1
|
Nibuya M, Kezuka D, Kanno Y, Wakamatsu S, Suzuki E. Behavioral stress and antidepressant treatments altered hippocampal expression of Nogo signal-related proteins in rats. J Psychiatr Res 2024; 170:207-216. [PMID: 38157668 DOI: 10.1016/j.jpsychires.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/26/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Some immune molecules including neurite outgrowth inhibitor (Nogo) ligands and their receptor(Nogo receptor-1: NgR1)are expressed at the neuronal synaptic sites. Paired immunoglobulin-like receptor B (PirB) is another Nogo receptor that also binds to major histocompatibility complex I and β-amyloid and suppresses dendritic immune cell functions and neuronal plasticity in the central nervous system. Augmenting structural and functional neural plasticity by manipulating the Nogo signaling pathway is a novel promising strategy for treating brain ischemia and degenerative processes such as Alzheimer's disease. In recent decades psychiatric research using experimental animals has focused on the attenuation of neural plasticity by stress loadings and on the enhanced resilience by psychopharmacological treatments. In the present study, we examined possible expressional alterations in Nogo signal-related proteins in the rat hippocampus after behavioral stress loadings and antidepressant treatments. To validate the effectiveness of the procedures, previously reported increase in brain-derived neurotrophic factor (BDNF) by ECS or ketamine administration and decrease of BDNF by stress loadings are also shown in the present study. Significant increases in hippocampal NgR1 and PirB expression were observed following chronic variable stress, and a significant increase in NgR1 expression was observed under a single prolonged stress paradigm. These results indicate a possible contribution of enhanced Nogo signaling to the attenuation of neural plasticity in response to stressful experiences. Additionally, the suppression of hippocampal NgR1 expression using electroconvulsive seizure treatment and administration of subanesthetic dose of ketamine supported the increased neural plasticity induced by the antidepressant treatments.
Collapse
Affiliation(s)
- Masashi Nibuya
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino, Sendai City, Miyagi, 983-8536, Japan.
| | - Dai Kezuka
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino, Sendai City, Miyagi, 983-8536, Japan
| | - Yoshihiko Kanno
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino, Sendai City, Miyagi, 983-8536, Japan
| | - Shunosuke Wakamatsu
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino, Sendai City, Miyagi, 983-8536, Japan
| | - Eiji Suzuki
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino, Sendai City, Miyagi, 983-8536, Japan
| |
Collapse
|
2
|
Deng ZD, Robins PL, Regenold W, Rohde P, Dannhauer M, Lisanby SH. How electroconvulsive therapy works in the treatment of depression: is it the seizure, the electricity, or both? Neuropsychopharmacology 2024; 49:150-162. [PMID: 37488281 PMCID: PMC10700353 DOI: 10.1038/s41386-023-01677-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
We have known for nearly a century that triggering seizures can treat serious mental illness, but what we do not know is why. Electroconvulsive Therapy (ECT) works faster and better than conventional pharmacological interventions; however, those benefits come with a burden of side effects, most notably memory loss. Disentangling the mechanisms by which ECT exerts rapid therapeutic benefit from the mechanisms driving adverse effects could enable the development of the next generation of seizure therapies that lack the downside of ECT. The latest research suggests that this goal may be attainable because modifications of ECT technique have already yielded improvements in cognitive outcomes without sacrificing efficacy. These modifications involve changes in how the electricity is administered (both where in the brain, and how much), which in turn impacts the characteristics of the resulting seizure. What we do not completely understand is whether it is the changes in the applied electricity, or in the resulting seizure, or both, that are responsible for improved safety. Answering this question may be key to developing the next generation of seizure therapies that lack these adverse side effects, and ushering in novel interventions that are better, faster, and safer than ECT.
Collapse
Affiliation(s)
- Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Pei L Robins
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - William Regenold
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Paul Rohde
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Moritz Dannhauer
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Loef D, Tendolkar I, van Eijndhoven PFP, Hoozemans JJM, Oudega ML, Rozemuller AJM, Lucassen PJ, Dols A, Dijkstra AA. Electroconvulsive therapy is associated with increased immunoreactivity of neuroplasticity markers in the hippocampus of depressed patients. Transl Psychiatry 2023; 13:355. [PMID: 37981649 PMCID: PMC10658169 DOI: 10.1038/s41398-023-02658-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023] Open
Abstract
Electroconvulsive therapy (ECT) is an effective therapy for depression, but its cellular effects on the human brain remain elusive. In rodents, electroconvulsive shocks increase proliferation and the expression of plasticity markers in the hippocampal dentate gyrus (DG), suggesting increased neurogenesis. Furthermore, MRI studies in depressed patients have demonstrated increases in DG volume after ECT, that were notably paralleled by a decrease in depressive mood scores. Whether ECT also triggers cellular plasticity, inflammation or possibly injury in the human hippocampus, was unknown. We here performed a first explorative, anatomical study on the human post-mortem hippocampus of a unique, well-documented cohort of bipolar or unipolar depressed patients, who had received ECT in the 5 years prior to their death. They were compared to age-matched patients with a depressive disorder who had not received ECT and to matched healthy controls. Upon histopathological examination, no indications were observed for major hippocampal cell loss, overt cytoarchitectural changes or classic neuropathology in these 3 groups, nor were obvious differences present in inflammatory markers for astrocytes or microglia. Whereas the numbers of proliferating cells expressing Ki-67 was not different, we found a significantly higher percentage of cells positive for Doublecortin, a marker commonly used for young neurons and cellular plasticity, in the subgranular zone and CA4 / hilus of the hippocampus of ECT patients. Also, the percentage of positive Stathmin 1 cells was significantly higher in the subgranular zone of ECT patients, indicating neuroplasticity. These first post-mortem observations suggest that ECT has no damaging effects but may rather have induced neuroplasticity in the DG of depressed patients.
Collapse
Affiliation(s)
- Dore Loef
- Amsterdam UMC, location VUmc, Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands.
- GGZ inGeest Specialized Mental Health Care, Amsterdam, the Netherlands.
| | - Indira Tendolkar
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Nijmegen, the Netherlands
- Department of Psychiatry and Psychotherapy, University Hospital Essen, Essen, Germany
| | - Philip F P van Eijndhoven
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Nijmegen, the Netherlands
| | - Jeroen J M Hoozemans
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Mardien L Oudega
- Amsterdam UMC, location VUmc, Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands
- GGZ inGeest Specialized Mental Health Care, Amsterdam, the Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Paul J Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Annemiek Dols
- Amsterdam UMC, location VUmc, Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands
- Department of Psychiatry, UMC Utrecht Brain Center, University Utrecht, Utrecht, the Netherlands
| | - Anke A Dijkstra
- Molecular Neuroscience Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Meyers KT, Damphousse CC, Ozols AB, Campbell JM, Newbern JM, Hu C, Marrone DF, Gallitano AL. Serial electroconvulsive Seizure alters dendritic complexity and promotes cellular proliferation in the mouse dentate gyrus; a role for Egr3. Brain Stimul 2023; 16:889-900. [PMID: 37146791 PMCID: PMC10776161 DOI: 10.1016/j.brs.2023.04.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Despite being one of the safest, most effective treatments for severe mood disorders, the therapeutic mechanisms of electroconvulsive therapy remain unknown. Electroconvulsive seizure (ECS) induces rapid, high-level expression of immediate early genes (IEGs) and brain-derived neurotrophic factor (BDNF), in addition to stimulation of neurogenesis and dendritic remodeling of dentate gyrus (DG) neurons. We have previously shown that this upregulation of BDNF fails to occur in the hippocampus of mice lacking the IEG Egr3. Since BDNF influences neurogenesis and dendritic remodeling, we hypothesized that Egr3-/- mice will exhibit deficits in neurogenesis and dendritic remodeling in response to ECS. OBJECTIVE To test this hypothesis, we examined dendritic remodeling and cellular proliferation in the DG of Egr3-/- and wild-type mice following repeated ECS. METHODS Mice received 10 daily ECSs. Dendritic morphology was examined in Golgi-Cox-stained tissue and cellular proliferation was analyzed through bromodeoxyuridine (BrdU) immunohistochemistry and confocal imaging. RESULTS Serial ECS in mice results in dendritic remodeling, increased spine density, and cellular proliferation in the DG. Loss of Egr3 alters the dendritic remodeling induced by serial ECS but does not change the number of dendritic spines or cellular proliferation consequences of ECS. CONCLUSION Egr3 influences the dendritic remodeling induced by ECS but is not required for ECS-induced proliferation of hippocampal DG cells.
Collapse
Affiliation(s)
- K T Meyers
- Interdisciplinary Graduate Program in Neuroscience, Arizona State University, Tempe, AZ, 85281, USA; Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA
| | - C C Damphousse
- Psychology, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - A B Ozols
- Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA
| | - J M Campbell
- Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA
| | - J M Newbern
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - C Hu
- Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health - Phoenix, 714 E Van Buren St #119, Phoenix, AZ, 85006, USA
| | - D F Marrone
- Psychology, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada.
| | - A L Gallitano
- Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA.
| |
Collapse
|
5
|
Jaggar M, Ghosh S, Janakiraman B, Chatterjee A, Maheshwari M, Dewan V, Hare B, Deb S, Figueiredo D, Duman RS, Vaidya VA. Influence of Chronic Electroconvulsive Seizures on Plasticity-Associated Gene Expression and Perineuronal Nets Within the Hippocampi of Young Adult and Middle-Aged Sprague-Dawley Rats. Int J Neuropsychopharmacol 2023; 26:294-306. [PMID: 36879414 PMCID: PMC10109107 DOI: 10.1093/ijnp/pyad008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Electroconvulsive seizure therapy is often used in both treatment-resistant and geriatric depression. However, preclinical studies identifying targets of chronic electroconvulsive seizure (ECS) are predominantly focused on animal models in young adulthood. Given that putative transcriptional, neurogenic, and neuroplastic mechanisms implicated in the behavioral effects of chronic ECS themselves exhibit age-dependent modulation, it remains unknown whether the molecular and cellular targets of chronic ECS vary with age. METHODS We subjected young adult (2-3 months) and middle-aged (12-13 months), male Sprague Dawley rats to sham or chronic ECS and assessed for despair-like behavior, hippocampal gene expression, hippocampal neurogenesis, and neuroplastic changes in the extracellular matrix, reelin, and perineuronal net numbers. RESULTS Chronic ECS reduced despair-like behavior at both ages, accompanied by overlapping and unique changes in activity-dependent and trophic factor gene expression. Although chronic ECS had a similar impact on quiescent neural progenitor numbers at both ages, the eventual increase in hippocampal progenitor proliferation was substantially higher in young adulthood. We noted a decline in reelin⁺ cell numbers following chronic ECS only in young adulthood. In contrast, an age-invariant, robust dissolution of perineuronal net numbers that encapsulate parvalbumin⁺ neurons in the hippocampus were observed following chronic ECS. CONCLUSION Our findings indicate that age is a key variable in determining the nature of chronic ECS-evoked molecular and cellular changes in the hippocampus. This raises the intriguing possibility that chronic ECS may recruit distinct, as well as overlapping, mechanisms to drive antidepressant-like behavioral changes in an age-dependent manner.
Collapse
Affiliation(s)
- Minal Jaggar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Shreya Ghosh
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Balaganesh Janakiraman
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Ashmita Chatterjee
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Megha Maheshwari
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Vani Dewan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Brendan Hare
- Division of Molecular Psychiatry, Department of Psychiatry and Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sukrita Deb
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Dwight Figueiredo
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Ronald S Duman
- Division of Molecular Psychiatry, Department of Psychiatry and Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
6
|
Adenosine A 2A receptors control synaptic remodeling in the adult brain. Sci Rep 2022; 12:14690. [PMID: 36038626 PMCID: PMC9424208 DOI: 10.1038/s41598-022-18884-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/22/2022] [Indexed: 01/04/2023] Open
Abstract
The molecular mechanisms underlying circuit re-wiring in the mature brain remains ill-defined. An eloquent example of adult circuit remodelling is the hippocampal mossy fiber (MF) sprouting found in diseases such as temporal lobe epilepsy. The molecular determinants underlying this retrograde re-wiring remain unclear. This may involve signaling system(s) controlling axon specification/growth during neurodevelopment reactivated during epileptogenesis. Since adenosine A2A receptors (A2AR) control axon formation/outgrowth and synapse stabilization during development, we now examined the contribution of A2AR to MF sprouting. A2AR blockade significantly attenuated status epilepticus(SE)-induced MF sprouting in a rat pilocarpine model. This involves A2AR located in dentate granule cells since their knockdown selectively in dentate granule cells reduced MF sprouting, most likely through the ability of A2AR to induce the formation/outgrowth of abnormal secondary axons found in rat hippocampal neurons. These A2AR should be activated by extracellular ATP-derived adenosine since a similar prevention/attenuation of SE-induced hippocampal MF sprouting was observed in CD73 knockout mice. These findings demonstrate that A2AR contribute to epilepsy-related MF sprouting, most likely through the reactivation of the ability of A2AR to control axon formation/outgrowth observed during neurodevelopment. These results frame the CD73-A2AR axis as a regulator of circuit remodeling in the mature brain.
Collapse
|
7
|
Jiang Y, Duan M, He H, Yao D, Luo C. Structural and Functional MRI Brain Changes in Patients with Schizophrenia Following Electroconvulsive Therapy: A Systematic Review. Curr Neuropharmacol 2022; 20:1241-1252. [PMID: 34370638 PMCID: PMC9886826 DOI: 10.2174/1570159x19666210809101248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/17/2021] [Accepted: 07/31/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Schizophrenia (SZ) is a severe psychiatric disorder typically characterized by multidimensional psychotic syndromes. Electroconvulsive therapy (ECT) is a treatment option for medication-resistant patients with SZ or treating acute symptoms. Although the efficacy of ECT has been demonstrated in clinical use, its therapeutic mechanisms in the brain remain elusive. OBJECTIVE This study aimed to summarize brain changes on structural magnetic resonance imaging (sMRI) and functional MRI (fMRI) after ECT. METHODS According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a systematic review was carried out. The PubMed and Medline databases were systematically searched using the following medical subject headings (MeSH): (electroconvulsive therapy OR ECT) AND (schizophrenia) AND (MRI OR fMRI OR DTI OR DWI). RESULTS This review yielded 12 MRI studies, including 4 with sMRI, 5 with fMRI and 3 with multimodal MRI. Increases in volumes of the hippocampus and its adjacent regions (parahippocampal gyrus and amygdala), as well as the insula and frontotemporal regions, were noted after ECT. fMRI studies found ECT-induced changes in different brain regions/networks, including the hippocampus, amygdala, default model network, salience network and other regions/networks that are thought to highly correlate with the pathophysiologic characteristics of SZ. The results of the correlation between brain changes and symptom remissions are inconsistent. CONCLUSION Our review provides evidence supporting ECT-induced brain changes on sMRI and fMRI in SZ and explores the relationship between these changes and symptom remission.
Collapse
Affiliation(s)
- Yuchao Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China; ,High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P.R. China;
| | - Mingjun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China; ,Address correspondence to these authors at the The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu 610054, China; Tel: 86-28-83201018; Fax: 86-28-83208238; E-mails: (C. Luo) and (M. Duan)
| | - Hui He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China; ,High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P.R. China;
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China; ,High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P.R. China; ,Research Unit of NeuroInformation (2019RU035), Chinese Academy of Medical Sciences, Chengdu, P.R. China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China; ,High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P.R. China; ,Research Unit of NeuroInformation (2019RU035), Chinese Academy of Medical Sciences, Chengdu, P.R. China,Address correspondence to these authors at the The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu 610054, China; Tel: 86-28-83201018; Fax: 86-28-83208238; E-mails: (C. Luo) and (M. Duan)
| |
Collapse
|
8
|
Ousdal OT, Brancati GE, Kessler U, Erchinger V, Dale AM, Abbott C, Oltedal L. The Neurobiological Effects of Electroconvulsive Therapy Studied Through Magnetic Resonance: What Have We Learned, and Where Do We Go? Biol Psychiatry 2022; 91:540-549. [PMID: 34274106 PMCID: PMC8630079 DOI: 10.1016/j.biopsych.2021.05.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022]
Abstract
Electroconvulsive therapy (ECT) is an established treatment choice for severe, treatment-resistant depression, yet its mechanisms of action remain elusive. Magnetic resonance imaging (MRI) of the human brain before and after treatment has been crucial to aid our comprehension of the ECT neurobiological effects. However, to date, a majority of MRI studies have been underpowered and have used heterogeneous patient samples as well as different methodological approaches, altogether causing mixed results and poor clinical translation. Hence, an association between MRI markers and therapeutic response remains to be established. Recently, the availability of large datasets through a global collaboration has provided the statistical power needed to characterize whole-brain structural and functional brain changes after ECT. In addition, MRI technological developments allow new aspects of brain function and structure to be investigated. Finally, more recent studies have also investigated immediate and long-term effects of ECT, which may aid in the separation of the therapeutically relevant effects from epiphenomena. The goal of this review is to outline MRI studies (T1, diffusion-weighted imaging, proton magnetic resonance spectroscopy) of ECT in depression to advance our understanding of the ECT neurobiological effects. Based on the reviewed literature, we suggest a model whereby the neurobiological effects can be understood within a framework of disruption, neuroplasticity, and rewiring of neural circuits. An improved characterization of the neurobiological effects of ECT may increase our understanding of ECT's therapeutic effects, ultimately leading to improved patient care.
Collapse
Affiliation(s)
- Olga Therese Ousdal
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Centre for Crisis Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway.
| | - Giulio E Brancati
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ute Kessler
- NORMENT, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Vera Erchinger
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California; Department of Radiology, University of California San Diego, La Jolla, California; Department of Neurosciences, University of California San Diego, La Jolla, California
| | - Christopher Abbott
- Department of Psychiatry, University of New Mexico, Albuquerque, New Mexico
| | - Leif Oltedal
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
9
|
Nuninga JO, Mandl RCW, Siero J, Nieuwdorp W, Heringa SM, Boks MP, Somers M, Sommer IEC. Shape and volume changes of the superior lateral ventricle after electroconvulsive therapy measured with ultra-high field MRI. Psychiatry Res Neuroimaging 2021; 317:111384. [PMID: 34537602 DOI: 10.1016/j.pscychresns.2021.111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/11/2021] [Accepted: 08/31/2021] [Indexed: 11/18/2022]
Abstract
The subventricular zone (SVZ) of the lateral ventricles harbors neuronal stem cells in adult mammals. Rodent studies report neurogenic effects in the SVZ of electroconvulsive stimulation. We hypothesize that if this finding translates to depressed patients undergoing electroconvulsive therapy (ECT), this would be reflected in shape changes at the SVZ. Using T1-weighted MR images acquired at ultra-high field strength (7T), the shape and volume of the ventricles were compared from pre to post ECT after 10 ECT sessions (in patients twice weekly) or 5 weeks apart (controls) using linear mixed models with age and gender as covariates. Ventricle shape significantly changed and volume significantly decreased over time in patients for the left ventricle, but not in controls. The decrease in volume of the ventricles was associated to a decrease in depression scores, and an increase in the left dentate gyrus, However, the shape changes of the ventricles were not restricted to the neurogenic niche in the lateral walls of the ventricles, providing no clear evidence for neurogenesis as sole explanation of volume changes in the ventricles after ECT.
Collapse
Affiliation(s)
- Jasper O Nuninga
- University Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells and Systems, Groningen, the Netherlands; Department of Psychiatry, UMC Utrecht Brain Center, University Utrecht, Utrecht, the Netherlands.
| | - René C W Mandl
- Department of Psychiatry, UMC Utrecht Brain Center, University Utrecht, Utrecht, the Netherlands
| | - Jeroen Siero
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands; Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands
| | - Wendy Nieuwdorp
- Department of Psychiatry, UMC Utrecht Brain Center, University Utrecht, Utrecht, the Netherlands
| | - Sophie M Heringa
- Department of Psychiatry, UMC Utrecht Brain Center, University Utrecht, Utrecht, the Netherlands
| | - Marco P Boks
- Department of Psychiatry, UMC Utrecht Brain Center, University Utrecht, Utrecht, the Netherlands
| | - Metten Somers
- Department of Psychiatry, UMC Utrecht Brain Center, University Utrecht, Utrecht, the Netherlands
| | - Iris E C Sommer
- University Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells and Systems, Groningen, the Netherlands
| |
Collapse
|
10
|
Ploski JE, Vaidya VA. The Neurocircuitry of Posttraumatic Stress Disorder and Major Depression: Insights Into Overlapping and Distinct Circuit Dysfunction-A Tribute to Ron Duman. Biol Psychiatry 2021; 90:109-117. [PMID: 34052037 PMCID: PMC8383211 DOI: 10.1016/j.biopsych.2021.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022]
Abstract
The neurocircuitry that contributes to the pathophysiology of posttraumatic stress disorder and major depressive disorder, psychiatric conditions that exhibit a high degree of comorbidity, likely involves both overlapping and unique structural and functional changes within multiple limbic brain regions. In this review, we discuss neurobiological alterations that are associated with posttraumatic stress disorder and major depressive disorder and highlight both similarities and differences that may exist between these disorders to argue for the existence of a shared neurobiology. We highlight the key contributions based on preclinical studies, emerging from the late Professor Ronald Duman's research, that have shaped our understanding of the neurocircuitry that contributes to both the etiopathology and treatment of major depressive disorder and posttraumatic stress disorder.
Collapse
Affiliation(s)
- Jonathan E. Ploski
- Department of Neuroscience and Molecular & Cell Biology, School of Behavioral and Brain Sciences, University of Texas at Dallas, GR41, 800 W Campbell Road, Richardson, TX 75080-3021, USA
| | - Vidita A. Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai, Maharashtra, 400005, India
| |
Collapse
|
11
|
Takamiya A, Bouckaert F, Laroy M, Blommaert J, Radwan A, Khatoun A, Deng ZD, Mc Laughlin M, Van Paesschen W, De Winter FL, Van den Stock J, Sunaert S, Sienaert P, Vandenbulcke M, Emsell L. Biophysical mechanisms of electroconvulsive therapy-induced volume expansion in the medial temporal lobe: A longitudinal in vivo human imaging study. Brain Stimul 2021; 14:1038-1047. [PMID: 34182182 PMCID: PMC8474653 DOI: 10.1016/j.brs.2021.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 01/22/2023] Open
Abstract
Background: Electroconvulsive therapy (ECT) applies electric currents to the brain to induce seizures for therapeutic purposes. ECT increases gray matter (GM) volume, predominantly in the medial temporal lobe (MTL). The contribution of induced seizures to this volume change remains unclear. Methods: T1-weighted structural MRI was acquired from thirty patients with late-life depression (mean age 72.5 ± 7.9 years, 19 female), before and one week after one course of right unilateral ECT. Whole brain voxel-/deformation-/surface-based morphometry analyses were conducted to identify tissue-specific (GM, white matter: WM), and cerebrospinal fluid (CSF) and cerebral morphometry changes following ECT. Whole-brain voxel-wise electric field (EF) strength was estimated to investigate the association of EF distribution and regional brain volume change. The association between percentage volume change in the right MTL and ECT-related parameters (seizure duration, EF, and number of ECT sessions) was investigated using multiple regression. Results: ECT induced widespread GM volume expansion with corresponding contraction in adjacent CSF compartments, and limited WM change. The regional EF was strongly correlated with the distance from the electrodes, but not with regional volume change. The largest volume expansion was identified in the right MTL, and this was correlated with the total seizure duration. Conclusions: Right unilateral ECT induces widespread, bilateral regional volume expansion and contraction, with the largest change in the right MTL. This dynamic volume change cannot be explained by the effect of electrical stimulation alone and is related to the cumulative effect of ECT-induced seizures.
Collapse
Affiliation(s)
- Akihiro Takamiya
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, Belgium; Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Filip Bouckaert
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, Belgium
| | - Maarten Laroy
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, Leuven, Belgium
| | - Jeroen Blommaert
- KU Leuven, Department of Oncology, Gynaecological Oncology, Leuven, Belgium
| | - Ahmed Radwan
- KU Leuven, Department of Imaging & Pathology, Translational MRI, Leuven, Belgium
| | - Ahmad Khatoun
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Research Group Experimental Oto-rhino-laryngology, Leuven, Belgium
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Myles Mc Laughlin
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Research Group Experimental Oto-rhino-laryngology, Leuven, Belgium
| | - Wim Van Paesschen
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Research Group Experimental Neurology, Leuven, Belgium
| | - François-Laurent De Winter
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, Belgium
| | - Jan Van den Stock
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, Belgium
| | - Stefan Sunaert
- KU Leuven, Department of Imaging & Pathology, Translational MRI, Leuven, Belgium; Department of Radiology, University Hospitals Leuven (UZ Leuven), Leuven, Belgium
| | - Pascal Sienaert
- Academic Center for ECT and Neuromodulation (AcCENT), University Psychiatric Center, KU Leuven, Kortenberg, Belgium
| | - Mathieu Vandenbulcke
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, Belgium
| | - Louise Emsell
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, Belgium; KU Leuven, Department of Imaging & Pathology, Translational MRI, Leuven, Belgium.
| |
Collapse
|
12
|
Gbyl K, Støttrup MM, Mitta Raghava J, Xue Jie S, Videbech P. Hippocampal volume and memory impairment after electroconvulsive therapy in patients with depression. Acta Psychiatr Scand 2021; 143:238-252. [PMID: 33251575 DOI: 10.1111/acps.13259] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/21/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Patients hesitate to consent to electroconvulsive therapy (ECT) because of the fear of memory impairment. The mechanisms underlying this impairment are unclear, but several observations suggest hippocampal alterations may be involved. We investigated whether ECT-induced change in hippocampal volume correlates with memory impairment. METHODS Using a 3 T MRI scanner, we acquired brain images and assessed cognitive performance in 22 severely depressed patients at three time points: (1) before ECT series, (2) within one week after the series, and (3) at six-month follow-up. The hippocampus was segmented into subregions using FreeSurfer. The dentate gyri (DG) were the primary regions of interest (ROIs) and major hippocampal subregions secondary ROIs. Cognitive performance was assessed using the Screen for Cognitive Impairment in Psychiatry and verbal memory using the Verbal Learning subtest. The linear mixed model and the repeated-measures correlation were used for statistical analyses. RESULTS ECT induced an increase in the right and left DG volume with co-occurring worsening in verbal memory, and these changes were within-patients negatively correlated (right DG, rrm = -0.85, df = 18, p = 0.0000002; left DG, rrm = -0.58, df = 18, p = 0.008). At a six-month follow-up, the volume of both DG decreased with a co-occurring improvement in verbal memory, and these changes were negatively correlated in the right DG (rrm = -0.64, df = 15, p = 0.005). Volume increases in 14 secondary ROIs were also negatively correlated with memory impairment. CONCLUSION ECT-related transient increases in the volume of major hippocampal subregions within-patients are associated with memory impairment. Hippocampal alterations following ECT should be the focus in searching for causes of the cognitive side effects.
Collapse
Affiliation(s)
- Krzysztof Gbyl
- Center for Neuropsychiatric Depression Research, Psychiatric Center Glostrup, Glostrup, Denmark
| | - Mette Marie Støttrup
- Center for Neuropsychiatric Depression Research, Psychiatric Center Glostrup, Glostrup, Denmark
| | - Jayachandra Mitta Raghava
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Psychiatric Center Glostrup, Glostrup, Denmark.,Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
| | - Song Xue Jie
- Department of Clinical Psychiatry, Psychiatric Center Glostrup, Glostrup, Denmark
| | - Poul Videbech
- Center for Neuropsychiatric Depression Research, Psychiatric Center Glostrup, Glostrup, Denmark
| |
Collapse
|
13
|
Ousdal OT, Gjestad R, Oltedal L. Reply to: Clinical Relevance of Brain Changes After Electroconvulsive Therapy: Is There Really No Link at All? Biol Psychiatry 2021; 89:e15-e16. [PMID: 32768147 DOI: 10.1016/j.biopsych.2020.05.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/26/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Olga Therese Ousdal
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway.
| | - Rolf Gjestad
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Centre for Crisis Psychology, University of Bergen, Bergen, Norway
| | - Leif Oltedal
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
14
|
García-Cabrerizo R, Ledesma-Corvi S, Bis-Humbert C, García-Fuster MJ. Sex differences in the antidepressant-like potential of repeated electroconvulsive seizures in adolescent and adult rats: Regulation of the early stages of hippocampal neurogenesis. Eur Neuropsychopharmacol 2020; 41:132-145. [PMID: 33160794 DOI: 10.1016/j.euroneuro.2020.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/06/2020] [Accepted: 10/16/2020] [Indexed: 12/27/2022]
Abstract
Age and sex are critical factors for the diagnosis and treatment of major depression, since there is a well-known age-by-sex difference in the prevalence of major depression (being females the most vulnerable ones) and in antidepressant efficacy (being adolescence a less responsive period than adulthood). Although the induction of electroconvulsive seizures (ECS) is a very old technique in humans, there is not much evidence reporting sex- and age-specific aspects of this treatment. The present study evaluated the antidepressant- and neurogenic-like potential of repeated ECS across time in adolescent and adult rats (naïve or in a model of early life stress capable of mimicking a pro-depressive phenotype), while including a sex perspective. The main results demonstrated age- and sex-specific differences in the antidepressant-like potential of repeated ECS, since it worked when administered during adolescence or adulthood in male rats (although with a shorter length in adolescence), while in females rendered deleterious during adolescence and ineffective in adulthood. Yet, repeated ECS increased cell proliferation and vastly boosted young neuronal survival in a time-dependent manner for both sexes and independently of age. Moreover, pharmacological inhibition of basal cell proliferation prevented the antidepressant-like effect induced by repeated ECS in male rats, but only partially blocked the very robust increase in the initial cell markers of hippocampal neurogenesis. Overall, the present results suggest that the induction of the early phases of neurogenesis by ECS, besides having a role in mediating its antidepressant-like effect, might participate in some other neuroplastic actions, opening the path for future studies.
Collapse
Affiliation(s)
- Rubén García-Cabrerizo
- IUNICS, University of the Balearic Islands, Cra. de Valldemossa km 7.5, E-07122 Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain; Present address: APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Sandra Ledesma-Corvi
- IUNICS, University of the Balearic Islands, Cra. de Valldemossa km 7.5, E-07122 Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Cristian Bis-Humbert
- IUNICS, University of the Balearic Islands, Cra. de Valldemossa km 7.5, E-07122 Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - M Julia García-Fuster
- IUNICS, University of the Balearic Islands, Cra. de Valldemossa km 7.5, E-07122 Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.
| |
Collapse
|
15
|
Hattiangady B, Kuruba R, Shuai B, Grier R, Shetty AK. Hippocampal Neural Stem Cell Grafting after Status Epilepticus Alleviates Chronic Epilepsy and Abnormal Plasticity, and Maintains Better Memory and Mood Function. Aging Dis 2020; 11:1374-1394. [PMID: 33269095 PMCID: PMC7673840 DOI: 10.14336/ad.2020.1020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022] Open
Abstract
Hippocampal damage after status epilepticus (SE) leads to multiple epileptogenic changes, which lead to chronic temporal lobe epilepsy (TLE). Morbidities such as spontaneous recurrent seizures (SRS) and memory and mood impairments are seen in a significant fraction of SE survivors despite the administration of antiepileptic drugs after SE. We examined the efficacy of bilateral intra-hippocampal grafting of neural stem/progenitor cells (NSCs) derived from the embryonic day 19 rat hippocampi, six days after SE for restraining SE-induced SRS, memory, and mood impairments in the chronic phase. Grafting of NSCs curtailed the progression of SRS at 3-5 months post-SE and reduced the frequency and severity of SRS activity when examined at eight months post-SE. Reduced SRS activity was also associated with improved memory function. Graft-derived cells migrated into different hippocampal cell layers, differentiated into GABA-ergic interneurons, astrocytes, and oligodendrocytes. Significant percentages of graft-derived cells also expressed beneficial neurotrophic factors such as the fibroblast growth factor-2, brain-derived neurotrophic factor, insulin-like growth factor-1 and glial cell line-derived neurotrophic factor. NSC grafting protected neuropeptide Y- and parvalbumin-positive host interneurons, diminished the abnormal migration of newly born neurons, and rescued the reelin+ interneurons in the dentate gyrus. Besides, grafting led to the maintenance of a higher level of normal neurogenesis in the chronic phase after SE and diminished aberrant mossy fiber sprouting in the dentate gyrus. Thus, intrahippocampal grafting of hippocampal NSCs shortly after SE considerably curbed the progression of epileptogenic processes and SRS, which eventually resulted in less severe chronic epilepsy devoid of significant cognitive and mood impairments.
Collapse
Affiliation(s)
- Bharathi Hattiangady
- 1Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.,2Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA.,3Department of Surgery (Neurosurgery) Duke University Medical Center, Durham, NC, USA.,4Research and Surgery Services, Durham Veterans Affairs Medical Center, Durham, NC, USA
| | - Ramkumar Kuruba
- 3Department of Surgery (Neurosurgery) Duke University Medical Center, Durham, NC, USA.,4Research and Surgery Services, Durham Veterans Affairs Medical Center, Durham, NC, USA
| | - Bing Shuai
- 1Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.,2Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA.,3Department of Surgery (Neurosurgery) Duke University Medical Center, Durham, NC, USA.,4Research and Surgery Services, Durham Veterans Affairs Medical Center, Durham, NC, USA
| | - Remedios Grier
- 3Department of Surgery (Neurosurgery) Duke University Medical Center, Durham, NC, USA.,4Research and Surgery Services, Durham Veterans Affairs Medical Center, Durham, NC, USA
| | - Ashok K Shetty
- 1Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.,2Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA.,3Department of Surgery (Neurosurgery) Duke University Medical Center, Durham, NC, USA.,4Research and Surgery Services, Durham Veterans Affairs Medical Center, Durham, NC, USA
| |
Collapse
|
16
|
Brain-Derived Neurotrophic Factor in the Cerebrospinal Fluid Increases During Electroconvulsive Therapy in Patients With Depression: A Preliminary Report. J ECT 2020; 36:193-197. [PMID: 32118691 DOI: 10.1097/yct.0000000000000667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Preclinical evidence suggests a role for brain-derived neurotrophic factor (BDNF) in the mode of action of electroconvulsive therapy (ECT). Clinical data regarding BDNF levels in serum or plasma are more inconsistent. We measured BDNF levels from the cerebrospinal fluid (CSF) in patients with major depression before and shortly after a course of ECT. METHODS Cerebrospinal fluid and serum BDNF levels were determined using commercially available enzyme-linked immunosorbent assay (ELISA) kits. RESULTS We included 9 patients with a severe depressive episode within a major depressive disorder into the study. The CSF BDNF concentrations at baseline were lower compared with those CSF BDNF levels after the complete ECT treatment (P = 0.042), whereas no such a constellation was found for serum BDNF. No associations between the BDNF levels and the amount of individual ECT sessions or the reduction of the depressive symptoms were found. CONCLUSIONS For the first time, it has been shown that CSF BDNF concentrations increase during a course of ECT in patients with a severe unipolar depressive episode, which is in line with the neurotrophin hypothesis as a mode of action of ECT, although it was not possible to demonstrate either a dose-effect relation or a relationship with the actual antidepressant effects in our small sample. Major limitation is the small sample size.
Collapse
|
17
|
Sackeim HA. The impact of electroconvulsive therapy on brain grey matter volume: What does it mean? Brain Stimul 2020; 13:1226-1231. [DOI: 10.1016/j.brs.2020.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 01/16/2023] Open
|
18
|
Vasogenic edema versus neuroplasticity as neural correlates of hippocampal volume increase following electroconvulsive therapy. Brain Stimul 2020; 13:1080-1086. [DOI: 10.1016/j.brs.2020.04.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/07/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023] Open
|
19
|
Volume increase in the dentate gyrus after electroconvulsive therapy in depressed patients as measured with 7T. Mol Psychiatry 2020; 25:1559-1568. [PMID: 30867562 DOI: 10.1038/s41380-019-0392-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 01/03/2023]
Abstract
Electroconvulsive therapy (ECT) is the most effective treatment for depression, yet its working mechanism remains unclear. In the animal analog of ECT, neurogenesis in the dentate gyrus (DG) of the hippocampus is observed. In humans, volume increase of the hippocampus has been reported, but accurately measuring the volume of subfields is limited with common MRI protocols. If the volume increase of the hippocampus in humans is attributable to neurogenesis, it is expected to be exclusively present in the DG, whereas other processes (angiogenesis, synaptogenesis) also affect other subfields. Therefore, we acquired an optimized MRI scan at 7-tesla field strength allowing sensitive investigation of hippocampal subfields. A further increase in sensitivity of the within-subjects measurements is gained by automatic placement of the field of view. Patients receive two MRI scans: at baseline and after ten bilateral ECT sessions (corresponding to a 5-week interval). Matched controls are also scanned twice, with a similar 5-week interval. A total of 31 participants (23 patients, 8 controls) completed the study. A large and significant increase in DG volume was observed after ECT (M = 75.44 mm3, std error = 9.65, p < 0.001), while other hippocampal subfields were unaffected. We note that possible type II errors may be present due to the small sample size. In controls no changes in volume were found. Furthermore, an increase in DG volume was related to a decrease in depression scores, and baseline DG volume predicted clinical response. These findings suggest that the volume change of the DG is related to the antidepressant properties of ECT, and may reflect neurogenesis.
Collapse
|
20
|
Hippocampal volume change following ECT is mediated by rs699947 in the promotor region of VEGF. Transl Psychiatry 2019; 9:191. [PMID: 31431610 PMCID: PMC6702208 DOI: 10.1038/s41398-019-0530-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/26/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022] Open
Abstract
Several studies have shown that electroconvulsive therapy (ECT) results in increased hippocampal volume. It is likely that a multitude of mechanisms including neurogenesis, gliogenesis, synaptogenesis, angiogenesis, and vasculogenesis contribute to this volume increase. Neurotrophins, like vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF) seem to play a crucial mediating role in several of these mechanisms. We hypothesized that two regulatory SNPs in the VEGF and BDNF gene influence the changes in hippocampal volume following ECT. We combined genotyping and brain MRI assessment in a sample of older adults suffering from major depressive disorder to test this hypothesis. Our results show an effect of rs699947 (in the promotor region of VEGF) on hippocampal volume changes following ECT. However, we did not find a clear effect of rs6265 (in BDNF). To the best of our knowledge, this is the first study investigating possible genetic mechanisms involved in hippocampal volume change during ECT treatment.
Collapse
|
21
|
Effect of Acute Stress on the Expression of BDNF, trkB, and PSA-NCAM in the Hippocampus of the Roman Rats: A Genetic Model of Vulnerability/Resistance to Stress-Induced Depression. Int J Mol Sci 2018; 19:ijms19123745. [PMID: 30477252 PMCID: PMC6320970 DOI: 10.3390/ijms19123745] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/22/2022] Open
Abstract
The Roman High-Avoidance (RHA) and the Roman Low-Avoidance (RLA) rats, represent two psychogenetically-selected lines that are, respectively, resistant and prone to displaying depression-like behavior, induced by stressors. In the view of the key role played by the neurotrophic factors and neuronal plasticity, in the pathophysiology of depression, we aimed at assessing the effects of acute stress, i.e., forced swimming (FS), on the expression of brain-derived neurotrophic factor (BDNF), its trkB receptor, and the Polysialilated-Neural Cell Adhesion Molecule (PSA-NCAM), in the dorsal (dHC) and ventral (vHC) hippocampus of the RHA and the RLA rats, by means of western blot and immunohistochemical assays. A 15 min session of FS elicited different changes in the expression of BDNF in the dHC and the vHC. In RLA rats, an increment in the CA2 and CA3 subfields of the dHC, and a decrease in the CA1 and CA3 subfields and the dentate gyrus (DG) of the vHC, was observed. On the other hand, in the RHA rats, no significant changes in the BDNF levels was seen in the dHC and there was a decrease in the CA1, CA3, and DG of the vHC. Line-related changes were also observed in the expression of trkB and PSA-NCAM. The results are consistent with the hypothesis that the differences in the BDNF/trkB signaling and neuroplastic mechanisms are involved in the susceptibility of RLA rats and resistance of RHA rats to stress-induced depression.
Collapse
|
22
|
Umemori J, Winkel F, Didio G, Llach Pou M, Castrén E. iPlasticity: Induced juvenile-like plasticity in the adult brain as a mechanism of antidepressants. Psychiatry Clin Neurosci 2018; 72:633-653. [PMID: 29802758 PMCID: PMC6174980 DOI: 10.1111/pcn.12683] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2018] [Indexed: 12/11/2022]
Abstract
The network hypothesis of depression proposes that mood disorders reflect problems in information processing within particular neural networks. Antidepressants (AD), including selective serotonin reuptake inhibitors (SSRI), function by gradually improving information processing within these networks. AD have been shown to induce a state of juvenile-like plasticity comparable to that observed during developmental critical periods: Such critical-period-like plasticity allows brain networks to better adapt to extrinsic and intrinsic signals. We have coined this drug-induced state of juvenile-like plasticity 'iPlasticity.' A combination of iPlasticity induced by chronic SSRI treatment together with training, rehabilitation, or psychotherapy improves symptoms of neuropsychiatric disorders and issues underlying the developmentally or genetically malfunctioning networks. We have proposed that iPlasticity might be a critical component of AD action. We have demonstrated that iPlasticity occurs in the visual cortex, fear erasure network, extinction of aggression caused by social isolation, and spatial reversal memory in rodent models. Chronic SSRI treatment is known to promote neurogenesis and to cause dematuration of granule cells in the dentate gyrus and of interneurons, especially parvalbumin interneurons enwrapped by perineuronal nets in the prefrontal cortex, visual cortex, and amygdala. Brain-derived neurotrophic factor (BDNF), via its receptor tropomyosin kinase receptor B, is involved in the processes of synaptic plasticity, including neurogenesis, neuronal differentiation, weight of synapses, and gene regulation of synaptic formation. BDNF can be activated by both chronic SSRI treatment and neuronal activity. Accordingly, the BDNF/tropomyosin kinase receptor B pathway is critical for iPlasticity, but further analyses will be needed to provide mechanical insight into the processes of iPlasticity.
Collapse
Affiliation(s)
- Juzoh Umemori
- Neuroscience Center, HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Frederike Winkel
- Neuroscience Center, HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Giuliano Didio
- Neuroscience Center, HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Maria Llach Pou
- Neuroscience Center, HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Eero Castrén
- Neuroscience Center, HiLIFEUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
23
|
Chen SD, Yang JL, Hwang WC, Yang DI. Emerging Roles of Sonic Hedgehog in Adult Neurological Diseases: Neurogenesis and Beyond. Int J Mol Sci 2018; 19:ijms19082423. [PMID: 30115884 PMCID: PMC6121355 DOI: 10.3390/ijms19082423] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022] Open
Abstract
Sonic hedgehog (Shh), a member of the hedgehog (Hh) family, was originally recognized as a morphogen possessing critical characters for neural development during embryogenesis. Recently, however, Shh has emerged as an important modulator in adult neural tissues through different mechanisms such as neurogenesis, anti-oxidation, anti-inflammation, and autophagy. Therefore, Shh may potentially have clinical application in neurodegenerative diseases and brain injuries. In this article, we present some examples, including ours, to show different aspects of Shh signaling and how Shh agonists or mimetics are used to alter the neuronal fates in various disease models, both in vitro and in vivo. Other potential mechanisms that are discussed include alteration of mitochondrial function and anti-aging effect; both are critical for age-related neurodegenerative diseases. A thorough understanding of the protective mechanisms elicited by Shh may provide a rationale to design innovative therapeutic regimens for various neurodegenerative diseases.
Collapse
Affiliation(s)
- Shang-Der Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City 83301, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City 83301, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan.
| | - Jenq-Lin Yang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City 83301, Taiwan.
| | - Wei-Chao Hwang
- Department of Neurology, Taipei City Hospital, Taipei 11556, Taiwan.
| | - Ding-I Yang
- Institute of Brain Science, National Yang-Ming University, Taipei 11221, Taiwan.
- Brain Research Center, National Yang-Ming University, Taipei 11221, Taiwan.
| |
Collapse
|
24
|
Koyama R, Ikegaya Y. The Molecular and Cellular Mechanisms of Axon Guidance in Mossy Fiber Sprouting. Front Neurol 2018; 9:382. [PMID: 29896153 PMCID: PMC5986954 DOI: 10.3389/fneur.2018.00382] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/11/2018] [Indexed: 01/25/2023] Open
Abstract
The question of whether mossy fiber sprouting is epileptogenic has not been resolved; both sprouting-induced recurrent excitatory and inhibitory circuit hypotheses have been experimentally (but not fully) supported. Therefore, whether mossy fiber sprouting is a potential therapeutic target for epilepsy remains under debate. Moreover, the axon guidance mechanisms of mossy fiber sprouting have attracted the interest of neuroscientists. Sprouting of mossy fibers exhibits several uncommon axonal growth features in the basically non-plastic adult brain. For example, robust branching of axonal collaterals arises from pre-existing primary mossy fiber axons. Understanding the branching mechanisms in adulthood may contribute to axonal regeneration therapies in neuroregenerative medicine in which robust axonal re-growth is essential. Additionally, because granule cells are produced throughout life in the neurogenic dentate gyrus, it is interesting to examine whether the mossy fibers of newly generated granule cells follow the pre-existing trajectories of sprouted mossy fibers in the epileptic brain. Understanding these axon guidance mechanisms may contribute to neuron transplantation therapies, for which the incorporation of transplanted neurons into pre-existing neural circuits is essential. Thus, clarifying the axon guidance mechanisms of mossy fiber sprouting could lead to an understanding of central nervous system (CNS) network reorganization and plasticity. Here, we review the molecular and cellular mechanisms of axon guidance in mossy fiber sprouting by discussing mainly in vitro studies.
Collapse
Affiliation(s)
- Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
25
|
Abstract
Traditional pharmacological treatments for depression have a delayed therapeutic onset, ranging from several weeks to months, and there is a high percentage of individuals who never respond to treatment. In contrast, ketamine produces rapid-onset antidepressant, anti-suicidal, and anti-anhedonic actions following a single administration to patients with depression. Proposed mechanisms of the antidepressant action of ketamine include N-methyl-D-aspartate receptor (NMDAR) modulation, gamma aminobutyric acid (GABA)-ergic interneuron disinhibition, and direct actions of its hydroxynorketamine (HNK) metabolites. Downstream actions include activation of the mechanistic target of rapamycin (mTOR), deactivation of glycogen synthase kinase-3 and eukaryotic elongation factor 2 (eEF2), enhanced brain-derived neurotrophic factor (BDNF) signaling, and activation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (AMPARs). These putative mechanisms of ketamine action are not mutually exclusive and may complement each other to induce potentiation of excitatory synapses in affective-regulating brain circuits, which results in amelioration of depression symptoms. We review these proposed mechanisms of ketamine action in the context of how such mechanisms are informing the development of novel putative rapid-acting antidepressant drugs. Such drugs that have undergone pre-clinical, and in some cases clinical, testing include the muscarinic acetylcholine receptor antagonist scopolamine, GluN2B-NMDAR antagonists (i.e., CP-101,606, MK-0657), (2R,6R)-HNK, NMDAR glycine site modulators (i.e., 4-chlorokynurenine, pro-drug of the glycineB NMDAR antagonist 7-chlorokynurenic acid), NMDAR agonists [i.e., GLYX-13 (rapastinel)], metabotropic glutamate receptor 2/3 (mGluR2/3) antagonists, GABAA receptor modulators, and drugs acting on various serotonin receptor subtypes. These ongoing studies suggest that the future acute treatment of depression will typically occur within hours, rather than months, of treatment initiation.
Collapse
Affiliation(s)
- Panos Zanos
- Department of Psychiatry, University of Maryland School of Medicine, Rm. 934F MSTF, 685 W. Baltimore St., Baltimore, MD, 21201, USA.
| | - Scott M Thompson
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, St. BRB 5-007, 655 W. Baltimore St., Baltimore, MD, 21201, USA, Baltimore, MD, 21201, USA
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Todd D Gould
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, University of Maryland School of Medicine, Rm. 936 MSTF, 685 W. Baltimore St., Baltimore, MD, 21201, USA
| |
Collapse
|
26
|
Nagy C, Vaillancourt K, Turecki G. A role for activity-dependent epigenetics in the development and treatment of major depressive disorder. GENES BRAIN AND BEHAVIOR 2018; 17:e12446. [DOI: 10.1111/gbb.12446] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/17/2017] [Accepted: 12/06/2017] [Indexed: 12/22/2022]
Affiliation(s)
- C. Nagy
- McGill Group for Suicide Studies, Department of Psychiatry; McGill University; Montreal Canada
| | - K. Vaillancourt
- McGill Group for Suicide Studies, Department of Psychiatry; McGill University; Montreal Canada
| | - G. Turecki
- McGill Group for Suicide Studies, Department of Psychiatry; McGill University; Montreal Canada
| |
Collapse
|
27
|
Enomoto S, Shimizu K, Nibuya M, Suzuki E, Nagata K, Kondo T. Activated brain-derived neurotrophic factor/TrkB signaling in rat dorsal and ventral hippocampi following 10-day electroconvulsive seizure treatment. Neurosci Lett 2017; 660:45-50. [DOI: 10.1016/j.neulet.2017.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/31/2017] [Accepted: 09/06/2017] [Indexed: 12/15/2022]
|
28
|
Serra MP, Poddighe L, Boi M, Sanna F, Piludu MA, Corda MG, Giorgi O, Quartu M. Expression of BDNF and trkB in the hippocampus of a rat genetic model of vulnerability (Roman low-avoidance) and resistance (Roman high-avoidance) to stress-induced depression. Brain Behav 2017; 7:e00861. [PMID: 29075579 PMCID: PMC5651403 DOI: 10.1002/brb3.861] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/13/2017] [Accepted: 09/22/2017] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION The selective breeding of Roman High- (RHA) and Low-Avoidance (RLA) rats for, respectively, rapid versus poor acquisition of the active avoidance response has generated two distinct phenotypes differing in many behavioral traits, including coping strategies to aversive conditions. Thus, RLA rats are considered as a genetic model of vulnerability to stress-induced depression whereas RHA rats are a model of resilience to that trait. Besides the monoamine hypothesis of depression, there is evidence that alterations in neuronal plasticity in the hippocampus and other brain areas are critically involved in the pathophysiology of mood disorders. MATERIALS AND METHODS Western blot (WB) and immunohistochemistry were used to investigate the basal immunochemical occurrence of brain-derived neurotrophic factor (BDNF) and its high-affinity tyrosine-kinase receptor trkB in the dorsal and ventral hippocampus of adult RHA and RLA rats. RESULTS WB analysis indicated that the optical density of BDNF- and trkB-positive bands in the dorsal hippocampus is, respectively, 48% and 25% lower in RLA versus RHA rats. Densitometric analysis of BDNF- and trkB-like immunoreactivity (LI) in brain sections showed that BDNF-LI is 24% to 34% lower in the different sectors of the Ammon's horn of RLA versus RHA rats, whereas line-related differences are observed in the dentate gyrus (DG) only in the ventral hippocampus. As for trkB-LI, significant differences are observed only in the dorsal hippocampus, where density is 23% lower in the DG of RLA versus RHA rats, while no differences across lines occur in the Ammon's horn. CONCLUSION These findings support the hypothesis that a reduced BDNF/trkB signaling in the hippocampus of RLA versus RHA rats may contribute to their more pronounced vulnerability to stress-induced depression.
Collapse
Affiliation(s)
- M Pina Serra
- Department of Biomedical Sciences University of Cagliari Monserrato (CA) Italy
| | - Laura Poddighe
- Department of Biomedical Sciences University of Cagliari Monserrato (CA) Italy
| | - Marianna Boi
- Department of Biomedical Sciences University of Cagliari Monserrato (CA) Italy
| | - Francesco Sanna
- Department of Life and Environmental Sciences University of Cagliari Cagliari Italy
| | - M Antonietta Piludu
- Department of Life and Environmental Sciences University of Cagliari Cagliari Italy
| | - M Giuseppa Corda
- Department of Life and Environmental Sciences University of Cagliari Cagliari Italy
| | - Osvaldo Giorgi
- Department of Life and Environmental Sciences University of Cagliari Cagliari Italy
| | - Marina Quartu
- Department of Biomedical Sciences University of Cagliari Monserrato (CA) Italy
| |
Collapse
|
29
|
Singh A, Kar SK. How Electroconvulsive Therapy Works?: Understanding the Neurobiological Mechanisms. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2017; 15:210-221. [PMID: 28783929 PMCID: PMC5565084 DOI: 10.9758/cpn.2017.15.3.210] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/06/2016] [Accepted: 12/21/2016] [Indexed: 12/29/2022]
Abstract
Electroconvulsive therapy (ECT) is a time tested treatment modality for the management of various psychiatric disorders. There have been a lot of modifications in the techniques of delivering ECT over decades. Despite lots of criticisms encountered, ECT has still been used commonly in clinical practice due to its safety and efficacy. Research evidences found multiple neuro-biological mechanisms for the therapeutic effect of ECT. ECT brings about various neuro-physiological as well as neuro-chemical changes in the macro- and micro-environment of the brain. Diverse changes involving expression of genes, functional connectivity, neurochemicals, permeability of blood-brain-barrier, alteration in immune system has been suggested to be responsible for the therapeutic effects of ECT. This article reviews different neurobiological mechanisms responsible for the therapeutic efficacy of ECT.
Collapse
Affiliation(s)
- Amit Singh
- Department of Psychiatry, King George’s Medical University, Lucknow, U.P,
India
| | - Sujita Kumar Kar
- Department of Psychiatry, King George’s Medical University, Lucknow, U.P,
India
| |
Collapse
|
30
|
Petrilli MA, Kranz TM, Kleinhaus K, Joe P, Getz M, Johnson P, Chao MV, Malaspina D. The Emerging Role for Zinc in Depression and Psychosis. Front Pharmacol 2017; 8:414. [PMID: 28713269 PMCID: PMC5492454 DOI: 10.3389/fphar.2017.00414] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/13/2017] [Indexed: 12/20/2022] Open
Abstract
Zinc participation is essential for all physiological systems, including neural functioning, where it participates in a myriad of cellular processes. Converging clinical, molecular, and genetic discoveries illuminate key roles for zinc homeostasis in association with clinical depression and psychosis which are not yet well appreciated at the clinical interface. Intracellular deficiency may arise from low circulating zinc levels due to dietary insufficiency, or impaired absorption from aging or medical conditions, including alcoholism. A host of medications commonly administered to psychiatric patients, including anticonvulsants, oral medications for diabetes, hormones, antacids, anti-inflammatories and others also impact zinc absorption. Furthermore, inefficient genetic variants in zinc transporter molecules that transport the ion across cellular membranes impede its action even when circulating zinc concentrations is in the normal range. Well powered clinical studies have shown beneficial effects of supplemental zinc in depression and it important to pursue research using zinc as a potential therapeutic option for psychosis as well. Meta-analyses support the adjunctive use of zinc in major depression and a single study now supports zinc for psychotic symptoms. This manuscript reviews the biochemistry and bench top evidence on putative molecular mechanisms of zinc as a psychiatric treatment.
Collapse
Affiliation(s)
| | - Thorsten M Kranz
- Departments of Cell Biology, Physiology and Neuroscience, and Psychiatry, Skirball Institute of Biomolecular Medicine, New York UniversityNew York, NY, United States
| | - Karine Kleinhaus
- Department of Psychiatry, New York University School of MedicineNew York, NY, United States
| | - Peter Joe
- Department of Psychiatry, New York University School of MedicineNew York, NY, United States
| | - Mara Getz
- Department of Psychiatry, New York University School of MedicineNew York, NY, United States
| | - Porsha Johnson
- Department of Psychiatry, New York University School of MedicineNew York, NY, United States
| | - Moses V Chao
- Departments of Cell Biology, Physiology and Neuroscience, and Psychiatry, Skirball Institute of Biomolecular Medicine, New York UniversityNew York, NY, United States
| | - Dolores Malaspina
- Department of Psychiatry, New York University School of MedicineNew York, NY, United States
| |
Collapse
|
31
|
Ray A. Treatment of refractory status epilepticus with electroconvulsive therapy: Need for future clinical studies. INTERNATIONAL JOURNAL OF EPILEPSY 2017; 04:098-103. [DOI: 10.1016/j.ijep.2017.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
AbstractStatus epilepticus (SE) is a serious medical emergency. Refractory-SE non-responsive to anesthetic medication is a life threatening condition with very high mortality rate. Proper management of those cases is a big medical challenge. Over the last two decades there are anecdotal reports of successful management of such cases with electroconvulsive therapy (ECT) in 12 patients of different age group with variable pattern of seizures and different etiology. However, there is no systematic research about it. ECT is a well-known safe, easy- to-administer, low-cost therapeutic modality in the field of neuro-psychiatry. Thus its potential to treat refractory-SE which essentially lacks effective management should be evaluated in future research. The objectives of this article are to do a thorough literature review on use of ECT in refractory-SE; mechanism of action of ECT in refractory-SE; and finally formulate a working protocol for future study of using ECT in patients of refractory-SE.
Collapse
Affiliation(s)
- Anindya Ray
- Department of Psychiatry, Malda Medical College, West Bengal, India
| |
Collapse
|
32
|
Wilkinson ST, Sanacora G, Bloch MH. Hippocampal volume changes following electroconvulsive therapy: a systematic review and meta-analysis. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 2:327-335. [PMID: 28989984 PMCID: PMC5627663 DOI: 10.1016/j.bpsc.2017.01.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Reduced hippocampal volume is one of the most consistent morphological findings in Major Depressive Disorder (MDD). Electroconvulsive therapy (ECT) is the most effective therapy for MDD, yet its mechanism of action remains poorly understood. Animal models show that ECT induces several neuroplastic processes, which lead to hippocampal volume increases. We conducted a meta-analysis of ECT studies in humans to investigate its effects on hippocampal volume. METHODS PubMed was searched for studies examining hippocampal volume before and after ECT. A random-effects model was used for meta-analysis with standardized mean difference (SMD) of the change in hippocampal volume before and after ECT as the primary outcome. Nine studies involving 174 participants were included. RESULTS Total hippocampal volumes increased significantly following ECT compared to pre-treatment values (SMD=1.10; 95% CI 0.80-1.39; z=7.34; p<0.001; k=9). Both right (SMD=1.01; 95% CI 0.72-1.30; z=6.76; p<0.001; k=7) and left (SMD=0.87; 95% CI 0.51-1.23; z=4.69; p<0.001; k=7) hippocampal volumes were also similarly increased significantly following ECT. We demonstrated no correlation between improvement in depression symptoms with ECT and change in total hippocampal volume (beta=-1.28, 95% CI -4.51-1.95, z=-0.78, p=0.44). CONCLUSION We demonstrate fairly consistent increases in hippocampal volume bilaterally following ECT treatment. The relationship among these volumetric changes and clinical improvement and cognitive side effects of ECT should be explored by larger, multisite studies with harmonized imaging methods.
Collapse
Affiliation(s)
- Samuel T. Wilkinson
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Connecticut Mental Health Center, New Haven, CT 06519
| | - Gerard Sanacora
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Connecticut Mental Health Center, New Haven, CT 06519
| | - Michael H. Bloch
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Connecticut Mental Health Center, New Haven, CT 06519
- Yale Child Study Center, Yale School of Medicine, New Haven, CT 06519
| |
Collapse
|
33
|
Ramaker MJ, Dulawa SC. Identifying fast-onset antidepressants using rodent models. Mol Psychiatry 2017; 22:656-665. [PMID: 28322276 DOI: 10.1038/mp.2017.36] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 01/18/2017] [Accepted: 01/23/2017] [Indexed: 02/07/2023]
Abstract
Depression is a leading cause of disability worldwide and a major contributor to the burden of suicide. A major limitation of classical antidepressants is that 2-4 weeks of continuous treatment is required to elicit therapeutic effects, prolonging the period of depression, disability and suicide risk. Therefore, the development of fast-onset antidepressants is crucial. Preclinical identification of fast-onset antidepressants requires animal models that can accurately predict the delay to therapeutic onset. Although several well-validated assay models exist that predict antidepressant potential, few thoroughly tested animal models exist that can detect therapeutic onset. In this review, we discuss and assess the validity of seven rodent models currently used to assess antidepressant onset: olfactory bulbectomy, chronic mild stress, chronic forced swim test, novelty-induced hypophagia (NIH), novelty-suppressed feeding (NSF), social defeat stress, and learned helplessness. We review the effects of classical antidepressants in these models, as well as six treatments that possess fast-onset antidepressant effects in the clinic: electroconvulsive shock therapy, sleep deprivation, ketamine, scopolamine, GLYX-13 and pindolol used in conjunction with classical antidepressants. We also discuss the effects of several compounds that have yet to be tested in humans but have fast-onset antidepressant-like effects in one or more of these antidepressant onset sensitive models. These compounds include selective serotonin (5-HT)2C receptor antagonists, a 5-HT4 receptor agonist, a 5-HT7 receptor antagonist, NMDA receptor antagonists, a TREK-1 receptor antagonist, mGluR antagonists and (2R,6R)-HNK. Finally, we provide recommendations for identifying fast-onset antidepressants using rodent behavioral models and molecular approaches.
Collapse
Affiliation(s)
- M J Ramaker
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - S C Dulawa
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
34
|
Radman T, Lisanby SH. New directions in the rational design of electrical and magnetic seizure therapies: individualized Low Amplitude Seizure Therapy (iLAST) and Magnetic Seizure Therapy (MST). Int Rev Psychiatry 2017; 29:63-78. [PMID: 28430533 DOI: 10.1080/09540261.2017.1304898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Electroconvulsive therapy remains a key treatment option for severe cases of depression, but undesirable side-effects continue to limit its use. Innovations in the design of novel seizure therapies seek to improve its risk benefit ratio through enhanced control of the focality of stimulation. The design of seizure therapies with increased spatial precision is motivated by avoiding stimulation of deep brain structures implicated in memory retention, including the hippocampus. The development of two innovations in seizure therapy-individualized low-amplitude seizure therapy (iLAST) and magnetic seizure therapy (MST), are detailed. iLAST is a method of seizure titration involving reducing current spread in the brain by titrating current amplitude from the traditional fixed amplitudes. MST, which can be used in conjunction with iLAST dosing methods, involves the use of magnetic stimulation to reduce shunting and spreading of current by the scalp occurring during electrical stimulation. Evidence is presented on the rationale for increasing the focality of ECT in hopes of preserving its effectiveness, while reducing cognitive side-effects. Finally, the value of electric field and neural modelling is illustrated to explain observed clinical effects of modifications to ECT technique, and their utility in the rational design of the next generation of seizure therapies.
Collapse
Affiliation(s)
- Thomas Radman
- a National Institute of Mental Health , Bethesda , MD , USA
| | | |
Collapse
|
35
|
Abstract
OBJECTIVE Electroconvulsive therapy (ECT) is one of the most efficient treatments for severe major depression, but some patients suffer from retrograde memory loss after treatment. Electroconvulsive seizures (ECS), an animal model of ECT, have repeatedly been shown to increase hippocampal neurogenesis, and multiple ECS treatments cause retrograde amnesia in hippocampus-dependent memory tasks. Since recent studies propose that addition of newborn hippocampal neurons might degrade existing memories, we investigated whether the memory impairment after multiple ECS treatments is a cumulative effect of repeated treatments, or if it is the result of a delayed effect after a single ECS. METHODS We used the hippocampus-dependent memory task Morris water maze (MWM) to evaluate spatial memory. Rats were exposed to an 8-day training paradigm before receiving either a single ECS or sham treatment and tested in the MWM 24 h, 72 h, or 7 days after this treatment, or multiple (four) ECS or sham treatments and tested 7 days after the first treatment. RESULTS A single ECS treatment was not sufficient to cause retrograde amnesia whereas multiple ECS treatments strongly disrupted spatial memory in the MWM. CONCLUSION The retrograde amnesia after multiple ECS is a cumulative effect of repeated treatments rather than a delayed effect after a single ECS.
Collapse
|
36
|
Kobayashi K, Imoto Y, Yamamoto F, Kawasaki M, Ueno M, Segi-Nishida E, Suzuki H. Rapid and lasting enhancement of dopaminergic modulation at the hippocampal mossy fiber synapse by electroconvulsive treatment. J Neurophysiol 2016; 117:284-289. [PMID: 27784811 DOI: 10.1152/jn.00740.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/21/2016] [Indexed: 12/24/2022] Open
Abstract
Electroconvulsive therapy (ECT) is an established effective treatment for medication-resistant depression with the rapid onset of action. However, its cellular mechanism of action has not been revealed. We have previously shown that chronic antidepressant drug treatments enhance dopamine D1-like receptor-dependent synaptic potentiation at the hippocampal mossy fiber (MF)-CA3 excitatory synapse. In this study we show that ECT-like treatments in mice also have marked effects on the dopaminergic synaptic modulation. Repeated electroconvulsive stimulation (ECS), an animal model of ECT, strongly enhanced the dopamine-induced synaptic potentiation at the MF synapse in hippocampal slices. Significant enhancement was detectable after the second ECS, and further repetition of ECS up to 11 times monotonously increased the magnitude of enhancement. After repeated ECS, the dopamine-induced synaptic potentiation remained enhanced for more than 4 wk. These synaptic effects of ECS were accompanied by increased expression of the dopamine D1 receptor gene. Our results demonstrate that robust neuronal activation by ECS induces rapid and long-lasting enhancement of dopamine-induced synaptic potentiation at the MF synapse, likely via increased expression of the D1 receptor, at least in part. This rapid enhancement of dopamine-induced potentiation at the excitatory synapse may be relevant to the fast-acting antidepressant effect of ECT. NEW & NOTEWORTHY We show that electroconvulsive therapy (ECT)-like stimulation greatly enhances synaptic potentiation induced by dopamine at the excitatory synapse formed by the hippocampal mossy fiber in mice. The effect of ECT-like stimulation on the dopaminergic modulation was rapidly induced, maintained for more than 4 wk after repeated treatments, and most likely mediated by increased expression of the dopamine D1 receptor. These effects may be relevant to fast-acting strong antidepressant action of ECT.
Collapse
Affiliation(s)
- Katsunori Kobayashi
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan; .,Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Saitama, Japan
| | - Yuki Imoto
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Fumi Yamamoto
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Mayu Kawasaki
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Miyuki Ueno
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Eri Segi-Nishida
- Center for Integrative Education in Pharmacy and Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan; and.,Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Hidenori Suzuki
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.,Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Saitama, Japan
| |
Collapse
|
37
|
Cai X, Long L, Yang L, Chen Z, Ni G, Qin J, Zhou J, Zhou L. Association between mossy fiber sprouting and expression of semaphorin-3f protein in dentate gyrus of hippocampus in lithium-pilocarpine-induced status epilepticus mouse model. Neurol Res 2016; 38:1035-1040. [PMID: 27745527 DOI: 10.1080/01616412.2016.1243639] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Mossy fiber sprouting is involved in the pathogenesis of mesial temporal lobe epilepsy. But the exact mechanism of formation of mossy fiber sprouting is still unclear. Semaphorin-3f protein could inhibit the growth of neuron axons. The aim of this research is to evaluate the association between semaphorin-3f expression and mossy fiber sprouting. METHODS We established pilocarpine-induced status epilepticus (PISE) models firstly. Then, mossy fiber sprouting in the hippocampus of PISE models was examined by Timm staining. Expression of semaphorin-3f was evaluated by western blot analysis and immunohistochemical examination. Expression of semaphorin-3f protein in different subregions of hippocampus and its relationship with mossy fiber sprouting were studied. RESULTS We found that in PISE group, mossy fiber sprouting appeared in dentate gyrus (DG) region. It started to develop in the latent phase of PISE group and increased significantly in the chronic phase. Expression of semaphorin-3f protein in DG region started to decrease in the latent phase, and stayed at low level in the chronic phase. No such change was found in the other groups. CONCLUSIONS These results indicate that the decrease in semaphorin-3f expression in DG region was in parallel to the change of mossy fiber sprouting in PISE models, suggesting that mossy fiber sprouting is closely associated with reduced expression of semaphorin-3f in this model.
Collapse
Affiliation(s)
- Xiaodong Cai
- a Department of Neurology , the Sixth Affiliated Hospital of Sun Yat-Sen University , Guangzhou , China.,b Department of Neurology , the First Affiliated Hospital of Sun Yat-Sen University , Guangzhou , China
| | - Ling Long
- c Department of Neurology , the Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou , China
| | - Libai Yang
- b Department of Neurology , the First Affiliated Hospital of Sun Yat-Sen University , Guangzhou , China.,d Department of Neurology , Shanxi Academy of Medical Sciences & Shanxi Dayi Hospital , Taiyuan , China
| | - Ziyi Chen
- b Department of Neurology , the First Affiliated Hospital of Sun Yat-Sen University , Guangzhou , China
| | - Guanzhong Ni
- b Department of Neurology , the First Affiliated Hospital of Sun Yat-Sen University , Guangzhou , China
| | - Jiaming Qin
- b Department of Neurology , the First Affiliated Hospital of Sun Yat-Sen University , Guangzhou , China
| | - Jueqian Zhou
- b Department of Neurology , the First Affiliated Hospital of Sun Yat-Sen University , Guangzhou , China
| | - Liemin Zhou
- b Department of Neurology , the First Affiliated Hospital of Sun Yat-Sen University , Guangzhou , China
| |
Collapse
|
38
|
Bouckaert F, Dols A, Emsell L, De Winter FL, Vansteelandt K, Claes L, Sunaert S, Stek M, Sienaert P, Vandenbulcke M. Relationship Between Hippocampal Volume, Serum BDNF, and Depression Severity Following Electroconvulsive Therapy in Late-Life Depression. Neuropsychopharmacology 2016; 41:2741-8. [PMID: 27272769 PMCID: PMC5026743 DOI: 10.1038/npp.2016.86] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/15/2015] [Accepted: 06/02/2016] [Indexed: 02/06/2023]
Abstract
Recent structural imaging studies have described hippocampal volume changes following electroconvulsive therapy (ECT). It has been proposed that serum brain-derived neurotrophic factor (sBDNF)-mediated neuroplasticity contributes critically to brain changes following antidepressant treatment. To date no studies have investigated the relationship between changes in hippocampal volume, mood, and sBDNF following ECT. Here, we combine these measurements in a longitudinal study of severe late-life unipolar depression (LLD). We treated 88 elderly patients with severe LLD twice weekly until remission (Montgomery-Åsberg Depression Rating Scale (MADRS) <10). sBDNF and MADRS were obtained before ECT (T0), after the sixth ECT (T1), 1 week after the last ECT (T2), 4 weeks after the last ECT (T3), and 6 months after the last ECT (T4). Hippocampal volumes were quantified by manual segmentation of 3T structural magnetic resonance images in 66 patients at T0 and T2 and in 23 patients at T0, T2, and T4. Linear mixed models (LMM) were used to examine the evolution of MADRS, sBDNF, and hippocampal volume over time. Following ECT, there was a significant decrease in MADRS scores and a significant increase in hippocampal volume. Hippocampal volume decreased back to baseline values at T4. Compared with T0, sBDNF levels remained unchanged at T1, T2, and T3. There was no coevolution between changes in MADRS scores, hippocampal volume, and sBDNF. Hippocampal volume increase following ECT is an independent neurobiological effect unrelated to sBDNF and depressive symptomatology, suggesting a complex mechanism of action of ECT in LLD.
Collapse
Affiliation(s)
- Filip Bouckaert
- KU Leuven, University Psychiatric Center KU Leuven, Old-age Psychiatry, Kortenberg, Belgium,KU Leuven, University Psychiatric Center KU Leuven, Old-age Psychiatry, Leuvensesteenweg 517, Kortenberg 3070, Belgium, Tel: 00 32 2 758 0985, Fax: 00 32 2 759 53 80, E-mail:
| | - Annemiek Dols
- Department of Psychiatry and the EMGO+ Institute for Health and Care Research, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Louise Emsell
- KU Leuven, University Psychiatric Center KU Leuven, Old-age Psychiatry, Kortenberg, Belgium,Division of Translational MRI, Department of Imaging and Pathology, KU Leuven, Radiology, University Hospitals Leuven, University Psychiatric Center KU Leuven, Leuven, Belgium
| | | | - Kristof Vansteelandt
- Department of Statistics, KU Leuven, University Psychiatric Center KU Leuven, Kortenberg, Belgium
| | - Lene Claes
- Division of Translational MRI, Department of Imaging and Pathology, KU Leuven, Radiology, University Hospitals Leuven, University Psychiatric Center KU Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Division of Translational MRI, Department of Imaging and Pathology, KU Leuven, Radiology, University Hospitals Leuven, University Psychiatric Center KU Leuven, Leuven, Belgium
| | - Max Stek
- Department of Psychiatry and the EMGO+ Institute for Health and Care Research, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Pascal Sienaert
- Academic Center for ECT and Neuromodulation, KU Leuven, University Psychiatric Center KU Leuven, Kortenberg, Belgium
| | - Mathieu Vandenbulcke
- KU Leuven, University Psychiatric Center KU Leuven, Old-age Psychiatry, Kortenberg, Belgium
| |
Collapse
|
39
|
Castrén E, Kojima M. Brain-derived neurotrophic factor in mood disorders and antidepressant treatments. Neurobiol Dis 2016; 97:119-126. [PMID: 27425886 DOI: 10.1016/j.nbd.2016.07.010] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/21/2016] [Accepted: 07/13/2016] [Indexed: 12/12/2022] Open
Abstract
Levels of brain-derived neurotrophic factor (BDNF) are reduced in the brain and serum of depressed patients and at least the reduction in serum levels is reversible upon successful treatment. These data, together with a wealth of reports using different animal models with depression-like behavior or manipulation of expression of BDNF or its receptor TrkB have implicated BDNF in the pathophysiology of depression as well as in the mechanism of action of antidepressant treatments. Recent findings have shown that posttranslational processing of BDNF gene product can yield different molecular entities that differently influence signaling through BNDF receptor TrkB and the pan-neurotrophin receptor p75NTR. We will here review these data and discuss new insights into the possible pathophysiological roles of those new BDNF subtypes as well as recent findings on the role of BDNF mediated neuronal plasticity in mood disorders and their treatments.
Collapse
Affiliation(s)
- Eero Castrén
- Neuroscience Center, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland.
| | - Masami Kojima
- Biomedical Research Institute, Advanced Industrial Science and Technology (AIST), Osaka 563-8577, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan.
| |
Collapse
|
40
|
Abstract
Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, has drawn much attention as a potential therapeutic target for temporal lobe epilepsy (TLE). TLE seizures are produced by synchronized hyperactivity of neuron populations due to the disruption of a balance between excitatory and inhibitory synaptic transmissions. In epileptogenesis-related brain areas, including the hippocampus, BDNF is up-regulated in the course of the development of epilepsy and induces a collapse of balanced excitation and inhibition, eventually exerting its epileptogenic effects. On the other hand, several reports demonstrate that intrahippocampal infusion of BDNF can attenuate (or retard) the development of epilepsy. This antiepileptogenic effect seems to be mediated mainly by an increase in the expression of neuropeptide Y. These contrasting effects of BDNF have prevented us from concluding whether inhibition or enhancement of BDNF signaling finally achieves the prevention of TLE. To address this question, it is essential to evaluate how BDNF changes its influences depending on conditions, for example, cell specificity, neural networks, and expression timing and loci. In this article, the authors review BDNF-induced acute and long-lasting changes seen in epileptic circuits from the anatomical and functional points of view.
Collapse
Affiliation(s)
- Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Japan.
| | | |
Collapse
|
41
|
Increased expression of endocytosis-Related proteins in rat hippocampus following 10-day electroconvulsive seizure treatment. Neurosci Lett 2016; 624:85-91. [PMID: 27177725 DOI: 10.1016/j.neulet.2016.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 12/16/2022]
Abstract
Although electroconvulsive therapy (ECT) is clinically used for severe depression and drug-resistant Parkinson's disease, its exact biological background and mechanism have not yet been fully elucidated. Two potential explanations have been presented so far to explain the increased neuroplastic and resilient profiles of multiple ECT administrations. One is the alteration of central neurotransmitter receptor densities and the other is the expressional upregulation of brain derived neurotrophic factor in various brain regions with enhanced hippocampal neurogenesis and mossy fiber sprouting. In the present report, western blot analyses revealed significantly upregulated expression of various endocytosis-related proteins following 10-day electroconvulsive seizure (ECS) treatment in rat hippocampal homogenates and hippocampal lipid raft fractions extracted using an ultracentrifugation procedure. Upregulated proteins included endocytosis-related scaffolding proteins (caveolin-1, flotillin-1, and heavy and light chains of clathrin) and small GTPases (Rab5, Rab7, Rab11, and Rab4) specifically expressed on various types of endosomes. Two scaffolding proteins, caveolin-1 and flotillin-1, were also increased in the lipid raft fraction. Together with our previous finding of increased autophagy-related proteins in the hippocampal region, the present results suggest membrane trafficking machinery is enhanced following 10-day ECS treatment. We consider that the membrane trafficking machinery that transports functional proteins in the neuronal cells and from or into the synaptic membranes is one of the new candidates supporting the cellular and behavioral neuroplastic profiles of ECS treatments in animal experiments and ECT administrations in clinical settings.
Collapse
|
42
|
Pusalkar M, Ghosh S, Jaggar M, Husain BFA, Galande S, Vaidya VA. Acute and Chronic Electroconvulsive Seizures (ECS) Differentially Regulate the Expression of Epigenetic Machinery in the Adult Rat Hippocampus. Int J Neuropsychopharmacol 2016; 19:pyw040. [PMID: 27207907 PMCID: PMC5043647 DOI: 10.1093/ijnp/pyw040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 04/27/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Electroconvulsive seizure treatment is a fast-acting antidepressant therapy that evokes rapid transcriptional, neurogenic, and behavioral changes. Epigenetic mechanisms contribute to altered gene regulation, which underlies the neurogenic and behavioral effects of electroconvulsive seizure. We hypothesized that electroconvulsive seizure may modulate the expression of epigenetic machinery, thus establishing potential alterations in the epigenetic landscape. METHODS We examined the influence of acute and chronic electroconvulsive seizure on the gene expression of histone modifiers, namely histone acetyltransferases, histone deacetylases, histone methyltransferases, and histone (lysine) demethylases as well as DNA modifying enzymes, including DNA methyltransferases, DNA demethylases, and methyl-CpG-binding proteins in the hippocampi of adult male Wistar rats using quantitative real time-PCR analysis. Further, we examined the influence of acute and chronic electroconvulsive seizure on global and residue-specific histone acetylation and methylation levels within the hippocampus, a brain region implicated in the cellular and behavioral effects of electroconvulsive seizure. RESULTS Acute and chronic electroconvulsive seizure induced a primarily unique, and in certain cases bidirectional, regulation of histone and DNA modifiers, and methyl-CpG-binding proteins, with an overlapping pattern of gene regulation restricted to Sirt4, Mll3, Jmjd3, Gadd45b, Tet2, and Tet3. Global histone acetylation and methylation levels were predominantly unchanged, with the exception of a significant decline in H3K9 acetylation in the hippocampus following chronic electroconvulsive seizure. CONCLUSIONS Electroconvulsive seizure treatment evokes the transcriptional regulation of several histone and DNA modifiers, and methyl-CpG-binding proteins within the hippocampus, with a predominantly distinct pattern of regulation induced by acute and chronic electroconvulsive seizure.
Collapse
Affiliation(s)
- Madhavi Pusalkar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India (Dr Pusalkar, Ms Ghosh, Ms Jaggar, Ms Husain, and Dr Vaidya); Centre of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, Maharashtra, India (Dr Galande)
| | - Shreya Ghosh
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India (Dr Pusalkar, Ms Ghosh, Ms Jaggar, Ms Husain, and Dr Vaidya); Centre of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, Maharashtra, India (Dr Galande)
| | - Minal Jaggar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India (Dr Pusalkar, Ms Ghosh, Ms Jaggar, Ms Husain, and Dr Vaidya); Centre of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, Maharashtra, India (Dr Galande)
| | - Basma Fatima Anwar Husain
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India (Dr Pusalkar, Ms Ghosh, Ms Jaggar, Ms Husain, and Dr Vaidya); Centre of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, Maharashtra, India (Dr Galande)
| | - Sanjeev Galande
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India (Dr Pusalkar, Ms Ghosh, Ms Jaggar, Ms Husain, and Dr Vaidya); Centre of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, Maharashtra, India (Dr Galande)
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India (Dr Pusalkar, Ms Ghosh, Ms Jaggar, Ms Husain, and Dr Vaidya); Centre of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, Maharashtra, India (Dr Galande).
| |
Collapse
|
43
|
Svensson M, Grahm M, Ekstrand J, Höglund P, Johansson M, Tingström A. Effect of electroconvulsive seizures on cognitive flexibility. Hippocampus 2016; 26:899-910. [DOI: 10.1002/hipo.22573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Maria Svensson
- Department of Clinical Sciences Lund; Psychiatric Neuromodulation Unit, Lund University; Lund Sweden
| | - Matilda Grahm
- Department of Clinical Sciences Lund; Psychiatric Neuromodulation Unit, Lund University; Lund Sweden
| | - Joakim Ekstrand
- Department of Clinical Sciences Lund; Psychiatric Neuromodulation Unit, Lund University; Lund Sweden
| | - Peter Höglund
- Department of Laboratory Medicine; Division of Clinical Chemistry and Pharmacology, Lund University; Lund Sweden
| | - Mikael Johansson
- Department of Clinical Sciences Lund; Psychiatric Neuromodulation Unit, Lund University; Lund Sweden
- Department of Psychology; Neuropsychology, Lund University; Lund Sweden
| | - Anders Tingström
- Department of Clinical Sciences Lund; Psychiatric Neuromodulation Unit, Lund University; Lund Sweden
| |
Collapse
|
44
|
Ota M, Noda T, Sato N, Okazaki M, Ishikawa M, Hattori K, Hori H, Sasayama D, Teraishi T, Sone D, Kunugi H. Effect of electroconvulsive therapy on gray matter volume in major depressive disorder. J Affect Disord 2015; 186:186-91. [PMID: 26247910 DOI: 10.1016/j.jad.2015.06.051] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/28/2015] [Accepted: 06/29/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Although the clinical efficacy of electroconvulsive therapy (ECT) is well established, the underlying mechanisms of action remain elusive. The aim of this study was to elucidate structural changes of the brain following ECT in patients with major depressive disorder (MDD). METHOD Fifteen patients with MDD underwent magnetic resonance imaging scanning before and after ECT. Their gray matter volumes were compared between pre- and post-ECT. RESULTS There were significant volume increases after ECT in the bilateral medial temporal cortices, inferior temporal cortices, and right anterior cingulate. Further, the increase ratio was correlated with the clinical improvement measured by the Hamilton Depression Rating scale. LIMITATION All subjects were treated with antidepressants that could have a neurotoxic or neuroprotective effect on the brain. CONCLUSIONS We found that there were significant increases of gray matter volume in medial temporal lobes following ECT, suggesting that a neurotrophic effect of ECT could play a role in its therapeutic effect.
Collapse
Affiliation(s)
- Miho Ota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.
| | - Takamasa Noda
- Department of Psychiatry, National Center Hospital of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Noriko Sato
- Department of Radiology, National Center Hospital of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Mitsutoshi Okazaki
- Department of Psychiatry, National Center Hospital of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Masatoshi Ishikawa
- Department of Psychiatry, National Center Hospital of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Hiroaki Hori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Daimei Sasayama
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Toshiya Teraishi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Daichi Sone
- Department of Radiology, National Center Hospital of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| |
Collapse
|
45
|
Takahashi T, Shimizu K, Shimazaki K, Toda H, Nibuya M. Environmental enrichment enhances autophagy signaling in the rat hippocampus. Brain Res 2015; 1592:113-23. [PMID: 25451096 DOI: 10.1016/j.brainres.2014.10.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/08/2014] [Accepted: 10/14/2014] [Indexed: 02/06/2023]
Abstract
The findings that antidepressive treatments increase hippocampal neurotrophins have led researchers to emphasize the importance of neurogenesis, formation of new dendrites, and survival of neurons in the brain. However, it is difficult to maintain neural plasticity just by enriching the environment to facilitate formation of new networks. Neural plasticity also requires a degradation process that clears off unnecessary and undesirable components. We have recently reported an increase in autophagy signaling (wherein the cell digests components of itself) that has the potential of enhancing neuronal and synaptic plasticity after multiple sessions of electroconvulsive seizure treatment. The present study revealed an increase in autophagy signaling in the rat hippocampus following 2 weeks of environmental enrichment (EE), a procedure known to elicit antidepressive and anxiolytic behavioral changes in various animal paradigms. Western blot analysis showed an increase in hippocampal expression of microtubule-associated protein light chain 3-II (LC3-II), which is lipidated from LC3-I, in rats in the EE group. The effectiveness of the 2-week EE housing condition was validated by anxiolytic effects observed in the elevated plus maze test, enhanced habituation in the open field test, and elevation of hippocampal brain-derived neurotrophic factor expression. In addition, we showed that the EE housing condition ameliorated numbing/avoidance behaviors, but not hypervigilant behaviors, in an animal model of post-traumatic stress disorder (PTSD). This is the first report to show that EE can increase autophagy signaling and improve numbing/avoidance behaviors in an animal model of PTSD.
Collapse
|
46
|
|
47
|
|
48
|
Zinc, future mono/adjunctive therapy for depression: Mechanisms of antidepressant action. Pharmacol Rep 2015; 67:659-62. [DOI: 10.1016/j.pharep.2015.01.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/18/2015] [Accepted: 01/27/2015] [Indexed: 11/23/2022]
|
49
|
Sachs-Ericsson N, Blazer DG. The new DSM-5 diagnosis of mild neurocognitive disorder and its relation to research in mild cognitive impairment. Aging Ment Health 2015; 19:2-12. [PMID: 24914889 DOI: 10.1080/13607863.2014.920303] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Diagnostic Statistical Manual-5 (DSM-5) has included a category named the neurocognitive disorder which was formally known in DSM-IV as 'dementia, delirium, amnestic, and other cognitive disorders'. The DSM-5 distinguishes between 'mild' and 'major' neurocognitive disorders. Major neurocognitive disorder replaces the DSM-IV's term 'dementia or other debilitating conditions'. A pivotal addition is 'mild neurocognitive disorder (mNCD)' defined by a noticeable decrement in cognitive functioning that goes beyond normal changes seen in aging. It is a disorder that may progress to dementia - importantly, it may not. Presently, our understanding of mNCD is derived from research on mild cognitive impairment (MCI). Whereas there is currently no clear treatment for mNCD, many experimental therapies now and into the future will focus upon secondary prevention, namely decreasing the risk of progression to major NCD. In this article, we will focus on mNCD by reviewing the relevant literature on MCI. We will review the research on the incidence and prevalence of MCI, conversion rates from MCI to dementia, risk factors for conversion of MCI to dementia, comorbidity of MCI with other neuropsychiatric disorders (NPS), and the development of treatment strategies for neuropsychiatric disorders in MCI. The presence of NPS is common among individuals with MCI and is an important risk for progression to dementia. However, there has been little research on effective treatments for NPS in MCI. Clinicians and investigators must determine if the treatment of the NPS in mNCD will improve quality of life and help reduce the progression of the cognitive impairment.
Collapse
|
50
|
Isgor C, Pare C, McDole B, Coombs P, Guthrie K. Expansion of the dentate mossy fiber-CA3 projection in the brain-derived neurotrophic factor-enriched mouse hippocampus. Neuroscience 2014; 288:10-23. [PMID: 25555929 DOI: 10.1016/j.neuroscience.2014.12.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 12/10/2014] [Accepted: 12/13/2014] [Indexed: 10/24/2022]
Abstract
Structural changes that alter hippocampal functional circuitry are implicated in learning impairments, mood disorders and epilepsy. Reorganization of mossy fiber (MF) axons from dentate granule cells is one such form of plasticity. Increased neurotrophin signaling is proposed to underlie MF plasticity, and there is evidence to support a mechanistic role for brain-derived neurotrophic factor (BDNF) in this process. Transgenic mice overexpressing BDNF in the forebrain under the α-calcium/calmodulin-dependent protein kinase II promoter (TgBDNF mice) exhibit spatial learning deficits at 2-3months of age, followed by the emergence of spontaneous seizures at ∼6months. These behavioral changes suggest that chronic increases in BDNF progressively disrupt hippocampal functional organization. To determine if the dentate MF pathway is structurally altered in this strain, the present study employed Timm staining and design-based stereology to compare MF distribution and projection volumes in transgenic and wild-type mice at 2-3months, and at 6-7months. Mice in the latter age group were assessed for seizure vulnerability with a low dose of pilocarpine given 2h before euthanasia. At 2-3months, TgBDNF mice showed moderate expansion of CA3-projecting MFs (∼20%), with increased volumes measured in the suprapyramidal (SP-MF) and intra/infrapyramidal (IIP-MF) compartments. At 6-7months, a subset of transgenic mice exhibited increased seizure susceptibility, along with an increase in IIP-MF volume (∼30%). No evidence of MF sprouting was seen in the inner molecular layer. Additional stereological analyses demonstrated significant increases in molecular layer (ML) volume in TgBDNF mice at both ages, as well as an increase in granule cell number by 8months of age. Collectively, these results indicate that sustained increases in endogenous BDNF modify dentate structural organization over time, and may thereby contribute to the development of pro-epileptic circuitry.
Collapse
Affiliation(s)
- C Isgor
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, United States
| | - C Pare
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, United States
| | - B McDole
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, United States
| | - P Coombs
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, United States
| | - K Guthrie
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, United States.
| |
Collapse
|