability of neighboring DA neurons as well as the release of DA in the NAc, suggesting that the dynamic interplay between VTA DA and GABA neurons can control the initiation and termination of reward-related behaviors.
Collapse
|
18
|
Modulation of human GABAA receptor function: A novel mode of action of drugs of abuse. Neurotoxicology 2011; 32:823-7. [DOI: 10.1016/j.neuro.2011.05.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 05/11/2011] [Accepted: 05/17/2011] [Indexed: 11/18/2022]
|
19
|
α4β2 nicotinic acetylcholine receptors on dopaminergic neurons mediate nicotine reward and anxiety relief. J Neurosci 2011; 31:10891-902. [PMID: 21795541 DOI: 10.1523/jneurosci.0937-11.2011] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nicotine is the primary psychoactive substance in tobacco, and it exerts its effects by interaction with various subtypes of nicotinic acetylcholine receptors (nAChRs) in the brain. One of the major subtypes expressed in brain, the α4β2-nAChR, endogenously modulates neuronal excitability and thereby, modifies certain normal as well as nicotine-induced behaviors. Although α4-containing nAChRs are widely expressed across the brain, a major focus has been on their roles within midbrain dopaminergic regions involved in drug addiction, mental illness, and movement control in humans. We developed a unique model system to examine the role of α4-nAChRs within dopaminergic neurons by a targeted genetic deletion of the α4 subunit from dopaminergic neurons in mice. The loss α4 mRNA and α4β2-nAChRs from dopaminergic neurons was confirmed, as well as selective loss of α4β2-nAChR function from dopaminergic but not GABAergic neurons. Two behaviors central to nicotine dependence, reward and anxiety relief, were examined. α4-nAChRs specifically on dopaminergic neurons were demonstrated to be necessary for nicotine reward as measured by nicotine place preference, but not for another drug of addiction, cocaine. α4-nAChRs are necessary for the anxiolytic effects of nicotine in the elevated plus maze, and elimination of α4β2-nAChRs specifically from dopaminergic neurons decreased sensitivity to the anxiolytic effects of nicotine. Deletion of α4-nAChRs specifically from dopaminergic neurons also increased sensitivity to nicotine-induced locomotor depression; however, nicotine-induced hypothermia was unaffected. This is the first work to develop a dopaminergic specific deletion of a nAChR subunit and examine resulting changes in nicotine-related behaviors.
Collapse
|
20
|
Tateno T, Robinson HPC. The mechanism of ethanol action on midbrain dopaminergic neuron firing: a dynamic-clamp study of the role of I(h) and GABAergic synaptic integration. J Neurophysiol 2011; 106:1901-22. [PMID: 21697445 DOI: 10.1152/jn.00162.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels are expressed in dopaminergic (DA) neurons of the ventral tegmental area (VTA) as well as in DA and GABAergic neurons of the substantia nigra (SN). The excitation of DA neurons induced by ethanol has been proposed to result from its enhancing HCN channel current, I(h). Using perforated patch-clamp recordings in rat midbrain slices, we isolated I(h) in these neurons by voltage clamp. We showed that ethanol reversibly increased the amplitude and accelerated the activation kinetics of I(h) and caused a depolarizing shift in its voltage dependence. Using dynamic-clamp conductance injection, we injected artificial I(h) and fluctuating GABAergic synaptic conductance inputs into neurons following block of intrinsic I(h). This demonstrated directly a major role of I(h) in promoting rebound spiking following phasic inhibition, which was enhanced as the kinetics and amplitude of I(h) were changed in the manner induced by ethanol. Similar effects of ethanol were observed on I(h) and firing rate in non-DA, putatively GABAergic interneurons, indicating that in addition to its direct effects on firing, ethanol will produce large changes in the inhibition and disinhibition (via GABAergic interneurons) converging on DA neurons. Thus the overall effects of ethanol on firing of DA cells of the VTA and SN in vivo, and hence on phasic dopamine release in the striatum, appear to be determined substantially by its action on I(h) in both DA cells and GABAergic interneurons.
Collapse
Affiliation(s)
- Takashi Tateno
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | | |
Collapse
|
21
|
du Hoffmann J, Kim JJ, Nicola SM. An inexpensive drivable cannulated microelectrode array for simultaneous unit recording and drug infusion in the same brain nucleus of behaving rats. J Neurophysiol 2011; 106:1054-64. [PMID: 21613588 DOI: 10.1152/jn.00349.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurons are functionally segregated into discrete populations that perform specific computations. These computations, mediated by neuron-neuron electrochemical signaling, form the neural basis of behavior. Thus fundamental to a brain-based understanding of behavior is the precise determination of the contribution made by specific neurotransmitters to behaviorally relevant neural activity. To facilitate this understanding, we have developed a cannulated microelectrode array for use in behaving rats that enables simultaneous neural ensemble recordings and local infusion of drugs in the same brain nucleus. The system is inexpensive, easy to use, and produces robust and quantitatively reproducible drug effects on recorded neurons.
Collapse
Affiliation(s)
- Johann du Hoffmann
- Department of Psychiatry and Behavioral Science, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
22
|
Juszczak GR. Desensitization of GABAergic receptors as a mechanism of zolpidem-induced somnambulism. Med Hypotheses 2011; 77:230-3. [PMID: 21565448 DOI: 10.1016/j.mehy.2011.04.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 04/06/2011] [Indexed: 11/25/2022]
Abstract
Sleepwalking is a frequently reported side effect of zolpidem which is a short-acting hypnotic drug potentiating activity of GABA(A) receptors. Paradoxically, the most commonly used medications for somnambulism are benzodiazepines, especially clonazepam, which also potentiate activity of GABA(A) receptors. It is proposed that zolpidem-induced sleepwalking can be explained by the desensitization of GABAergic receptors located on serotonergic neurons. According to the proposed model, the delay between desensitization of GABA receptors and a compensatory decrease in serotonin release constitutes the time window for parasomnias. The occurrence of sleepwalking depends on individual differences in receptor desensitization, autoregulation of serotonin release and drug pharmacokinetics. The proposed mechanism of interaction between GABAergic and serotonergic systems can be also relevant for zolpidem abuse and zolpidem-induced hallucinations. It is therefore suggested that special care should be taken when zolpidem is used in patients taking at the same time selective serotonin reuptake inhibitors.
Collapse
Affiliation(s)
- Grzegorz R Juszczak
- Department of Animal Behavior, Institute of Genetics and Animal Breeding, Jastrzebiec, Poland.
| |
Collapse
|
23
|
Convergent processing of both positive and negative motivational signals by the VTA dopamine neuronal populations. PLoS One 2011; 6:e17047. [PMID: 21347237 PMCID: PMC3039659 DOI: 10.1371/journal.pone.0017047] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 01/19/2011] [Indexed: 01/02/2023] Open
Abstract
Dopamine neurons in the ventral tegmental area (VTA) have been traditionally studied for their roles in reward-related motivation or drug addiction. Here we study how the VTA dopamine neuron population may process fearful and negative experiences as well as reward information in freely behaving mice. Using multi-tetrode recording, we find that up to 89% of the putative dopamine neurons in the VTA exhibit significant activation in response to the conditioned tone that predict food reward, while the same dopamine neuron population also respond to the fearful experiences such as free fall and shake events. The majority of these VTA putative dopamine neurons exhibit suppression and offset-rebound excitation, whereas ∼25% of the recorded putative dopamine neurons show excitation by the fearful events. Importantly, VTA putative dopamine neurons exhibit parametric encoding properties: their firing change durations are proportional to the fearful event durations. In addition, we demonstrate that the contextual information is crucial for these neurons to respectively elicit positive or negative motivational responses by the same conditioned tone. Taken together, our findings suggest that VTA dopamine neurons may employ the convergent encoding strategy for processing both positive and negative experiences, intimately integrating with cues and environmental context.
Collapse
|
24
|
Radulescu AR. Mechanisms explaining transitions between tonic and phasic firing in neuronal populations as predicted by a low dimensional firing rate model. PLoS One 2010; 5:e12695. [PMID: 20877649 PMCID: PMC2943909 DOI: 10.1371/journal.pone.0012695] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 08/13/2010] [Indexed: 11/18/2022] Open
Abstract
Several firing patterns experimentally observed in neural populations have been successfully correlated to animal behavior. Population bursting, hereby regarded as a period of high firing rate followed by a period of quiescence, is typically observed in groups of neurons during behavior. Biophysical membrane-potential models of single cell bursting involve at least three equations. Extending such models to study the collective behavior of neural populations involves thousands of equations and can be very expensive computationally. For this reason, low dimensional population models that capture biophysical aspects of networks are needed. The present paper uses a firing-rate model to study mechanisms that trigger and stop transitions between tonic and phasic population firing. These mechanisms are captured through a two-dimensional system, which can potentially be extended to include interactions between different areas of the nervous system with a small number of equations. The typical behavior of midbrain dopaminergic neurons in the rodent is used as an example to illustrate and interpret our results. The model presented here can be used as a building block to study interactions between networks of neurons. This theoretical approach may help contextualize and understand the factors involved in regulating burst firing in populations and how it may modulate distinct aspects of behavior.
Collapse
Affiliation(s)
- Anca R Radulescu
- Department of Psychology, University of Colorado, Boulder, Colorado, USA.
| |
Collapse
|
25
|
Chu HY, Zhen X. Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels in the regulation of midbrain dopamine systems. Acta Pharmacol Sin 2010; 31:1036-43. [PMID: 20676119 DOI: 10.1038/aps.2010.105] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated channels (HCN channels) are expressed widely in the brain and invovled in various neuronal activities, including the control of neuronal rhythmic activity, setting the resting membrane potential, as well as dendritic integration. HCN channels also participate in the regulation of spontaneous activity of midbrain dopamine (DA) neurons to some extent. In slice preparations of midbrain, a hyperpolarization-activated non-selective cation current (Ih) mediated by the channels has been proposed as an electrophysiological marker to identify DA neurons. Recent evidence, however, shows that the functional roles of HCN channels in midbrain DA neurons are obviously underestimated. Here, we review the recent advances in the studies of the functional roles of Ih in midbrain DA neurons and further, their involvement in drug addiction and Parkinson's disease.
Collapse
|
26
|
Lobb CJ, Wilson CJ, Paladini CA. A dynamic role for GABA receptors on the firing pattern of midbrain dopaminergic neurons. J Neurophysiol 2010; 104:403-13. [PMID: 20445035 DOI: 10.1152/jn.00204.2010] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dopaminergic neurons are subject to a significant background GABAergic input in vivo. The presence of this GABAergic background might be expected to inhibit dopaminergic neuron firing. However, dopaminergic neurons are not all silent but instead fire in single-spiking and burst firing modes. Here we present evidence that phasic changes in the tonic activity of GABAergic afferents are a potential extrinsic mechanism that triggers bursts and pauses in dopaminergic neurons. We find that spontaneous single-spiking is more sensitive to activation of GABA receptors than phasic N-methyl-D-aspartate (NMDA)-mediated burst firing in rat slices (P15-P31). Because tonic activation of GABA(A) receptors has previously been shown to suppress burst firing in vivo, our results suggest that the activity patterns seen in vivo are the result of a balance between excitatory and inhibitory conductances that interact with the intrinsic pacemaking currents observed in slices. Using the dynamic clamp technique, we applied balanced, constant NMDA and GABA(A) receptor conductances into dopaminergic neurons in slices. Bursts could be produced by disinhibition (phasic removal of the GABA(A) receptor conductance), and these bursts had a higher frequency than bursts produced by the same NMDA receptor conductance alone. Phasic increases in the GABA(A) receptor conductance evoked pauses in firing. In contrast to NMDA receptor, application of constant AMPA and GABA(A) receptor conductances caused the cell to go into depolarization block. These results support a bidirectional mechanism by which GABAergic inputs, in balance with NMDA receptor-mediated excitatory inputs, control the firing pattern of dopaminergic neurons.
Collapse
Affiliation(s)
- Collin J Lobb
- Neurosciences Institute, University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | | | | |
Collapse
|
27
|
Phillip Wang L, Li F, Shen X, Tsien JZ. Conditional knockout of NMDA receptors in dopamine neurons prevents nicotine-conditioned place preference. PLoS One 2010; 5:e8616. [PMID: 20062537 PMCID: PMC2797636 DOI: 10.1371/journal.pone.0008616] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 12/15/2009] [Indexed: 11/18/2022] Open
Abstract
Nicotine from smoking tobacco produces one of the most common forms of addictive behavior and has major societal and health consequences. It is known that nicotine triggers tobacco addiction by activating nicotine acetylcholine receptors (nAChRs) in the midbrain dopaminergic reward system, primarily via the ventral tegmental area. Heterogeneity of cell populations in the region has made it difficult for pharmacology-based analyses to precisely assess the functional significance of glutamatergic inputs to dopamine neurons in nicotine addiction. By generating dopamine neuron-specific NR1 knockout mice using cre/loxP-mediated method, we demonstrate that genetic inactivation of the NMDA receptors in ventral tegmental area dopamine neurons selectively prevents nicotine-conditioned place preference. Interestingly, the mutant mice exhibit normal performances in the conditioned place aversion induced by aversive air puffs. Therefore, this selective effect on addictive drug-induced reinforcement behavior suggests that NMDA receptors in the dopamine neurons are critical for the development of nicotine addiction.
Collapse
Affiliation(s)
- Lei Phillip Wang
- Brain and Behavior Discovery Institute and Department of Neurology, School of Medicine, Medical College of Georgia, Augusta, Georgia, United States of America
- Yunnan Xishuang Banna Primate Model Research Center, Xishuang Banna, Yunnan, China
| | - Fei Li
- Brain and Behavior Discovery Institute and Department of Neurology, School of Medicine, Medical College of Georgia, Augusta, Georgia, United States of America
- Shanghai Children's Medical Center, Shanghai Jiaotong University Medical School, Shanghai, China
| | - Xiaoming Shen
- Shanghai Children's Medical Center, Shanghai Jiaotong University Medical School, Shanghai, China
| | - Joe Z. Tsien
- Brain and Behavior Discovery Institute and Department of Neurology, School of Medicine, Medical College of Georgia, Augusta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
28
|
Zellner MR, Ranaldi R. How conditioned stimuli acquire the ability to activate VTA dopamine cells: a proposed neurobiological component of reward-related learning. Neurosci Biobehav Rev 2009; 34:769-80. [PMID: 19914285 DOI: 10.1016/j.neubiorev.2009.11.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 11/09/2009] [Accepted: 11/10/2009] [Indexed: 02/04/2023]
Abstract
The ability to learn about conditioned stimuli (CS) associated with rewards is a crucial adaptive mechanism. Activity in the mesocorticolimbic dopamine (DA) system, as well as in the ventral tegmental area (VTA), is correlated with responding to and learning about CSs. The mechanism by which VTA neurons become activated by signals associated with conditioned stimuli is not fully understood. Our model suggests that NMDA receptor stimulation in the VTA allows originally weak glutamate signals carrying information about environmental stimuli, coincident with strong excitation correlated with primary rewards, to be strengthened and thereby acquire the ability to activate VTA neurons in themselves, producing approach. Furthermore, once synaptic strengthening occurs, the model suggests that NMDA receptor stimulation in VTA is not necessary for the expression of reward-related learning. In this review we survey evidence that VTA cells respond to cues associated with primary rewards, that this responding is acquired, and that the VTA possesses the attributes to function as a site of integration of signals of primary and conditioned stimuli.
Collapse
Affiliation(s)
- Margaret R Zellner
- Laboratory of Neurobiology & Behavior, The Rockefeller University, New York, NY, United States
| | | |
Collapse
|
29
|
Robinson DL, Howard EC, McConnell S, Gonzales RA, Wightman RM. Disparity between tonic and phasic ethanol-induced dopamine increases in the nucleus accumbens of rats. Alcohol Clin Exp Res 2009; 33:1187-96. [PMID: 19389195 PMCID: PMC2947861 DOI: 10.1111/j.1530-0277.2009.00942.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Dopamine concentrations in the nucleus accumbens fluctuate on phasic (subsecond) and tonic (over minutes) timescales in awake rats. Acute ethanol increases tonic concentrations of dopamine, but its effect on subsecond dopamine transients has not been fully explored. METHODS We measured tonic and phasic dopamine fluctuations in the nucleus accumbens of rats in response to ethanol (within-subject cumulative dosing, 0.125 to 2 g/kg, i.v.). RESULTS Microdialysis samples yielded significant tonic increases in dopamine concentrations at 1 to 2 g/kg ethanol in each rat, while repeated saline infusions had no effect. When monitored with fast scan cyclic voltammetry, ethanol increased the frequency of dopamine transients in 6 of 16 recording sites, in contrast to the uniform effect of ethanol as measured with microdialysis. In the remaining 10 recording sites that were unresponsive to ethanol, dopamine transients either decreased in frequency or were unaffected by cumulative ethanol infusions, patterns also observed during repeated saline infusions. The responsiveness of particular recording sites to ethanol was not correlated with either core versus shell placement of the electrodes or the basal rate of dopamine transients. Importantly, the phasic response pattern to a single dose of ethanol at a particular site was qualitatively reproduced when a second dose of ethanol was administered, suggesting that the variable between-site effects reflected specific pharmacology at that recording site. CONCLUSIONS These data demonstrate that the relatively uniform dopamine concentrations obtained with microdialysis can mask a dramatic heterogeneity of phasic dopamine release within the accumbens.
Collapse
Affiliation(s)
- Donita L Robinson
- Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina (DLR, SM), Chapel Hill, North Carolina, USA.
| | | | | | | | | |
Collapse
|
30
|
Ferrie LJ, Gartside SE, Martin KM, Young AH, McQuade R. Effect of chronic lithium treatment on D2/3 autoreceptor regulation of dopaminergic function in the rat. Pharmacol Biochem Behav 2008; 90:218-25. [DOI: 10.1016/j.pbb.2007.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 10/04/2007] [Accepted: 10/22/2007] [Indexed: 11/26/2022]
|
31
|
Sensory effects of intravenous cocaine on dopamine and non-dopamine ventral tegmental area neurons. Brain Res 2008; 1218:230-49. [PMID: 18514638 DOI: 10.1016/j.brainres.2008.04.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 04/08/2008] [Accepted: 04/10/2008] [Indexed: 11/20/2022]
Abstract
Intravenous (iv) cocaine mimics salient somato-sensory stimuli in their ability to induce rapid physiological effects, which appear to involve its action on peripherally located neural elements and fast neural transmission via somato-sensory pathways. To further clarify this mechanism, single-unit recording with fine glass electrodes was used in awake rats to examine responses of ventral tegmental area (VTA) neurons, both presumed dopamine (DA) and non-DA, to iv cocaine and tail-press, a typical somato-sensory stimulus. To exclude the contribution of DA mechanisms to the observed neuronal responses to sensory stimuli and cocaine, recordings were conducted during full DA receptor blockade (SCH23390+eticloptide). Iv cocaine (0.25 mg/kg delivered over 10 s) induced significant excitations of approximately 63% of long-spike (presumed DA) and approximately 70% of short-spike (presumed non-DA) VTA neurons. In both subgroups, neuronal excitations occurred with short latencies (4-8 s), peaked at 10-20 s (30-40% increase over baseline) and disappeared at 30-40 s after the injection onset. Most long-(67%) and short-spike (89%) VTA neurons also showed phasic responses to tail-press (5-s). All responsive long-spike cells were excited by tail-press; excitations were very rapid (peak at 1 s) and strong (100% rate increase over baseline) but brief (2-3 s). In contrast, both excitations (60%) and inhibitions (29%) were seen in short-spike cells. These responses were also rapid and transient, but excitations of short-spike units were more prolonged and sustained (10-15 s) than in long-spike cells. These data suggest that in awake animals iv cocaine, like somato-sensory stimuli, rapidly and transiently excites VTA neurons of different subtypes. Therefore, along with direct action on specific brain substrates, central effects of cocaine may occur, via an indirect mechanism, involving peripheral neural elements, visceral sensory nerves and rapid neural transmission. Via this mechanism, cocaine, like somato-sensory stimuli, can rapidly activate DA neurons and induce phasic DA release, creating the conditions for DA accumulation by a later occurring and prolonged direct inhibiting action on DA uptake. By providing a rapid neural signal and triggering transient neural activation, such a peripherally driven action might play a crucial role in the sensory effects of cocaine, thus contributing to learning and development of drug-taking behavior.
Collapse
|
32
|
Luo AH, Georges FE, Aston-Jones GS. Novel neurons in ventral tegmental area fire selectively during the active phase of the diurnal cycle. Eur J Neurosci 2008; 27:408-22. [PMID: 18215237 DOI: 10.1111/j.1460-9568.2007.05985.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ventral tegmental area (VTA) contains dopamine (DA) and gamma-aminobutyric acid (GABA) neurons involved in motivation and behavioral state. These phenomena are also influenced by circadian factors. The goal of our studies was to examine the impulse activity of neurochemically identified VTA neurons during dark (active) vs light (rest) phases of the circadian cycle. Using extracellular single-unit recordings with juxtacellular labeling in anesthetized rats, we found multiple neuronal subpopulations including 'novel neurons' that selectively fired during the dark phase. These novel neurons were electrophysiologically categorized into two groups, 'novel wide-spike' and 'novel thin-spike' neurons. Characterization of novel wide-spike neurons found they were consistently non-dopaminergic and non-GABAergic [tyrosine hydroxylase (TH)(-), glutamic acid decarboxylase (GAD)(-)]. However, they were inhibited by the D2 agonist quinpirole, an effect that could be reversed by the D2 antagonist eticlopride. Physiologically, they were fast firing (mean = 18.9 +/- 1.2 spikes/s), low bursting neurons (median = 6.2 +/- 3.0% of spikes in bursts) with spike durations > or = 2.0 ms, but slightly shorter than TH(+) neurons. They were also consistently non-responsive to footpad stimulation. The novel thin-spike neurons were neurochemically heterogeneous, and were located more ventrally than thin-spike neurons found during the light phase. These findings reveal previously unknown populations of VTA neurons whose activities are sensitive to diurnal phase, and whose functions may be in the temporal regulation of arousal and motivational processes.
Collapse
Affiliation(s)
- Alice H Luo
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
33
|
Roesch MR, Calu DJ, Schoenbaum G. Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards. Nat Neurosci 2007; 10:1615-24. [PMID: 18026098 DOI: 10.1038/nn2013] [Citation(s) in RCA: 403] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 10/22/2007] [Indexed: 11/09/2022]
Abstract
The dopamine system is thought to be involved in making decisions about reward. Here we recorded from the ventral tegmental area in rats learning to choose between differently delayed and sized rewards. As expected, the activity of many putative dopamine neurons reflected reward prediction errors, changing when the value of the reward increased or decreased unexpectedly. During learning, neural responses to reward in these neurons waned and responses to cues that predicted reward emerged. Notably, this cue-evoked activity varied with size and delay. Moreover, when rats were given a choice between two differently valued outcomes, the activity of the neurons initially reflected the more valuable option, even when it was not subsequently selected.
Collapse
Affiliation(s)
- Matthew R Roesch
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn Street, HSF-2 S251, Baltimore, Maryland 21201, USA.
| | | | | |
Collapse
|
34
|
Canavier CC, Oprisan SA, Callaway JC, Ji H, Shepard PD. Computational model predicts a role for ERG current in repolarizing plateau potentials in dopamine neurons: implications for modulation of neuronal activity. J Neurophysiol 2007; 98:3006-22. [PMID: 17699694 DOI: 10.1152/jn.00422.2007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Blocking the small-conductance (SK) calcium-activated potassium channel promotes burst firing in dopamine neurons both in vivo and in vitro. In vitro, the bursting is unusual in that spiking persists during the hyperpolarized trough and frequently terminates by depolarization block during the plateau. We focus on the underlying plateau potential oscillation generated in the presence of both apamin and TTX, so that action potentials are not considered. We find that although the plateau potentials are mediated by a voltage-gated Ca(2+) current, they do not depend on the accumulation of cytosolic Ca(2+), then use a computational model to test the hypothesis that the slowly voltage-activated ether-a-go-go-related gene (ERG) potassium current repolarizes the plateaus. The model, which includes a material balance on calcium, is able to reproduce the time course of both membrane potential and somatic calcium concentration, and can also mimic the induction of plateau potentials by the calcium chelator BAPTA. The principle of separation of timescales was used to gain insight into the mechanisms of oscillation and its modulation using nullclines in the phase space. The model predicts that the plateau will be elongated and ultimately result in a persistent depolarization as the ERG current is reduced. This study suggests that the ERG current may play a role in burst termination and the relief of depolarization block in vivo.
Collapse
Affiliation(s)
- Carmen C Canavier
- Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans 70112, USA.
| | | | | | | | | |
Collapse
|
35
|
Ji H, Shepard PD. Lateral habenula stimulation inhibits rat midbrain dopamine neurons through a GABA(A) receptor-mediated mechanism. J Neurosci 2007; 27:6923-30. [PMID: 17596440 PMCID: PMC6672239 DOI: 10.1523/jneurosci.0958-07.2007] [Citation(s) in RCA: 308] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transient changes in the activity of midbrain dopamine neurons encode an error signal that contributes to associative learning. Although considerable attention has been devoted to the mechanisms contributing to phasic increases in dopamine activity, less is known about the origin of the transient cessation in firing accompanying the unexpected loss of a predicted reward. Recent studies suggesting that the lateral habenula (LHb) may contribute to this type of signaling in humans prompted us to evaluate the effects of LHb stimulation on the activity of dopamine and non-dopamine neurons of the anesthetized rat. Single-pulse stimulation of the LHb (0.5 mA, 100 micros) transiently suppressed the activity of 97% of the dopamine neurons recorded in the substantia nigra and ventral tegmental area. The duration of the cessation averaged approximately 85 ms and did not differ between the two regions. Identical stimuli transiently excited 52% of the non-dopamine neurons in the ventral midbrain. Electrolytic lesions of the fasciculus retroflexus blocked the effects of LHb stimulation on dopamine neurons. Local application of bicuculline but not the SK-channel blocker apamin attenuated the effects of LHb stimulation on dopamine cells, indicating that the response is mediated by GABA(A) receptors. These data suggest that LHb-induced suppression of dopamine cell activity is mediated indirectly by orthodromic activation of putative GABAergic neurons in the ventral midbrain. The habenulomesencephalic pathway, which is capable of transiently suppressing the activity of dopamine neurons at a population level, may represent an important component of the circuitry involved in encoding reward expectancy.
Collapse
Affiliation(s)
- Huifang Ji
- Maryland Psychiatric Research Center and Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21228
| | - Paul D. Shepard
- Maryland Psychiatric Research Center and Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21228
| |
Collapse
|
36
|
Rodriguez M, Gonzalez S, Morales I, Sabate M, Gonzalez-Hernandez T, Gonzalez-Mora JL. Nigrostriatal cell firing action on the dopamine transporter. Eur J Neurosci 2007; 25:2755-65. [PMID: 17561841 DOI: 10.1111/j.1460-9568.2007.05510.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The influence of nigrostriatal cell firing on the dopamine transporter (DAT) activity of the rat striatum was studied in vivo with amperometric methods. Data were obtained after preventing dopamine (DA) release with alpha-methyl-L-tyrosine and replenishing extracellular DA with local injections. The DA cell stimulation, which under basal conditions increased extracellular DA, decreased DA after this pre-treatment, suggesting that firing activity facilitates the DA cell uptake of DA under these circumstances (drain response). Cocaine and GBR13069 markedly decreased the drain response, suggesting that it is dependent on DAT activation. Data obtained after haloperidol and apomorphine administration showed that the drain response was facilitated by pre-synaptic DA receptor stimulation but that receptors are not a necessary requirement. Two components in the drain response were observed, one with a short latency and duration that needed high-frequency stimuli, and the other with a long latency and duration that was even induced by low-frequency stimuli. This is the first evidence showing that DAT can be activated by the firing activity in nigrostriatal cells in a direct way and without the participation of pre-synaptic DA receptors.
Collapse
Affiliation(s)
- Manuel Rodriguez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, La Laguna, 38320 Tenerife, Spain.
| | | | | | | | | | | |
Collapse
|
37
|
Dahan L, Astier B, Vautrelle N, Urbain N, Kocsis B, Chouvet G. Prominent burst firing of dopaminergic neurons in the ventral tegmental area during paradoxical sleep. Neuropsychopharmacology 2007; 32:1232-41. [PMID: 17151599 DOI: 10.1038/sj.npp.1301251] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dopamine is involved in motivation, memory, and reward processing. However, it is not clear whether the activity of dopamine neurons is related or not to vigilance states. Using unit recordings in unanesthetized head restrained rats we measured the firing pattern of dopamine neurons of the ventral tegmental area across the sleep-wake cycle. We found these cells were activated during paradoxical sleep (PS) via a clear switch to a prominent bursting pattern, which is known to induce large synaptic dopamine release. This activation during PS was similar to the activity measured during the consumption of palatable food. Thus, as it does during waking in response to novelty and reward, dopamine could modulate brain plasticity and thus participate in memory consolidation during PS. By challenging the traditional view that dopamine is the only aminergic group not involved in sleep physiology, this study provides an alternative perspective that may be crucial for understanding the physiological function of PS and dream mentation.
Collapse
Affiliation(s)
- Lionel Dahan
- Laboratoire de Neuropharmacologie et Neurochimie, Université Lyon 1, Lyon, France.
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
The recent increase in the frequency and intensity of killer heat waves across the globe has aroused worldwide medical attention to exploring therapeutic strategies to attenuate heat-related morbidity and/or mortality. Death due to heat-related illnesses often exceeds >50% of heat victims. Those who survive are crippled with lifetime disabilities and exhibit profound cognitive, sensory, and motor dysfunction akin to premature neurodegeneration. Although more than 50% of the world populations are exposed to summer heat waves; our understanding of detailed underlying mechanisms and the suitable therapeutic strategies have still not been worked out. One of the basic reasons behind this is the lack of a reliable experimental model to simulate clinical hyperthermia. This chapter describes a suitable animal model to induce hyperthermia in rats (or mice) comparable to the clinical situation. The model appears to be useful for studying the effects of heat-related illnesses on changes in various organs and systems, including the central nervous system (CNS). Since hyperthermia is often associated with profound brain dysfunction, additional methods to examine some crucial parameters of brain injury, e.g., blood-brain barrier (BBB) breakdown and brain edema formation, are also described.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- Laboratory of Cerebrovascular Research, Department of Surgical Sciences, Anaesthesiology and Intensive Care Medicine, Uppsala University Hospital, Uppsala University, SE-75185 Uppsala, Sweden.
| |
Collapse
|
39
|
Windels F, Kiyatkin EA. Dopamine action in the substantia nigra pars reticulata: iontophoretic studies in awake, unrestrained rats. Eur J Neurosci 2006; 24:1385-94. [PMID: 16987223 DOI: 10.1111/j.1460-9568.2006.05015.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Dopamine (DA) neurons located in the substantia nigra pars compacta release DA not only via axonal terminals, affecting neurotransmission within the striatum, but also via dendrites, some of which densely protrude into the substantia nigra pars reticulata (SNr). Although the interaction of dendritically released DA with somatodendritic autoreceptors regulates DA cell activity, released DA may also affect SNr neurons. These cells, however, lack postsynaptic DA receptors, making it unclear how locally released DA modulates their activity. Although previous work in brain slices suggests that DA might modulate the activity of GABA inputs, thus affecting SNr neurons indirectly, it remains unclear how increased or decreased DA release might affect these cells exposed to normal afferent inputs. To explore this issue, we examined the effects of iontophoretic DA and amphetamine on SNr neurons in awake, unrestrained rats. DA had no consistent effects on SNr cells but amphetamine, known to induce DA release, dose-dependently inhibited most of them. This effect was blocked by SCH23390, a selective D1 receptor blocker, which itself strongly increased neuronal discharge rate. As GABA input is a major factor regulating the activity of SNr neurons, our data suggest that dendritically released DA, by interacting with D1 receptors on striato-nigral and pallido-nigral afferents, is able to decrease this input, thus releasing SNr neurons from tonic, GABA-mediated inhibition. Surprisingly, a full DA receptor blockade (SCH23390 + eticlopride) did not result in the expected increase in SNr discharge rate, suggesting that other mechanisms are responsible for behavioral abnormalities following acute disruption of DA transmission.
Collapse
Affiliation(s)
- François Windels
- Cellular Neurobiology Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, MD 21224, USA
| | | |
Collapse
|
40
|
Gale SD, Perkel DJ. Physiological properties of zebra finch ventral tegmental area and substantia nigra pars compacta neurons. J Neurophysiol 2006; 96:2295-306. [PMID: 16870835 DOI: 10.1152/jn.01040.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The neurotransmitter dopamine plays important roles in motor control, learning, and motivation in mammals and probably other animals as well. The strong dopaminergic projection to striatal regions and more moderate dopaminergic projections to other regions of the telencephalon predominantly arise from midbrain dopaminergic neurons in the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA). Homologous dopaminergic cell groups in songbirds project anatomically in a manner that may allow dopamine to influence song learning or song production. The electrophysiological properties of SNc and VTA neurons have not previously been studied in birds. Here we used whole cell recordings in brain slices in combination with tyrosine-hydroxylase immunolabeling as a marker of dopaminergic neurons to determine electrophysiological and pharmacological properties of dopaminergic and nondopaminergic neurons in the zebra finch SNc and VTA. Our results show that zebra finch dopaminergic neurons possess physiological properties very similar to those of mammalian dopaminergic neurons, including broad action potentials, calcium- and apamin-sensitive membrane-potential oscillations underlying pacemaker firing, powerful spike-frequency adaptation, and autoinhibition via D2 dopamine receptors. Moreover, the zebra finch SNc and VTA also contain nondopaminergic neurons with similarities (fast-firing, inhibition by the mu-opioid receptor agonist [d-Ala(2), N-Me-Phe(4), Gly-ol(5)]-enkephalin (DAMGO)) and differences (strong h-current that contributes to spontaneous firing) compared with GABAergic neurons in the mammalian SNc and VTA. Our results provide insight into the intrinsic membrane properties that regulate the activity of dopaminergic neurons in songbirds and add to strong evidence for anatomical, physiological, and functional similarities between the dopaminergic systems of mammals and birds.
Collapse
Affiliation(s)
- Samuel D Gale
- Graduate Program in Neurobiology and Behavior, University of Washington, Box 356515, Seattle, WA 98195, USA.
| | | |
Collapse
|
41
|
Windels F, Kiyatkin EA. General anesthesia as a factor affecting impulse activity and neuronal responses to putative neurotransmitters. Brain Res 2006; 1086:104-16. [PMID: 16600189 DOI: 10.1016/j.brainres.2006.02.064] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 02/10/2006] [Accepted: 02/19/2006] [Indexed: 11/23/2022]
Abstract
Although it is evident that general anesthesia should affect impulse activity and neurochemical responses of central neurons, there are limited studies in which these parameters were compared in both awake and anesthetized animal preparations. We used single-unit recording coupled with iontophoresis to examine impulse activity and responses of substantia nigra pars reticulata (SNr) neurons to GABA, glutamate (GLU), and dopamine (DA) in rats in awake, unrestrained conditions and during chloral hydrate anesthesia. SNr neurons in both conditions had similar organization of impulse flow, but during anesthesia, they have lower mean rates and discharge variability than in awake conditions. In individual units, discharge rate in awake, quietly resting rats was almost three-fold more variable than during anesthesia. These cells in both conditions were highly sensitive to iontophoretic GABA, but the response was stronger during anesthesia. In contrast to virtually no responses to GLU in awake conditions, most SNr neurons during anesthesia were excited by GLU; the response occurred preferentially in slow-firing units, which were atypical of awake conditions. Consistent with no postsynaptic DA receptors on SNr neurons, iontophoretic DA was ineffective in altering discharge rates in awake conditions, but often induced weak excitations during anesthesia. Although SNr neurons are autoactive, generating discharges without any excitatory input (i.e., in vitro), their impulse activity and responses to natural neurochemical inputs are strongly affected by general anesthesia. Some alterations appear to be specific to the general anesthetic used, while others probably reflect changes in the activity of afferent inputs, brain metabolism and neurotransmitter uptake that are typical to any type of general anesthesia. Therefore, an awake, freely moving animal preparation appears to be advantageous for studying impulse activity and neurochemical interactions at single-neuron level during physiologically relevant conditions.
Collapse
Affiliation(s)
- François Windels
- Cellular Neurobiology Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, MD 21224, USA
| | | |
Collapse
|
42
|
Zuo DY, Zhang YH, Cao Y, Wu CF, Tanaka M, Wu YL. Effect of acute and chronic MK-801 administration on extracellular glutamate and ascorbic acid release in the prefrontal cortex of freely moving mice on line with open-field behavior. Life Sci 2006; 78:2172-8. [PMID: 16280137 DOI: 10.1016/j.lfs.2005.09.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Accepted: 09/06/2005] [Indexed: 11/21/2022]
Abstract
The present study was designed to investigate the effects of acute and chronic administration of MK-801 (0.6 mg/kg), a noncompetitive NMDA-receptor antagonist on extracellular glutamate (Glu) and ascorbic acid (AA) release in the prefrontal cortex (PFC) of freely moving mice using in vivo microdialysis with open-field behavior. In line with earlier studies, acute administration of MK-801 induced an increase of Glu in the PFC. We also observed single MK-801 treatment increased AA release in the PFC. In addition, our results indicated that the basal AA levels in the PFC after MK-801 administration for 7 consecutive days were significantly decreased, and basal Glu levels also had a decreased tendency. After chronic administration (0.6 mg/kg, 7 days), MK-801 (0.6 mg/kg) challenge significantly decreased dialysate levels of AA and Glu. Our study also found that both acute and chronic administration of MK-801 induced hyperactivity in mice, but the intensity of acute administration was more than that of chronic administration. Furthermore, in all acute treatment mice, individual changes in Glu dialysate concentrations and the numbers of locomotion were positively correlated. In conclusion, this study may provide new evidence that a single MK-801 administration induces increases of dialysate AA and Glu concentrations in the PFC of freely moving mice, which are opposite to those induced by repeated MK-801 administration, with an unknown mechanism. Our results suggested that redox-response might play an important role in the model of schizophrenic symptoms induced by MK-801.
Collapse
Affiliation(s)
- Dai-Ying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, China
| | | | | | | | | | | |
Collapse
|
43
|
Kiyatkin EA. Brain hyperthermia as physiological and pathological phenomena. ACTA ACUST UNITED AC 2006; 50:27-56. [PMID: 15890410 DOI: 10.1016/j.brainresrev.2005.04.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 01/04/2005] [Accepted: 04/05/2005] [Indexed: 12/18/2022]
Abstract
Although brain metabolism consumes high amounts of energy and is accompanied by intense heat production, brain temperature is usually considered a stable, tightly "regulated" homeostatic parameter. Current research, however, revealed relatively large and rapid brain temperature fluctuations (3-4 degrees C) in animals during various normal, physiological, and behavioral activities at stable ambient temperatures. This review discusses these data and demonstrates that physiological brain hyperthermia has an intra-brain origin, resulting from enhanced neural metabolism and increased intra-brain heat production. Therefore, brain temperature is an important physiological parameter that both reflects alterations in metabolic neural activity and affects various neural functions. This work also shows that brain hyperthermia may be induced by various drugs of abuse that cause metabolic brain activation and impair heat dissipation. While individual drugs (i.e., heroin, cocaine, methamphetamine, MDMA) have specific, dose-dependent effects on brain and body temperatures, these effects are strongly modulated by an individual's activity state and environmental conditions, and change dramatically during the development of drug self-administration. Thus, brain thermorecording may provide new information on the central effects of various addictive drugs, drug-activity-environment interactions in mediating drugs' adverse effects, and alterations in metabolic neural activity associated with the development of drug-seeking and drug-taking behavior. While ambient temperatures and impairment of heat dissipation may also affect brain temperature, these environmental conditions strongly potentiate thermal effects of psychomotor stimulant drugs, resulting in pathological brain overheating. Since hyperthermia exacerbates drug-induced toxicity and is destructive to neural cells and brain functions, use of these drugs under activated conditions that restrict heat loss may pose a significant health risk, resulting in both acute life-threatening complications and chronic destructive CNS changes.
Collapse
Affiliation(s)
- Eugene A Kiyatkin
- Cellular Neurobiology Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, DHHS, 5500 Nathan Shock, Baltimore, MD 21224, USA.
| |
Collapse
|
44
|
Ji H, Shepard PD. SK Ca2+-activated K+ channel ligands alter the firing pattern of dopamine-containing neurons in vivo. Neuroscience 2006; 140:623-33. [PMID: 16564639 DOI: 10.1016/j.neuroscience.2006.02.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 02/01/2006] [Accepted: 02/08/2006] [Indexed: 11/24/2022]
Abstract
Apamin-sensitive, SK channels play an important role in generating the rhythmic firing patterns exhibited by midbrain dopamine neurons in vitro. However, their contribution to the firing properties of these cells in intact animals has yet to be determined. In the present series of experiments, extracellular single unit recording techniques were used to assess the central effects of prototypical SK channel ligands on the firing pattern of dopamine neurons in the substantia nigra of the chloral hydrate anesthetized rat. I.v. administration of the SK channel blocker apamin (0.4 mg/kg), increased bursting activity in approximately 50% of the dopamine neurons tested without altering average firing rate. The majority of these cells responded slowly to the effects of apamin, gradually transitioning from an irregular single spike to a phasic discharge composed of the same relative proportion of long (>or=three spike) and short (two spike) bursts as "natural" bursting activity recorded in drug naive animals. Local administration of apamin increased bursting activity in all cells tested. Systemic administration of the SK channel opener, 1-ethyl-2-benzimidazolinone (5-25 mg/kg) also had no effect on average firing rate but suppressed bursting activity and increased the precision of firing. The effects of 1-ethyl-2-benzimidazolinon on firing pattern were abolished when recording electrodes contained apamin (125 microM). These results suggest that SK channels actively contribute to the spontaneous firing patterns exhibited by dopamine neurons in vivo and provide additional support for the proposition that this channel could serve as a useful target for modifying their activity.
Collapse
Affiliation(s)
- H Ji
- Maryland Psychiatric Research Center and the University of Maryland School of Medicine, Department of Psychiatry, P.O. Box 21247, Baltimore, MD 21228, USA
| | | |
Collapse
|
45
|
Windels F, Kiyatkin EA. GABAergic mechanisms in regulating the activity state of substantia nigra pars reticulata neurons. Neuroscience 2006; 140:1289-99. [PMID: 16713116 DOI: 10.1016/j.neuroscience.2006.03.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 03/24/2006] [Accepted: 03/31/2006] [Indexed: 11/28/2022]
Abstract
Substantia nigra reticulata is the major output structure of the basal ganglia involved in somatosensory integration and organization of movement. While previous work in vitro and in anesthetized animal preparations suggests that these neurons are autoactive and points to GABA as a primary input regulating their activity, single-unit recording coupled with iontophoresis was used in awake, unrestrained rats to further clarify the role of tonic and phasic GABA input in maintenance and fluctuations of substantia nigra reticulata neuronal activity under physiologically relevant conditions. In contrast to glutamate, which was virtually ineffective at stimulating substantia nigra reticulata neurons in awake rats, all substantia nigra reticulata neurons tested were inhibited by iontophoretic GABA and strongly excited by bicuculline, a GABA-A receptor blocker. The GABA-induced inhibition had short onset and offset latencies, a fading response pattern (a rapid decrease in rate followed by its relative restoration), and was independent of basal discharge rate. The bicuculline-induced excitation was inversely related to discharge rate and current (dose)-dependent in individual units. However, the average discharge rate during bicuculline applications at different currents increased to a similar plateau ( approximately 60 impulses/s), which was about twice the mean basal rates. The excitatory effects of bicuculline were phasically inhibited or completely blocked by brief GABA applications and generally mimicked by gabazine, another selective GABA antagonist. These data as well as neuronal inhibitions induced by nipecotic acid, a selective GABA uptake inhibitor, suggest that substantia nigra reticulata neurons in awake, quietly resting conditions are under tonic, GABA-mediated inhibition. Therefore, because of inherent autoactivity and specifics of afferent inputs, substantia nigra reticulata neurons are very sensitive to phasic alterations in GABA input, which appears to be the primary factor determining fluctuations in their activity states under physiological conditions. While these cells are relatively insensitive to direct activation by glutamate, and resistant to a continuous increase in GABA input, they appear to be very sensitive to a diminished GABA input, which may release them from tonic inhibition and determine their functional hyperactivity.
Collapse
Affiliation(s)
- F Windels
- Cellular Neurobiology Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, MD 21224, USA
| | | |
Collapse
|
46
|
Wilson DIG, Bowman EM. Neurons in dopamine-rich areas of the rat medial midbrain predominantly encode the outcome-related rather than behavioural switching properties of conditioned stimuli. Eur J Neurosci 2006; 23:205-18. [PMID: 16420430 DOI: 10.1111/j.1460-9568.2005.04535.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Midbrain dopamine neurons are phasically activated by a variety of sensory stimuli. It has been hypothesized that these activations contribute to reward prediction or behavioural switching. To test the latter hypothesis we recorded from 131 single neurons in the ventral tegmental area and retrorubral field of thirsty rats responding during a modified go/no-go task. One-quarter (n = 33) of these neurons responded to conditioned stimuli in the task, which varied according to the outcome with which they were associated (saccharin or quinine solution) and according to whether they triggered a switch in the ongoing sequence of the animal's behaviour ('behavioural switching'). Almost half the neurons (45%) responded differentially to saccharin- vs. quinine-conditioned stimuli; the activity of a minority (15%) correlated with an aspect of behavioural switching (mostly exhibiting changes from baseline activity in the absence of a behavioural switch) and one-third (33%) encoded various outcome-switch combinations. The strongest response was excitation to the saccharin-conditioned stimulus. Additionally, a proportion (38%) of neurons responded during outcome delivery, typically exhibiting inhibition during saccharin consumption. The neurons sampled did not fall into distinct clusters on the basis of their electrophysiological characteristics. However, most neurons that responded to the outcome-related properties of conditioned stimuli had long action potentials (> 1.2 ms), a reported characteristic of dopamine neurons. Moreover, responses to saccharin-conditioned stimuli were functionally akin to dopamine responses found in the macaque and rat nucleus accumbens responses observed within the same task. In conclusion, our data are more consistent with the reward-prediction than the behavioural switching hypothesis.
Collapse
Affiliation(s)
- David I G Wilson
- School of Psychology, University of St Andrews, St Mary's, Quadrangle, South Street, St Andrews, Fife, Scotland KY16 9JP, UK.
| | | |
Collapse
|
47
|
Wilson JX, Dragan M. Sepsis inhibits recycling and glutamate-stimulated export of ascorbate by astrocytes. Free Radic Biol Med 2005; 39:990-8. [PMID: 16198226 DOI: 10.1016/j.freeradbiomed.2005.05.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Revised: 05/04/2005] [Accepted: 05/12/2005] [Indexed: 11/29/2022]
Abstract
Sepsis causes brain dysfunction. Because neurotransmission requires high ascorbate and low dehydroascorbic acid (DHAA) concentrations in brain extracellular fluid, the effect of septic insult on ascorbate recycling (i.e., uptake and reduction of DHAA) and export was investigated in primary rat and mouse astrocytes. DHAA raised intracellular ascorbate to physiological levels but extracellular ascorbate only slightly. Septic insult by lipopolysaccharide and interferon-gamma increased ascorbate recycling in astrocytes permeabilized with saponin but decreased it in those with intact plasma membrane. The decrease was due to inhibition of the glucose transporter (GLUT1) that translocates DHAA because septic insult slowed uptake of the nonmetabolizable GLUT1 substrate 3-O-methylglucose. Septic insult also abolished stimulation by glutamate of ascorbate export. Specific nitric oxide synthase (NOS) inhibitors and nNOS and iNOS deficiency failed to alter the effects of septic insult. Inhibitors of NADPH oxidase generally did not protect against septic insult, because only one of those tested (diphenylene iodonium) increased GLUT1 activity and ascorbate recycling. We conclude that astrocytes take up DHAA and use it to synthesize ascorbate that is exported in response to glutamate. This mechanism may provide the antioxidant on demand to neurons under normal conditions, but it is attenuated after septic insult.
Collapse
Affiliation(s)
- John X Wilson
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada N6A 5C1.
| | | |
Collapse
|
48
|
Kuznetsov AS, Kopell NJ, Wilson CJ. Transient high-frequency firing in a coupled-oscillator model of the mesencephalic dopaminergic neuron. J Neurophysiol 2005; 95:932-47. [PMID: 16207783 DOI: 10.1152/jn.00691.2004] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dopaminergic neurons of the midbrain fire spontaneously at rates <10/s and ordinarily will not exceed this range even when driven with somatic current injection. When driven at higher rates, these cells undergo spike failure through depolarization block. During spontaneous bursting of dopaminergic neurons in vivo, bursts related to reward expectation in behaving animals, and bursts generated by dendritic application of N-methyl-d-aspartate (NMDA) agonists, transient firing attains rates well above this range. We suggest a way such high-frequency firing may occur in response to dendritic NMDA receptor activation. We have extended the coupled oscillator model of the dopaminergic neuron, which represents the soma and dendrites as electrically coupled compartments with different natural spiking frequencies, by addition of dendritic AMPA (voltage-independent) or NMDA (voltage-dependent) synaptic conductance. Both soma and dendrites contain a simplified version of the calcium-potassium mechanism known to be the mechanism for slow spontaneous oscillation and background firing in dopaminergic cells. The compartments differ only in diameter, and this difference is responsible for the difference in natural frequencies. We show that because of its voltage dependence, NMDA receptor activation acts to amplify the effect on the soma of the high-frequency oscillation of the dendrites, which is normally too weak to exert a large influence on the overall oscillation frequency of the neuron. During the high-frequency oscillations that result, sodium inactivation in the soma is removed rapidly after each action potential by the hyperpolarizing influence of the dendritic calcium-dependent potassium current, preventing depolarization block of the spike mechanism, and allowing high-frequency spiking.
Collapse
Affiliation(s)
- Alexey S Kuznetsov
- Center for BioDynamics and Mathematics Department, Boston University, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
49
|
Abstract
Ascorbic acid and dehydroascorbic acid (DHAA, oxidized vitamin C) are dietary sources of vitamin C in humans. Both nutrients are absorbed from the lumen of the intestine and renal tubules by, respectively, enterocytes and renal epithelial cells. Subsequently vitamin C circulates in the blood and enters all of the other cells of the body. Concerning flux across the plasma membrane, simple diffusion of ascorbic acid plays only a small or negligible role. More important are specific mechanisms of transport and metabolism that concentrate vitamin C intracellularly to enhance its function as an enzyme cofactor and antioxidant. The known transport mechanisms are facilitated diffusion of DHAA through glucose-sensitive and -insensitive transporters, facilitated diffusion of ascorbate through channels, exocytosis of ascorbate in secretory vesicles, and secondary active transport of ascorbate through the sodium-dependent vitamin C transporters SVCT1 and SVCT2 proteins that are encoded by the genes Slc23a1 and Slc23a2, respectively. Evidence is reviewed indicating that these transport pathways are regulated under physiological conditions and altered by aging and disease.
Collapse
Affiliation(s)
- John X Wilson
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York 14214-3079, USA.
| |
Collapse
|
50
|
Brun P, Bégou M, Andrieux A, Mouly-Badina L, Clerget M, Schweitzer A, Scarna H, Renaud B, Job D, Suaud-Chagny MF. Dopaminergic transmission in STOP null mice. J Neurochem 2005; 94:63-73. [PMID: 15953350 DOI: 10.1111/j.1471-4159.2005.03166.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neuroleptics are thought to exert their anti-psychotic effects by counteracting a hyper-dopaminergic transmission. Here, we have examined the dopaminergic status of STOP (stable tubule only polypeptide) null mice, which lack a microtubule-stabilizing protein and which display neuroleptic-sensitive behavioural disorders. Dopamine transmission was investigated using both behavioural analysis and measurements of dopamine efflux in different conditions. Compared to wild-type mice in basal conditions or following mild stress, STOP null mice showed a hyper-locomotor activity, which was erased by neuroleptic treatment, and an increased locomotor reactivity to amphetamine. Such a behavioural profile is indicative of an increased dopaminergic transmission. In STOP null mice, the basal dopamine concentrations, measured by quantitative microdialysis, were normal in both the nucleus accumbens and the striatum. When measured by electrochemical techniques, the dopamine efflux evoked by electrical stimulations mimicking physiological stimuli was dramatically increased in the nucleus accumbens of STOP null mice, apparently due to an increased dopamine release, whereas dopaminergic uptake and auto-inhibition mechanisms were normal. In contrast, dopamine effluxes were slightly diminished in the striatum. Together with previous results, the present study indicates the association in STOP null mice of hippocampal hypo-glutamatergy and of limbic hyper-dopaminergy. Such neurotransmission defects are thought to be central to mental diseases such as schizophrenia.
Collapse
Affiliation(s)
- Philippe Brun
- Institut Fédératif des Neurosciences de Lyon; UCBL, Faculté de Pharmacie, Laboratoire de Neuropharmacologie et Neurochimie, Lyon, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|