1
|
Félix J, Garrido A, De la Fuente M. In Response to a Punctual Stress Male and Female Tyrosine Hydroxylase Haploinsufficient Mice Show a Deteriorated Behavior, Immunity, and Redox State. Int J Mol Sci 2023; 24:ijms24087335. [PMID: 37108496 PMCID: PMC10138533 DOI: 10.3390/ijms24087335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
An inadequate stress response is associated with impaired neuroimmunoendocrine communication, increasing morbidity and mortality. Since catecholamines (CA) constitute one of the acute stress response pathways, female mice with an haploinsufficiency of the tyrosine hydroxylase gene (TH-HZ), the main limiting enzyme in CA synthesis, show low CA amounts, exhibiting an impairment of homeostatic systems. The aim of this study was to investigate the effect of a punctual stress in TH-HZ mice, determining the differences with wild-type (WT) mice and those due to sex by restraint with a clamp for 10 min. After restraint, a behavioral battery was performed, and several immune functions, redox state parameters, and CA amounts were evaluated in peritoneal leukocytes. Results show that this punctual stress impaired WT behavior and improved female WT immunity and oxidative stress, whereas in TH-HZ mice, all parameters were impaired. In addition, different responses to stress due to sex were observed, with males having a worse response. In conclusion, this study confirms that a correct CA synthesis is necessary to deal with stress, and that when a positive stress (eustress) occurs, individuals may improve their immune function and oxidative state. Furthermore, it shows that the response to the same stressor is different according to sex.
Collapse
Affiliation(s)
- Judith Félix
- Animal Physiology Unit, Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
- Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain
| | - Antonio Garrido
- Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Mónica De la Fuente
- Animal Physiology Unit, Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
- Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain
| |
Collapse
|
2
|
Romic S, Djordjevic A, Tepavcevic S, Culafic T, Stojiljkovic M, Bursac B, Stanisic J, Kostic M, Gligorovska L, Koricanac G. Effects of a fructose-rich diet and chronic stress on insulin signaling and regulation of glycogen synthase kinase-3 beta and the sodium-potassium pump in the hearts of male rats. Food Funct 2020; 11:1455-1466. [PMID: 31974538 DOI: 10.1039/c9fo02306b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Both a diet rich in fructose and chronic stress exposure induce metabolic and cardiovascular disturbances. The aim of this study was to examine the effects of the fructose-rich diet and chronic stress, separately and in combination, on insulin signaling and molecules regulating glycogen synthesis and ion transport in the heart, and to reveal whether these effects coincide with changes in glucocorticoid receptor (GR) activation. Male Wistar rats were subjected to 10% fructose in drinking water and/or to chronic unpredictable stress for 9 weeks. Protein expression and/or phosphorylation of the insulin receptor (IR), protein tyrosine phosphatase 1B, insulin receptor substrate 1 (IRS1), protein kinase B (Akt), extracellular signal-regulated kinase 1/2 (ERK1/2), glycogen synthase kinase-3β (GSK-3β) and Na+/K+-ATPase α-subunits in cardiac tissue were analyzed by western blot. GR distribution between cytosolic and nuclear fractions was also analyzed. The fructose-rich diet decreased the level of pERK1/2 (Thr202/Tyr204) and pGSK-3β (Ser9) independently of stress, while chronic stress increased the IRS1 content and prevented the fructose diet-induced decrease of the pAkt (Ser473) level. The fructose-rich diet in combination with chronic stress reduced the protein content of cardiac IR and attenuated IRS1 upregulation. Separate treatments increased the protein content of Na+/K+-ATPase α1- and α2-subunits, while after combined treatment the α2 content was at the control level and the α1 content was lower than the control level. The effect of combined treatment on cardiac IR and α2-subunit expression could be mediated by increased GR nuclear accumulation. Our study provides new insights into the effects of chronic stress and a combination of the fructose diet and chronic stress on the studied molecules in the heart.
Collapse
Affiliation(s)
- Snjezana Romic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Kudryashov NV, Kalinina TS, Shimshirt AA, Volkova AV, Narkevich VB, Naplekova PL, Kasabov KA, Kudrin VS, Voronina TA, Fisenko VP. The Behavioral and Neurochemical Aspects of the Interaction between Antidepressants and Unpredictable Chronic Mild Stress. Acta Naturae 2020; 12:63-72. [PMID: 32477600 PMCID: PMC7245955 DOI: 10.32607/actanaturae.10942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/29/2020] [Indexed: 01/28/2023] Open
Abstract
The behavioral and neurochemical effects of amitriptyline (10 mg/kg, i.p.) and fluoxetine (20 mg/kg, i.p.) after single and chronic administration in the setting of unpredictable mild stress in outbred ICR (CD-1) mice were studied. After a 28-day exposure to stress, we observed an increase in depressive reaction in a forced swim test in mice, as well as reduced hippocampal levels of serotonin (5-hydroxytryptamine, 5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) and an increased hypothalamic level of noradrenaline (NA). Single and chronic administration of amitriptyline and fluoxetine shortened the immobility period and increased the time corresponding to active swimming in the forced swim test. The antidepressant-like effect of fluoxetine - but not of amitriptyline - after a single injection coincided with an increase in the 5-HT turnover in the hippocampus. Chronic administration of the antidepressants increased the hypothalamic levels of NA. Thus, the antidepressant- like effect of amitriptyline and fluoxetine may result from an enhancement of the stress-dependent adaptive mechanisms depleted by chronic stress.
Collapse
Affiliation(s)
- N. V. Kudryashov
- Federal State Budgetary Institution «Research Zakusov Institute of Pharmacology», Moscow, 125315 Russia
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991 Russia
- N.K. Koltsov Institute of Developmental Biology RAS, Moscow, 119334 Russia
| | - T. S. Kalinina
- Federal State Budgetary Institution «Research Zakusov Institute of Pharmacology», Moscow, 125315 Russia
- N.K. Koltsov Institute of Developmental Biology RAS, Moscow, 119334 Russia
| | - A. A. Shimshirt
- Federal State Budgetary Institution «Research Zakusov Institute of Pharmacology», Moscow, 125315 Russia
| | - A. V. Volkova
- Federal State Budgetary Institution «Research Zakusov Institute of Pharmacology», Moscow, 125315 Russia
| | - V. B. Narkevich
- Federal State Budgetary Institution «Research Zakusov Institute of Pharmacology», Moscow, 125315 Russia
| | - P. L. Naplekova
- Federal State Budgetary Institution «Research Zakusov Institute of Pharmacology», Moscow, 125315 Russia
| | - K. A. Kasabov
- Federal State Budgetary Institution «Research Zakusov Institute of Pharmacology», Moscow, 125315 Russia
| | - V. S. Kudrin
- Federal State Budgetary Institution «Research Zakusov Institute of Pharmacology», Moscow, 125315 Russia
| | - T. A. Voronina
- Federal State Budgetary Institution «Research Zakusov Institute of Pharmacology», Moscow, 125315 Russia
| | - V. P. Fisenko
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991 Russia
| |
Collapse
|
4
|
Hypothalamic-pituitary-adrenal axis responsivity to an acute novel stress in female rats subjected to the chronic mild stress paradigm. Brain Res 2019; 1723:146402. [PMID: 31446015 DOI: 10.1016/j.brainres.2019.146402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/29/2022]
Abstract
The chronic mild stress (CMS) paradigm is the most frequently investigated animal model for major depression. The hypothalamic-pituitary-adrenal (HPA) axis participates in the generation of depressive symptomatology. We examined whether the depression-like state induced by CMS is associated with immediate changes in HPA axis activation in response to a novel acute stress and whether this response could be modified by hormonal status. Adult female Wistar rats were ovariectomized and received estrogen or vehicle pellets. After 2 weeks, rats were subjected to CMS (or control) conditions for 2.5 or 4.5 weeks. Rats were subsequently subjected to restraint stress for 1 h, and plasma corticosterone (CT) levels were determined before (2:00 p.m.) and after acute stress induction (3:00 and 4:00 p.m.). CT levels and FOS expression were measured in the medial parvocellular subdivision of the PVN (PaMP), central (CeA) and medial amygdala (MeA) and ventral subiculum of the hippocampus (vSub). Plasma CT levels in animals treated with 6.5 weeks of estrogen were elevated before and 1 h after restraint stress induction. Results indicate that the estrogen chronicity and CMS exposure impacted CT secretion. Neuronal PaMP, CeA, MeA and vSub activity decreased after 4.5 weeks of CMS in all groups. No differences were detected between CMS and non-CMS groups. These data suggest that the HPA central hyporesponsiveness observed in the experimental groups subjected to a longer protocol period was independent to CMS paradigm and estrogen treatment restored partially its activity. These data suggest that additional stressors could be responsible for the observed alterations of the HPA axis.
Collapse
|
5
|
Zorkina YA, Zubkov EA, Morozova AY, Ushakova VM, Chekhonin VP. The Comparison of a New Ultrasound-Induced Depression Model to the Chronic Mild Stress Paradigm. Front Behav Neurosci 2019; 13:146. [PMID: 31312126 PMCID: PMC6614435 DOI: 10.3389/fnbeh.2019.00146] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
Willner’s “chronic mild stress” (CMS) model is a globally recognized and most commonly used depression model. A depression model induced by ultrasonic exposure of variable frequencies has been created in our laboratory. This article compares two models of the depressive-like state according to three validity criteria. Face validity has been demonstrated in sucrose preference test, Porsolt test, social interest, open field and the Morris water maze. Rats after ultrasound impact have more pronounced anhedonia and social isolation. The construct validity has been proven due to increased levels of corticosterone, epinephrine and norepinephrine and reduced levels of dopamine and some of its metabolites in rat plasma after ultrasound exposure. Predictive validity has been described previously, where the therapeutic effects of various classes of antidepressants have been shown. Our study has demonstrated that the ultrasound-induced depression model is suitable, such as the generally accepted CMS protocol, and meets all required validity criteria. The model presented in this article might help to study pathogenetic mechanisms of depressive disorders, as well as to test promising methods of depression treatment.
Collapse
Affiliation(s)
- Yana A Zorkina
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Eugene A Zubkov
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Anna Yu Morozova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Valeriya M Ushakova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Vladimir P Chekhonin
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
6
|
Umeoka EHL, Robinson EJ, Turimella SL, van Campen JS, Motta-Teixeira LC, Sarabdjitsingh RA, Garcia-Cairasco N, Braun K, de Graan PN, Joëls M. Hyperthermia-induced seizures followed by repetitive stress are associated with age-dependent changes in specific aspects of the mouse stress system. J Neuroendocrinol 2019; 31:e12697. [PMID: 30773738 DOI: 10.1111/jne.12697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/04/2019] [Accepted: 02/13/2019] [Indexed: 11/28/2022]
Abstract
Stress is among the most frequently self-reported factors provoking epileptic seizures in children and adults. It is still unclear, however, why some people display stress-sensitive seizures and others do not. Recently, we showed that young epilepsy patients with stress-sensitive seizures exhibit a dysregulated hypothalamic-pituitary-adrenal (HPA)-axis. Most likely, this dysregulation gradually develops, and is triggered by stressors occurring early in life (early-life stress [ELS]). ELS may be particularly impactful when overlapping with the period of epileptogenesis. To examine this in a controlled and prospective manner, the present study investigated the effect of repetitive variable stressors or control treatment between postnatal day (PND) 12 and 24 in male mice exposed on PND10 to hyperthermia (HT)-induced prolonged seizures (control: normothermia). A number of peripheral and central indices of HPA-axis activity were evaluated at pre-adolescent and young adult age (ie, at PND25 and 90, respectively). At PND25 but not at PND90, body weight gain and absolute as well as relative (to body weight) thymus weight were reduced by ELS (vs control), whereas relative adrenal weight was enhanced, confirming the effectiveness of the stress treatment. Basal and stress-induced corticosterone levels were unaffected, though, by ELS at both ages. HT by itself did not affect any of these peripheral markers of HPA-axis activity, nor did it interact with ELS. However, centrally we did observe age-specific interaction effects of HT and ELS with regard to hippocampal glucocorticoid receptor mRNA expression, neurogenesis with the immature neurone marker doublecortin and the number of hilar (ectopic) granule cells using Prox1 staining. This lends some support to the notion that exposure to repetitive stress after HT-induced seizures may dysregulate central components of the stress system in an age-dependent manner. Such dysregulation could be one of the mechanisms conferring higher vulnerability of individuals with epilepsy to develop seizures in the face of stress.
Collapse
Affiliation(s)
- Eduardo H L Umeoka
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Edward J Robinson
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Sada Lakshmi Turimella
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Jolien S van Campen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
- Department of Pediatric Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lívia C Motta-Teixeira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - R Angela Sarabdjitsingh
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Norberto Garcia-Cairasco
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Kees Braun
- Department of Pediatric Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pierre N de Graan
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Marian Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Marks WN, Kalynchuk LE. Repeated corticosterone enhances the acquisition and recall of trace fear conditioning. Physiol Behav 2017; 182:40-45. [DOI: 10.1016/j.physbeh.2017.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/18/2017] [Accepted: 09/22/2017] [Indexed: 12/27/2022]
|
8
|
Depciuch J, Sowa-Kucma M, Nowak G, Papp M, Gruca P, Misztak P, Parlinska-Wojtan M. Qualitative and quantitative changes in phospholipids and proteins investigated by spectroscopic techniques in animal depression model. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 176:30-37. [PMID: 28063309 DOI: 10.1016/j.saa.2016.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/09/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
Depression becomes nowadays a high mortality civilization disease with one of the major causes being chronic stress. Raman, Fourier Transform Infra Red (FTIR) and Ultraviolet-Visible (UV-vis) spectroscopies were used to determine the changes in the quantity and structure of phospholipids and proteins in the blood serum of rats subjected to chronic mild stress, which is a common animal depression model. Moreover, the efficiency of the imipramine treatment was evaluated. It was found that chronic mild stress not only damages the structure of the phospholipids and proteins, but also decreases their level in the blood serum. A 5weeks imipramine treatment did increase slightly the quantity of proteins, leaving the damaged phospholipids unchanged. Structural information from phospholipids and proteins was obtained by UV-vis spectroscopy combined with the second derivative of the FTIR spectra. Indeed, the structure of proteins in blood serum of stressed rats was normalized after imipramine therapy, while the impaired structure of phospholipids remained unaffected. These findings strongly suggest that the depression factor, which is chronic mild stress, may induce permanent (irreversible) damages into the phospholipid structure identified as shortened carbon chains. This study shows a possible new application of spectroscopic techniques in the diagnosis and therapy monitoring of depression.
Collapse
Affiliation(s)
- J Depciuch
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31-342 Krakow, Poland.
| | - M Sowa-Kucma
- Institute of Pharmacology, Polish Academy of Science, Department of Neurobiology, Laboratory of Trace Elements Neurobiology, Smetna Street 12, 31-343 Krakow, Poland
| | - G Nowak
- Institute of Pharmacology, Polish Academy of Science, Department of Neurobiology, Laboratory of Trace Elements Neurobiology, Smetna Street 12, 31-343 Krakow, Poland; Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - M Papp
- Institute of Pharmacology, Polish Academy of Science, Department of Neurobiology, Laboratory of Trace Elements Neurobiology, Smetna Street 12, 31-343 Krakow, Poland
| | - P Gruca
- Institute of Pharmacology, Polish Academy of Science, Department of Neurobiology, Laboratory of Trace Elements Neurobiology, Smetna Street 12, 31-343 Krakow, Poland
| | - P Misztak
- Institute of Pharmacology, Polish Academy of Science, Department of Neurobiology, Laboratory of Trace Elements Neurobiology, Smetna Street 12, 31-343 Krakow, Poland; Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - M Parlinska-Wojtan
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31-342 Krakow, Poland
| |
Collapse
|
9
|
Azogu I, Plamondon H. Blockade of TrkB receptors in the nucleus accumbens prior to heterotypic stress alters corticotropin-releasing hormone (CRH), vesicular glutamate transporter 2 (vGluT2) and glucocorticoid receptor (GR) within the mesolimbic pathway. Horm Behav 2017; 90:98-112. [PMID: 28257759 DOI: 10.1016/j.yhbeh.2017.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/22/2016] [Accepted: 02/22/2017] [Indexed: 12/27/2022]
Abstract
Inhibition of stress-induced elevations in brain-derived neurotrophic factor (BDNF) or its primary receptor tyrosine-related kinase B (TrkB) within the reward pathway may modulate vulnerability to anxiety and mood disorders. The current study examined the role of BDNF/TrkB signaling on biochemistry and behavior under basal conditions and following exposure to a 10-day heterotypic stress paradigm in male rats. Effects of intra-accumbal administration of TrkB antagonist ANA-12 (0.25μg/0.5μl/min) on anxiety, and expression of Trk-B, corticotropin-releasing hormone (CRH), vesicular glutamate transporter 2 (vGluT2) and glucocorticoid receptor (GR) within the mesolimbic pathway were determined. Notably, ANA-12 attenuated anxiety-like behavior in stress rats while increasing anxiety in the non-stress group in the elevated plus maze (EPM). At the neurochemical level, ANA-12 blocked the increased vGluT2 and CRH expressions in the hypothalamic PVN and basolateral amygdala in stress rats, while it enhanced vGluT2 and CRH expressions in non-stress rats. ANA-12 also showed state-dependent effects at the NAc core, attenuating TrkB-ir in non-stress rats while reversing reduced expression in stressed rats. At the cingulate cortex, ANA-12 normalized stress-induced increase in TrkB expression. Notably, ANA-12 showed region-specific effects on GR-ir at the NAc core and shell, with increased GR-ir in non-stress rats, although the drug attenuated stress-induced GR-ir expression only in the core portion of the NAc, while having no impact at the cingulate cortex. Elevated blood CORT levels post-stress was not influenced by ANA-12 treatment. Together, these findings suggest that BDNF-mediated TrkB activation exerts differential impact in regulating emotional response under basal and stress conditions.
Collapse
Affiliation(s)
- Idu Azogu
- Behavioural Neuroscience Group, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON, Canada
| | - Helene Plamondon
- Behavioural Neuroscience Group, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON, Canada.
| |
Collapse
|
10
|
Resende LS, Amaral CE, Soares RBS, Alves AS, Alves-dos-Santos L, Britto LRG, Chiavegatto S. Social stress in adolescents induces depression and brain-region-specific modulation of the transcription factor MAX. Transl Psychiatry 2016; 6:e914. [PMID: 27727240 PMCID: PMC5315556 DOI: 10.1038/tp.2016.202] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/18/2016] [Accepted: 08/24/2016] [Indexed: 11/17/2022] Open
Abstract
MAX is a conserved constitutive small phosphoprotein from a network of transcription factors that are extensively studied in tumorigenesis and whose functions affect cell proliferation, differentiation and death. Inspired by its higher expression during development and in regions involved in emotional behaviors, we hypothesized its involvement in cerebral changes caused by early-life stress. We studied the effects of repeated social stress during adolescence on behaviors and on MAX and its putative partner MYC. Thirty-day-old C57BL/6 male mice underwent brief daily social defeat stress from an adult aggressor for 21 days. Following social stress episodes and housing in social groups after each defeat, adolescent mice exhibit depressive-like, but not anxiety-like behaviors and show higher MAX nuclear immunoreactivity in hippocampal (HC) but not prefrontal cortical (PFC) neurons. Conversely, MAX immunoreactivity is lower in the striatum (ST) of defeated adolescents. The positive correlation between MAX and MYC levels in the PFC revealed disruptions in both the HC and ST. The changes in MAX protein levels are not due to differential gene expression or protein degradation in those regions, suggesting that posttranscriptional modifications occurred. These findings indicate that repeated, brief social defeat in adolescent male mice, combined with group housing, is a useful protocol to study a subtype of depression that is dissociated from generalized (non-social) anxiety. To our knowledge, this is the first report of an association between dysregulation of the MAX-MYC network in the brain and a behavior, suggesting a novel approach for exploiting the neuroplasticity associated with depression.
Collapse
Affiliation(s)
- L S Resende
- Department of Pharmacology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, Brazil,National Institute for Developmental Psychiatry (INCT-CNPq), Department of Psychiatry, Institute of Psychiatry, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - C E Amaral
- Department of Pharmacology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, Brazil,National Institute for Developmental Psychiatry (INCT-CNPq), Department of Psychiatry, Institute of Psychiatry, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - R B S Soares
- National Institute for Developmental Psychiatry (INCT-CNPq), Department of Psychiatry, Institute of Psychiatry, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - A S Alves
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - L Alves-dos-Santos
- Department of Pharmacology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, Brazil,National Institute for Developmental Psychiatry (INCT-CNPq), Department of Psychiatry, Institute of Psychiatry, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - L R G Britto
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - S Chiavegatto
- Department of Pharmacology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, Brazil,National Institute for Developmental Psychiatry (INCT-CNPq), Department of Psychiatry, Institute of Psychiatry, University of Sao Paulo Medical School, Sao Paulo, Brazil,Department of Pharmacology, Laboratory of Behavioral and Molecular Neurosciences, Biomedical Sciences Institute, University of Sao Paulo, 1524, Prof. Lineu Prestes Avenue, 3rd floor, 325, Sao Paulo 05508-000, SP, Brazil. E-mail
| |
Collapse
|
11
|
Wang N, Li SG, Lin XX, Su YL, Qi WJ, Wang JY, Luo F. Increasing Pain Sensation Eliminates the Inhibitory Effect of Depression on Evoked Pain in Rats. Front Behav Neurosci 2016; 10:183. [PMID: 27733820 PMCID: PMC5039174 DOI: 10.3389/fnbeh.2016.00183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/14/2016] [Indexed: 11/17/2022] Open
Abstract
Although previous studies have suggested that depression may be associated with inhibition of evoked pain but facilitation of spontaneous pain, the mechanisms underlying these relationships are unclear. The present study investigated whether the difference between evoked and spontaneous pain on sensory (descending inhibition) and affective (avoidance motivation) components contributes to the divergent effects of depression on them. Depressive-like behavior was produced in male Wistar rats by unpredictable chronic mild stress (UCMS). Tone-laser conditioning and formalin-induced conditioned place avoidance (F-CPA) were used to explore avoidance motivation in evoked and spontaneous pain, respectively. Behavioral pharmacology experiments were conducted to examine descending inhibition of both evoked (thermal stimulation) and spontaneous pain behavior (formalin pain). The results revealed that the inhibitory effect of depression on evoked pain was eliminated following repeated thermal stimuli. Avoidance behavior in the tone-laser conditioning task was reduced in UCMS rats, relative to controls. However, avoidance motivation for formalin pain in the UCMS group was similar to controls. 5-HT1A receptor antagonism interfered with inhibition of pain responses over time. The present study demonstrated that the inhibitory effect of depression on evoked pain dissipates with increased nociception and that the sensory-discriminative and affective-motivational components of pain are jointly involved in the divergent effects of depression on pain.
Collapse
Affiliation(s)
- Ning Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences Beijing, China
| | - Sheng-Guang Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences Beijing, China
| | - Xiao-Xiao Lin
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of SciencesBeijing, China; University of Chinese Academy of SciencesBeijing, China
| | - Yuan-Lin Su
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences Beijing, China
| | - Wei-Jing Qi
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences Beijing, China
| | - Jin-Yan Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of SciencesBeijing, China; University of Chinese Academy of SciencesBeijing, China
| | - Fei Luo
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of SciencesBeijing, China; University of Chinese Academy of SciencesBeijing, China
| |
Collapse
|
12
|
Dayan V, Sotelo V, Delfina V, Delgado N, Rodriguez C, Suanes C, Langhain M, Ferrando R, Keating A, Benech A, Touriño C. Human Mesenchymal Stromal Cells Improve Cardiac Perfusion in an Ovine Immunocompetent Animal Model. J INVEST SURG 2016; 29:218-25. [PMID: 26891475 DOI: 10.3109/08941939.2015.1128997] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) hold considerable promise in the treatment of ischemic heart disease. Most preclinical studies of MSCs for acute myocardial infarction (AMI) have been performed either in syngeneic animal models or with human cells in xenogeneic immunodeficient animals. A preferable pre-clinical model, however, would involve human MSCs in an immunocompetent animal. METHODS AMI was generated in adult sheep by inducing ischemia reperfusion of the second diagonal branch. Sheep (n = 10) were randomized to receive an intravenous injection of human MSCs (1 × 10(6) cells/kg) or phosphate buffered saline. Cardiac function and remodeling were evaluated with echocardiography. Perfusion scintigraphy was used to identify sustained myocardial ischemia. Interaction between human MSCs and ovine lymphocytes was assessed by a mixed lymphocyte response (MLR). RESULTS Sheep receiving human MSCs showed significant improvement in myocardial perfusion at 1 month compared with baseline measurements. There was no change in ventricular dimensions in either group after 1 month of AMI. No adverse events or symptoms were observed in the sheep receiving human MSCs. The MLR was negative. CONCLUSION The immunocompetent ovine AMI model demonstrates the clinical safety and efficacy of human MSCs. The human cells do not appear to be immunogenic, further suggesting that immunocompetent sheep may serve as a suitable pre-clinical large animal model for testing human MSCs.
Collapse
Affiliation(s)
- Victor Dayan
- a Faculty of Medicine, Department of Medical Pathology , University of the Republic of Uruguay , Montevideo , Uruguay
| | - Veronica Sotelo
- b Faculty of Veterinary , University of the Republic of Uruguay , Montevideo , Uruguay
| | - Valentina Delfina
- b Faculty of Veterinary , University of the Republic of Uruguay , Montevideo , Uruguay
| | - Natalia Delgado
- b Faculty of Veterinary , University of the Republic of Uruguay , Montevideo , Uruguay
| | - Carlos Rodriguez
- b Faculty of Veterinary , University of the Republic of Uruguay , Montevideo , Uruguay
| | - Carol Suanes
- c Faculty of Medicine, Department of Nuclear Medicine , University of the Republic of Uruguay, Montevideo , Uruguay
| | - María Langhain
- c Faculty of Medicine, Department of Nuclear Medicine , University of the Republic of Uruguay, Montevideo , Uruguay
| | - Rodolfo Ferrando
- c Faculty of Medicine, Department of Nuclear Medicine , University of the Republic of Uruguay, Montevideo , Uruguay
| | - Armand Keating
- d Cell Therapy Program, Princess Margaret Hospital , University Health Network, University of Toronto , Toronto , Canada
| | - Alejandro Benech
- b Faculty of Veterinary , University of the Republic of Uruguay , Montevideo , Uruguay
| | - Cristina Touriño
- a Faculty of Medicine, Department of Medical Pathology , University of the Republic of Uruguay , Montevideo , Uruguay
| |
Collapse
|
13
|
Fructose and stress induce opposite effects on lipid metabolism in the visceral adipose tissue of adult female rats through glucocorticoid action. Eur J Nutr 2016; 56:2115-2128. [DOI: 10.1007/s00394-016-1251-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/14/2016] [Indexed: 12/16/2022]
|
14
|
Liu X, Connaghan KP, Wei Y, Yang Z, Li MD, Chang SL. Involvement of the Hippocampus in Binge Ethanol-Induced Spleen Atrophy in Adolescent Rats. Alcohol Clin Exp Res 2016; 40:1489-500. [PMID: 27265021 DOI: 10.1111/acer.13109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/23/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND Ethanol (EtOH) affects the immune system. Binge drinking of hard liquor initiates a stress response. This form of drinking is popular during adolescence, which involves maturation of the immune system. The spleen is a key immune organ, and spleen atrophy is associated with immunosuppression. While the hypothalamic-pituitary-adrenal (HPA) axis plays a key role in the initial stress response, the hippocampus may be involved in stress beyond the HPA axis. METHODS Blood ethanol concentration (BEC), blood endotoxin levels, and plasma corticosterone levels were measured following binge EtOH treatment. Absolute and relative spleen sizes were analyzed, and stress-related gene expression was compared in the hypothalamus and hippocampus. Polymerase chain reaction array was performed to analyze the expression profile of EtOH metabolism and immune regulation-related genes in the spleen. Relationships among variables were analyzed using the Pearson correlation. RESULTS At 24 hours following a 3-day EtOH treatment, no significant difference in BEC was detected between EtOH-treated and control rats. Average plasma endotoxin levels in EtOH-treated animals were significantly higher than in controls, and spleen size was significantly lower. Spleen size did not correlate with plasma endotoxin levels; however, it did significantly negatively correlate with plasma corticosterone levels. Spleen size significantly negatively correlated with hippocampal CRH expression and significantly positively correlated with hippocampal MR expression. No correlation was observed in the hypothalamus. Significantly higher hippocampal CRH and significantly lower MR expression was seen in low spleen/body weight (sp-wt) ratio rats. No gene was found to decrease expression ≥1.5-fold (p < 0.05) in the spleen of high sp-wt group, whereas expression of several genes, including Gabra1, Gabra5, Ifnb1, Irf9, Il12b, and Cx3cr1, decreased significantly in the low sp-wt group. CONCLUSIONS Our findings suggest that binge EtOH exposure causes lower spleen size in adolescents and that the hippocampus and stress may be associated with alterations in spleen structure and gene expression.
Collapse
Affiliation(s)
- Xiangqian Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, New Jersey
| | - Kaitlyn P Connaghan
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, New Jersey
| | - Yufeng Wei
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, New Jersey
| | - Zhongli Yang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, New Jersey
| | - Ming D Li
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia
| | - Sulie L Chang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, New Jersey.,Department of Biological Sciences , Seton Hall University, South Orange, New Jersey
| |
Collapse
|
15
|
Abstract
BACKGROUND The use of psychotropic medications, particularly antidepressants, is common in patients with inflammatory bowel disease (IBD) in spite of a lack of their robust efficacy in this population. This review provides an overview of the use trends of different classes of antidepressant and anti-anxiety medication and their effects on mood, nervous system function, gastrointestinal physiology and immunity drawing from the literature available in the general population, other medical conditions, and when available, patients with IBD. It also covers the evidence base for the actions, efficacy, and potential complications of antidepressants organized by different classes. METHODS We conducted a PubMed search of articles relating the different drug classes probed to the terms above in different populations of interest. All types of articles were accepted including case reports and series, open and randomized trials, reviews, and expert opinion. We also examined the reference lists of the publications found. RESULTS Selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCAs) are the most commonly prescribed agents for anxiety and depression in patients with IBD, though their efficacy for these conditions in the general population are mild to moderate at best. SSRIs are generally well tolerated, though at higher doses, they, like most antidepressant classes, can be associated with activation, serotonergic syndrome, and increased suicidal ideation. TCAs have many more serious side effects but have some shown efficacy for functional GI symptoms. A newer class, the serotonin noradrenergic reuptake inhibitors (SNRIs), can be effective for refractory depression, anxiety and chronic pain syndromes with a side effect profile similar to both SSRIs and more mild manifestations of TCAs. Mirtazapine has moderate efficacy for depression if sedation and weight gain side effects are tolerated and some small support for use in nausea and vomiting. Bupropion targets dopamine and noradrenaline reuptake and has moderate efficacy for depression, and some small support for use in fatigue and smoking cessation. Buspirone has an indication for generalized anxiety disorder though studies show only a minimal benefit. It has some growing evidence for use in functional dyspepsia. Most of these agents have physiological effects on the brain, immune system, and gastrointestinal tract (with the exception of bupropion) hence their therapeutic and side effects manifested in these systems. CONCLUSION Antidepressant medications are frequently prescribed for depression, anxiety disorders, and chronic pain syndromes, but overall support for their efficacy is modest at best. Psychological interventions have growing support for having much more robust effects without the side effects of antidepressants and should be considered first-line treatment or at least an adjunct to psychotropic medications for these conditions.
Collapse
|
16
|
Time-dependent miR-16 serum fluctuations together with reciprocal changes in the expression level of miR-16 in mesocortical circuit contribute to stress resilient phenotype in chronic mild stress - An animal model of depression. Eur Neuropsychopharmacol 2016; 26:23-36. [PMID: 26628105 DOI: 10.1016/j.euroneuro.2015.11.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/24/2015] [Accepted: 11/13/2015] [Indexed: 01/24/2023]
Abstract
MicroRNAs (miRNAs) are involved in stress-related pathologies. However, the molecular mechanisms underlying stress resilience are elusive. Using chronic mild stress (CMS), an animal model of depression, we identified animals exhibiting a resilient phenotype. We investigated serum levels of corticosterone, melatonin and 376 mature miRNAs to find peripheral biomarkers associated with the resilient phenotype. miR-16, selected during screening step, was assayed in different brain regions in order to find potential relationship between brain and peripheral alterations in response to stress. Two CMS experiments that lasted for 2 and 7 consecutive weeks were performed. During both CMS procedures, sucrose consumption levels were significantly decreased in anhedonic-like animals (p<0.0001) compared with unstressed animals, whereas the drinking profiles of resilient rats did not change despite the rats being stressed. Serum corticosterone measurements indicated that anhedonic-like animals had blunted hypothalamic-pituitary-adrenal (HPA) axis activity, whereas resilient animals exhibited dynamic responses to stress. miRNA profiling revealed that resilient animals had elevated serum levels of miR-16 after 7 weeks of CMS (adjusted p-value<0.007). Moreover, resilient animals exhibited reciprocal changes in miR-16 expression level in mesocortical pathway after 2 weeks of CMS (p<0.008). A bioinformatic analysis showed that miR-16 regulates genes involved in the functioning of the nervous system in both humans and rodents. Resilient animals can actively cope with stress on a biochemical level and miR-16 may contribute to a "stress-resistant" behavioral phenotype by pleiotropic modulation of the expression of genes involved in the function of the nervous system.
Collapse
|
17
|
Genetic vulnerability, timing of short-term stress and mood regulation: A rodent diffusion tensor imaging study. Eur Neuropsychopharmacol 2015; 25:2075-85. [PMID: 26336869 DOI: 10.1016/j.euroneuro.2015.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/05/2015] [Accepted: 08/13/2015] [Indexed: 11/24/2022]
Abstract
UNLABELLED Early stressful life events predict depression and anxiety in carriers of specific polymorphisms and alter brain responses but brain structural phenotypes are largely unknown. We studied the interaction between short-term stress during specific time-windows and emotion-regulation using a genetic animal model of depression, the Wistar-Kyoto (WKY) rat. Brain structural alterations were analyzed using Diffusion Tensor Imaging (DTI). WKY (n=49) and Wistar (n=55) rats were divided into experimental groups: Early stress (ES): From postnatal day (PND) 27 rats were exposed to three consecutive days of stressors; Late stress (LS): From PND 44 rats were exposed to the same protocol; CONTROL No stressors. From PND 50, all animals were behaviorally tested for levels of anxiety and despair-like behaviors and then scanned. Gene×Environment×Timing (G×E×T) interactions (p=0.00022 after Hochberg correction) were found in ventral orbital cortex, cingulate cortex, external capsule, amygdala and dentate gyrus and in the emotion regulation measures. WKY showed longer immobility in forced swim test, but no effect of ES was detected. ES increased open-field anxiety-like behaviors in Wistar rats but not in WKY, possibly indicating a ceiling effect in WKY. Stress in pre-pubertal or adolescent phases in development may influence structural integrity of specific brain regions and emotion regulation behaviors depending on genetic vulnerability, consistent with a G×E×T interaction in mood dysregulation.
Collapse
|
18
|
Khan MSI, Shigeoka C, Takahara Y, Matsuda S, Tachibana T. Ontogeny of the corticotrophin-releasing hormone system in slow- and fast-growing chicks (Gallus gallus). Physiol Behav 2015; 151:38-45. [DOI: 10.1016/j.physbeh.2015.06.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 11/30/2022]
|
19
|
Gutknecht L, Popp S, Waider J, Sommerlandt FMJ, Göppner C, Post A, Reif A, van den Hove D, Strekalova T, Schmitt A, Colaςo MBN, Sommer C, Palme R, Lesch KP. Interaction of brain 5-HT synthesis deficiency, chronic stress and sex differentially impact emotional behavior in Tph2 knockout mice. Psychopharmacology (Berl) 2015; 232:2429-41. [PMID: 25716307 PMCID: PMC4480945 DOI: 10.1007/s00213-015-3879-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 01/20/2015] [Indexed: 12/12/2022]
Abstract
RATIONALE While brain serotonin (5-HT) function is implicated in gene-by-environment interaction (GxE) impacting the vulnerability-resilience continuum in neuropsychiatric disorders, it remains elusive how the interplay of altered 5-HT synthesis and environmental stressors is linked to failure in emotion regulation. OBJECTIVE Here, we investigated the effect of constitutively impaired 5-HT synthesis on behavioral and neuroendocrine responses to unpredictable chronic mild stress (CMS) using a mouse model of brain 5-HT deficiency resulting from targeted inactivation of the tryptophan hydroxylase-2 (Tph2) gene. RESULTS Locomotor activity and anxiety- and depression-like behavior as well as conditioned fear responses were differentially affected by Tph2 genotype, sex, and CMS. Tph2 null mutants (Tph2(-/-)) displayed increased general metabolism, marginally reduced anxiety- and depression-like behavior but strikingly increased conditioned fear responses. Behavioral modifications were associated with sex-specific hypothalamic-pituitary-adrenocortical (HPA) system alterations as indicated by plasma corticosterone and fecal corticosterone metabolite concentrations. Tph2(-/-) males displayed increased impulsivity and high aggressiveness. Tph2(-/-) females displayed greater emotional reactivity to aversive conditions as reflected by changes in behaviors at baseline including increased freezing and decreased locomotion in novel environments. However, both Tph2(-/-) male and female mice were resilient to CMS-induced hyperlocomotion, while CMS intensified conditioned fear responses in a GxE-dependent manner. CONCLUSIONS Our results indicate that 5-HT mediates behavioral responses to environmental adversity by facilitating the encoding of stress effects leading to increased vulnerability for negative emotionality.
Collapse
Affiliation(s)
- Lise Gutknecht
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany ,Department of Neurobiology, Functional Genomic Institute, CNRS /INSERM UMR 5203, University of Montpellier, 34094 Montpellier, France
| | - Sandy Popp
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Jonas Waider
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Frank M. J. Sommerlandt
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Corinna Göppner
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Antonia Post
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Daniel van den Hove
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Tatyana Strekalova
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Angelika Schmitt
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | | | - Claudia Sommer
- Department of Neurology, University of Wuerzburg, Wuerzburg, Germany
| | - Rupert Palme
- Department of Biomedical Sciences/Physiology, Pathophysiology and Experimental Endocrinology, University of Veterinary Medicine, Vienna, Austria
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany ,Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
20
|
Wrona D, Listowska M, Kubera M, Glac W, Grembecka B, Plucińska K, Majkutewicz I, Podlacha M. Effects of chronic desipramine pretreatment on open field-induced suppression of blood natural killer cell activity and cytokine response depend on the rat's behavioral characteristics. J Neuroimmunol 2013; 268:13-24. [PMID: 24461377 DOI: 10.1016/j.jneuroim.2013.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 09/28/2013] [Accepted: 10/03/2013] [Indexed: 11/26/2022]
Abstract
Effects of 14 consecutive day exposure to desipramine (10mg/kg i.p.), by itself or following chronic open field (OF) exposure, on subsequent neuroimmunological effects of acute (30 min) OF stress and the involvement of individual differences in response to novelty or social position in the anti-depressive responsiveness were investigated. Chronic desipramine pretreatment did not protect against OF stress-induced suppression of blood anti-tumor natural killer cell activity but increased plasma interleukin-10 and decreased interferon-γ and corticosterone concentration. These effects were particularly dangerous for the animals with increased responsivity to stress (desipramine alone) or with low behavioral activity (desipramine after chronic stress).
Collapse
Affiliation(s)
- Danuta Wrona
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Magdalena Listowska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Marta Kubera
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, PAS, Smętna 12, 31-343 Kraków, Poland
| | - Wojciech Glac
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Beata Grembecka
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Karolina Plucińska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Irena Majkutewicz
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Magdalena Podlacha
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| |
Collapse
|
21
|
Chronic antidepressant desipramine treatment increases open field-induced brain expression and spleen production of interleukin 10 in rats. Brain Res Bull 2013; 99:117-31. [DOI: 10.1016/j.brainresbull.2013.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 01/17/2023]
|
22
|
García-Iglesias BB, Mendoza-Garrido ME, Gutiérrez-Ospina G, Rangel-Barajas C, Noyola-Díaz M, Terrón JA. Sensitization of restraint-induced corticosterone secretion after chronic restraint in rats: involvement of 5-HT₇ receptors. Neuropharmacology 2013; 71:216-27. [PMID: 23542440 PMCID: PMC3838668 DOI: 10.1016/j.neuropharm.2013.03.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/04/2013] [Accepted: 03/18/2013] [Indexed: 01/09/2023]
Abstract
Serotonin (5-HT) modulates the hypothalamic-pituitary-adrenal (HPA) axis response to stress. We examined the effect of chronic restraint stress (CRS; 20 min/day) as compared to control (CTRL) conditions for 14 days, on: 1) restraint-induced ACTH and corticosterone (CORT) secretion in rats pretreated with vehicle or SB-656104 (a 5-HT₇ receptor antagonist); 2) 5-HT₇ receptor-like immunoreactivity (5-HT₇-LI) and protein in the hypothalamic paraventricular nucleus (PVN) and adrenal glands (AG); 3) baseline levels of 5-HT and 5-hydroxyindolacetic acid (5-HIAA), and 5-HIAA/5-HT ratio in PVN and AG; and 4) 5-HT-like immunoreactivity (5-HT-LI) in AG and tryptophan hydroxylase (TPH) protein in PVN and AG. On day 15, animals were subdivided into Treatment and No treatment groups. Treatment animals received an i.p. injection of vehicle or SB-656104; No Treatment animals received no injection. Sixty min later, Treatment animals were either decapitated with no further stress (0 min) or submitted to acute restraint (10, 30, 60 or 120 min); hormone serum levels were measured. No Treatment animals were employed for the rest of measurements. CRS decreased body weight gain and increased adrenal weight. In CTRL animals, acute restraint increased ACTH and CORT secretion in a time of restraint-dependent manner; both responses were inhibited by SB-656104. Exposure to CRS abolished ACTH but magnified CORT responses to restraint as compared to CTRL conditions; SB-656104 had no effect on ACTH levels but significantly inhibited sensitized CORT responses. In CTRL animals, 5-HT₇-LI was detected in magnocellular and parvocellular subdivisions of PVN and sparsely in adrenal cortex. Exposure to CRS decreased 5-HT₇-LI and protein in the PVN, but increased 5-HT₇-LI in the adrenal cortex and protein in whole AG. Higher 5-HT and 5-HIAA levels were detected in PVN and AG from CRS animals but 5-HIAA/5-HT ratio increased in AG only. Finally, whereas 5-HT-LI was sparsely observed in the adrenal cortex of CTRL animals, it strongly increased in the adrenal cortex of CRS animals. No TPH protein was detected in AG from both animal groups. Results suggest that CRS promotes endocrine disruption involving decreased ACTH and sensitized CORT responses to acute restraint. This phenomenon may be associated with increased function and expression of 5-HT₇ receptors as well as 5-HT turnover in AG.
Collapse
Affiliation(s)
- Brenda B. García-Iglesias
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Apartado Postal 14-740, Zacatenco 07000, Mexico City, México
| | | | - Gabriel Gutiérrez-Ospina
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, México
| | - Claudia Rangel-Barajas
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV-IPN, Mexico City, México
| | - Martha Noyola-Díaz
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Apartado Postal 14-740, Zacatenco 07000, Mexico City, México
| | - José A. Terrón
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Apartado Postal 14-740, Zacatenco 07000, Mexico City, México
| |
Collapse
|
23
|
Missima F, Sforcin JM. Green brazilian propolis action on macrophages and lymphoid organs of chronically stressed mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 5:71-5. [PMID: 18317551 PMCID: PMC2249736 DOI: 10.1093/ecam/nel112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 12/04/2006] [Indexed: 01/10/2023]
Abstract
Stress is a generic term that summarizes how psychosocial and environmental factors influence physical and mental well-being. The interaction between stress and immunity has been widely investigated, involving the neuroendocrine system and several organs. Assays using natural products in stress models deserve further investigation. Propolis immunomodulatory action has been mentioned and it has been the subject of scientific investigation in our laboratory. The aim of this study was to evaluate if and how propolis activated macrophages in BALB/c mice submitted to immobilization stress, as well as the histopathological analysis of the thymus, bone marrow, spleen and adrenal glands. Stressed mice showed a higher hydrogen peroxide (H(2)O(2)) generation by peritoneal macrophages, and propolis treatment potentiated H(2)O(2) generation and inhibited nitric oxide (NO) production by these cells. Histopathological analysis showed no alterations in the thymus, bone marrow and adrenal glands, but increased germinal centers in the spleen. Propolis treatment counteracted the alterations found in the spleen of stressed mice. New research is being carried out in order to elucidate propolis immunomodulatory action during stress.
Collapse
Affiliation(s)
- Fabiane Missima
- Department of Microbiology and Immunology, Biosciences Institute, UNESP, 18618-000 Botucatu, S.P., Brazil
| | | |
Collapse
|
24
|
Laukova M, Vargovic P, Vlcek M, Lejavova K, Hudecova S, Krizanova O, Kvetnansky R. Catecholamine production is differently regulated in splenic T- and B-cells following stress exposure. Immunobiology 2013; 218:780-9. [DOI: 10.1016/j.imbio.2012.08.279] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 08/27/2012] [Indexed: 11/24/2022]
|
25
|
Zamora-González EO, Santerre A, Palomera-Avalos V, Morales-Villagrán A. A chronic combinatory stress model that activates the HPA axis and avoids habituation in BALB/C mice. J Neurosci Methods 2013. [DOI: 10.1016/j.jneumeth.2012.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
26
|
Noller CM, Szeto A, Mendez AJ, Llabre MM, Gonzales JA, Rossetti MA, Schneiderman N, McCabe PM. The influence of social environment on endocrine, cardiovascular and tissue responses in the rabbit. Int J Psychophysiol 2012; 88:282-8. [PMID: 22546665 DOI: 10.1016/j.ijpsycho.2012.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 04/11/2012] [Accepted: 04/18/2012] [Indexed: 11/30/2022]
Abstract
Previous work from our lab demonstrated that social environment influences the progression of atherosclerosis in genetically hyperlipidemic rabbits. The purpose of the current study was to examine behavioral and physiological responses associated with these distinct chronic social conditions. Normolipidemic rabbits were exposed to one of three social environments for 4 hours/day over 20 weeks: 1) an Unstable Group in which animals were paired weekly with a different unfamiliar rabbit, 2) a Stable Group in which rabbits were paired with the same littermate for the entire study, and 3) an Individually Caged Group in which animals were socially isolated. It was found that the Unstable Group, characterized by increased agonistic behavior and relatively less affiliative behavior, exhibited physiological responses indicative of chronic stress (increased urinary norepinephrine, plasma cortisol, splenic weight, and decreased visceral fat and body weight compared to the other groups). These animals also had increased acute plasma oxytocin responses relative to the other groups 10 minutes into the social pairing. In contrast, the Stable Group exhibited more affiliative behavior and less stressful physiological and tissue responses. The Individually Caged Group had elevated urinary norepinephrine relative to the Stable Group, and they exhibited higher heart rates at the end of the study compared to the other groups, suggesting that this social environment is also associated with chronic sympathetic arousal. It was concluded that distinct social contexts lead to different patterns of behavioral and physiological responses, and these responses are relevant to the pathophysiology of atherosclerosis and cardiovascular disease.
Collapse
Affiliation(s)
- Crystal M Noller
- Department of Psychology, University of Miami, Coral Gables, FL 33124, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Eyre H, Baune BT. Neuroimmunological effects of physical exercise in depression. Brain Behav Immun 2012; 26:251-66. [PMID: 21986304 DOI: 10.1016/j.bbi.2011.09.015] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 09/25/2011] [Accepted: 09/26/2011] [Indexed: 02/06/2023] Open
Abstract
The search for an extended understanding of the causes of depression, and for the development of additional effective treatments is highly significant. Clinical and pre-clinical studies suggest stress is a key mediator in the pathophysiology of depression. Exercise is a readily available therapeutic option, effective as a first-line treatment in mild to moderate depression. In pre-clinical models exercise attenuates stress-related depression-like behaviours. Cellular and humoral neuroimmune mechanisms beyond inflammation and oxidative stress are highly significant in understanding depression pathogenesis. The effects of exercise on such mechanisms are unclear. When clinical and pre-clinical data is taken together, exercise may reduce inflammation and oxidation stress via a multitude of cellular and humoral neuroimmune changes. Astrocytes, microglia and T cells have an antiinflammatory and neuroprotective functions via a variety of mechanisms. It is unknown whether exercise has effects on specific neuroimmune markers implicated in the pathogenesis of depression such as markers of immunosenescence, B or T cell reactivity, astrocyte populations, self-specific CD4+ T cells, T helper 17 cells or T regulatory cells.
Collapse
Affiliation(s)
- Harris Eyre
- Psychiatry and Psychiatric Neuroscience Research Group, School of Medicine and Dentistry, James Cook University, 101 Angus Smith Drive, Townsville, Queensland 4811, Australia
| | | |
Collapse
|
28
|
Tan Z, Su ZY, Wu RR, Gu B, Liu YK, Zhao XL, Zhang M. Immunomodulative effects of mesenchymal stem cells derived from human embryonic stem cells in vivo and in vitro. J Zhejiang Univ Sci B 2011; 12:18-27. [PMID: 21194182 DOI: 10.1631/jzus.b1000074] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Human embryonic stem cells (hESCs) have recently been reported as an unlimited source of mesenchymal stem cells (MSCs). The present study not only provides an identical and clinically compliant MSC source derived from hESCs (hESC-MSCs), but also describes the immunomodulative effects of hESC-MSCs in vitro and in vivo for a carbon tetrachloride (CCl(4))-induced liver inflammation model. METHODS Undifferentiated hESCs were treated with Rho-associated kinase (ROCK) inhibitor and induced to fibroblast-looking cells. These cells were tested for their surface markers and multilineage differentiation capability. Further more, we analyzed their immune characteristics by mixed lymphocyte reactions (MLRs) and animal experiments. RESULTS hESC-MSCs show a homogenous fibroblastic morphology that resembles bone marrow-derived MSCs (BM-MSCs). The cell markers and differentiation potential of hESC-MSCs are also similar to those of BM-MSCs. Unlike their original cells, hESC-MSCs possess poor immunogenicity and can survive and be engrafted into a xenogenic immunocompetent environment. CONCLUSIONS The hESC-MSCs demonstrate strong inhibitory effects on lymphocyte proliferation in vitro and anti-inflammatory infiltration properties in vivo. This study offers information essential to the applications of hESC-MSC-based therapies and evidence for the therapeutic mechanisms of action.
Collapse
Affiliation(s)
- Zhou Tan
- Institute of Cell Biology and Genetics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | |
Collapse
|
29
|
He JY, Jiang LS, Dai LY. The roles of the sympathetic nervous system in osteoporotic diseases: A review of experimental and clinical studies. Ageing Res Rev 2011; 10:253-63. [PMID: 21262391 DOI: 10.1016/j.arr.2011.01.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Revised: 01/10/2011] [Accepted: 01/11/2011] [Indexed: 02/04/2023]
Abstract
With the rapid aging of the world population, the issue of skeletal health is becoming more prominent and urgent. The bone remodeling mechanism has sparked great interest among bone research societies. At the same time, increasing clinical and experimental evidence has driven attention towards the pivotal role of the sympathetic nervous system (SNS) in bone remodeling. Bone remodeling is thought to be partially controlled by the hypothalamus, a process which is mediated by the adrenergic nerves and neurotransmitters. Currently, new knowledge about the role of the SNS in the development and pathophysiology of osteoporosis is being generated. The aim of this review is to summarize the evidence that proves the involvement of the SNS in bone metabolism and to outline some common osteoporotic diseases that occur under different circumstances. The adrenergic signaling pathway and its neurotransmitters are involved to various degrees of importance in the development of osteoporosis in postmenopause, as well as in spinal cord injury, depression, unloading and the complex regional pain syndrome. In addition, clinical and pharmacological studies have helped to increase the comprehension of the adrenergic signaling pathway. We try to individually examine the contributions of the SNS in osteoporotic diseases from a different perspective. It is our hope that a further understanding of the adrenergic signaling by the SNS will pave the way for conceptualizing optimal treatment regimens for osteoporosis in the near future.
Collapse
Affiliation(s)
- Ji-Ye He
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, China
| | | | | |
Collapse
|
30
|
Liu Y, Yang N, Hao W, Zhao Q, Ying T, Liu S, Li Q, Liang Y, Wang T, Dong Y, Ji C, Zuo P. Dynamic proteomic analysis of protein expression profiles in whole brain of Balb/C mice subjected to unpredictable chronic mild stress: implications for depressive disorders and future therapies. Neurochem Int 2011; 58:904-13. [PMID: 21349309 DOI: 10.1016/j.neuint.2011.02.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 02/11/2011] [Accepted: 02/16/2011] [Indexed: 01/26/2023]
Abstract
The etiology and pathophysiology of depression remain unknown. Previous works were mostly performed on single observation time-point which might be insufficiently to reveal the molecular events changed during the disease development. Adult BALB/c mice were exposed to unpredictable chronic mild stress (UCMS) for different periods and differential 2D gel electrophoresis (DIGE) approach was employed to the brain tissue to explore the molecular disease signatures. Sustained elevation of corticosterone level was observed, suggesting the hyperactivity of hypothalamic-pituitary-adrenal (HPA) axis when the mice were subjected to the stressful situation. The behavioral results indicated the depressive alterations of the mice exposing to UCMS. The altered proteins identified by proteomics showed that abnormal energy mobilization under stress condition was accompanied by overproduction of reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress. Cytoskeleton protein and anti-oxidant enzymes were also changed by UCMS treatment. The results of biochemical and immunohistochemical assay confirmed the changes identified by DIGE analysis. These results indicated that the insufficiency of ATP synthesis, overwhelming ROS production and ER stress subsequently contributed to the cytoskeletal damage and inhibition to expression of some anti-oxidant proteins, which might ultimately bring functional neuron to apoptosis or death. Proteins whose expression is affected may provide tools for potential treatment strategies.
Collapse
Affiliation(s)
- Yanyong Liu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 5 Dongdansantiao, Beijing 100005, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lagunas N, Calmarza-Font I, Diz-Chaves Y, Garcia-Segura LM. Long-term ovariectomy enhances anxiety and depressive-like behaviors in mice submitted to chronic unpredictable stress. Horm Behav 2010; 58:786-91. [PMID: 20691693 DOI: 10.1016/j.yhbeh.2010.07.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 07/28/2010] [Accepted: 07/29/2010] [Indexed: 01/18/2023]
Abstract
Ovarian hormones exert anti-depressive and anxiolytic actions. In this study we have analyzed the effects of ovariectomy on the development of anxiety and depression-like behaviors and on cell proliferation in the hippocampus of mice submitted to chronic unpredictable stress. Animals submitted to stress 4 months after ovariectomy showed a significant increase in immobility behavior in the forced swimming test compared to animals submitted to stress 2 weeks after ovariectomy. In addition, long-term ovariectomy resulted in a significant decrease on the time spent in the open arms in the elevated plus-maze test compared to control animals. Stress did not significantly affect cell proliferation in the hilus of the dentate gyrus. However, ovariectomy resulted in a significant decrease in cell proliferation. These results indicate that long-term deprivation of ovarian hormones enhances the effect of chronic unpredictable stress on depressive- and anxiety-like behaviors in mice. Therefore, a prolonged deprivation of ovarian hormones may represent a risk factor for the development of depressive and anxiety symptoms after the exposure to stressful experiences.
Collapse
Affiliation(s)
- Natalia Lagunas
- Instituto Cajal, CSIC, Avenida Doctor Arce 37, Madrid, Spain
| | | | | | | |
Collapse
|
32
|
Liu Y, Yang N, Zuo P. cDNA microarray analysis of gene expression in the cerebral cortex and hippocampus of BALB/c mice subjected to chronic mild stress. Cell Mol Neurobiol 2010; 30:1035-47. [PMID: 20532976 PMCID: PMC11498782 DOI: 10.1007/s10571-010-9534-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 05/25/2010] [Indexed: 11/24/2022]
Abstract
Depressive disorders are devastating metal illness that can lead to deterioration in the social and occupational functioning of affected individuals. The etiology and pathophysiology of depression remain unknown. Present study was performed to better understand the underlying causes of depression. An experimental animal depression was induced in male BALB/c mice subjected to a chronic mild stress (CMS) procedure involving different stressor for consecutive 4 weeks. A cDNA microarray was employed to study the effects of CMS on the gene expression in cerebral cortex and hippocampus. 4-week CMS caused a significant reduction of 2% sucrose consumption. Morris water maze procedure showed impairment in cognitive function in stressed mice. Results of microarray showed that there were 102 and 60 genes were markedly affected by CMS treatment in cerebral cortex and hippocampus regions, respectively, including DNA damage/repair-related enzymes, anti-oxidant enzyme, and cyclin and cyclin-dependent kinase (CDK). These findings suggest that multiple biochemical effects play an important role the etiology of depression.
Collapse
Affiliation(s)
- Yanyong Liu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), No. 5 Dong Dan San Tiao, Beijing, 100005 China
| | - Nan Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), No. 5 Dong Dan San Tiao, Beijing, 100005 China
| | - Pingping Zuo
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), No. 5 Dong Dan San Tiao, Beijing, 100005 China
| |
Collapse
|
33
|
Zhang J, Li L, Lu Q, Xiao R, Wen H, Yan K, Li Y, Zhou Y, Su Y, Zhang G, Li W, Zhou J. Acute stress enhances contact dermatitis by promoting nuclear factor-kappaB DNA-binding activity and interleukin-18 expression in mice. J Dermatol 2010; 37:512-21. [PMID: 20536664 DOI: 10.1111/j.1346-8138.2009.00771.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Psychological stress adversely affects the immune system, and aggravates various skin diseases, such as psoriasis, alopecia areata and atopic dermatitis. However, the precise underlying mechanisms remain to be elucidated. The goal of this study was to use a murine restraint stress model to determine the mechanisms by which psychological stress modulates immune response in contact dermatitis. In the present study, mice were sensitized and challenged on the skin with 2,4-dinitrofluorobenzene. Acute restraint stress was administrated to healthy or sensitized mice before challenge, and nuclear factor (NF)-kappaB DNA-binding activation of nuclear protein and expression of interleukin (IL)-18 mRNA in murine spleen lymphocytes was detected. Chemical sympathectomy was performed using the neurotoxin 6-hydroxy-dopamine to determine the effect of the sympathetic nervous system. The experiment showed that restraint stress induced a series of changes which include increasing of NF-kappaB DNA-binding activity and IL-18 mRNA expression in spleen lymphocytes and enhancement of contact hypersensitivity response, and these changes may be mediated by the sympathetic nervous system. These findings provide new insights into the roles of the nervous system in the aggravation of skin diseases.
Collapse
Affiliation(s)
- Jing Zhang
- Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Pitychoutis PM, Tsitsilonis OE, Papadopoulou-Daifoti Z. Antidepressant pharmacotherapy: focus on sex differences in neuroimmunopharmacological crossroads. FUTURE NEUROLOGY 2010. [DOI: 10.2217/fnl.10.28] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Major depression is a stress-related disorder that shows a clear female preponderance. Sex differences in antidepressant response have been documented in both the clinical and experimental settings. It is of interest that antidepressant drugs exert critical immunotropic influences, mediated by direct and/or compensatory routes; these effects are not completely understood but comprise a matter of intensive investigation. Even though human studies have found only a few sex-related differences in the immunotropic effects of antidepressants, recent experimental evidence in the chronic mild stress model of depression points towards a sexually dimorphic neuroimmune playground in view of chronic antidepressant treatment. Herein, we provide a concise review regarding the effects of antidepressant pharmacotherapy on neuroimmune manifestations by concentrating on intriguing sex differences.
Collapse
Affiliation(s)
- Pothitos M Pitychoutis
- Department of Pharmacology, Medical School, University of Athens, 75 Mikras Asias Str., Goudi, 115 27, Athens, Greece
| | - Ourania E Tsitsilonis
- Department of Animal & Human Physiology, Faculty of Biology, University of Athens, Panepistimiopolis, 15784, Ilissia, Athens, Greece
| | | |
Collapse
|
35
|
Rogóz Z, Kubera M, Rogóz K, Basta-Kaim A, Budziszewska B. Effect of co-administration of fluoxetine and amantadine on immunoendocrine parameters in rats subjected to a forced swimming test. Pharmacol Rep 2010; 61:1050-60. [PMID: 20081240 DOI: 10.1016/s1734-1140(09)70167-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Revised: 10/16/2009] [Indexed: 12/16/2022]
Abstract
Considerable attention has been paid to a possible role of immunological dysregulation in the pathogenesis of depression. It has been reported that combined administration of antidepressant drugs and the non-competitive NMDA receptor antagonist amantadine reduces immobility time in the forced swimming test (FST). Moreover, preliminary clinical data show that such a combination of drugs has a beneficial effect on treatment-resistant depressed patients. Since immune activation and a pro-inflammatory response are clearly evident in treatment-resistant depression, the aim of the present study was to examine the effect of a combination of the antidepressant fluoxetine and amantadine on immunoendocrine parameters in rats subjected to the forced swimming test. The obtained results revealed synergistic antidepressant effects of the combined administration of fluoxetine (10 mg/kg) and amantadine (10 mg/kg) - drugs otherwise ineffective when given separately in the above doses. Antidepressant activity was accompanied with a significant decrease in the capacity of splenocytes to proliferate in response to concanavalin A. Moerover, fluoxetine and the combination of amantadine and fluoxetine reduced relative spleen weight in rats subjected to the FST, compared to rats treated with the vehicle. The combination of amantadine and fluoxetine enhanced the production of the negative immunoregulator interleukin-10 (but not interferon-gamma) in rats subjected to the FST. The exposure to the FST produced an increase in plasma corticosterone levels, which was significantly attenuated by pretreatment with fluoxetine and amantadine. In summary, the antidepressive efficacy of a combination of fluoxetine and amantadine given in suboptimal doses may be related to the negative immunoendocrine effects of these drugs.
Collapse
Affiliation(s)
- Zofia Rogóz
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, PL 31-343 Kraków, Poland.
| | | | | | | | | |
Collapse
|
36
|
Szemerszky R, Zelena D, Barna I, Bárdos G. Stress-related endocrinological and psychopathological effects of short- and long-term 50Hz electromagnetic field exposure in rats. Brain Res Bull 2010; 81:92-9. [PMID: 19883742 DOI: 10.1016/j.brainresbull.2009.10.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 10/15/2009] [Accepted: 10/21/2009] [Indexed: 11/15/2022]
Abstract
It is believed that different electromagnetic fields do have beneficial and harmful biological effects. The aim of the present work was to study the long-term consequences of 50 Hz electromagnetic field (ELF-EMF) exposure with special focus on the development of chronic stress and stress-induced psychopathology. Adult male Sprague-Dawley rats were exposed to ELF-EMF (50 Hz, 0.5 mT) for 5 days, 8h daily (short) or for 4-6 weeks, 24h daily (long). Anxiety was studied in elevated plus maze test, whereas depression-like behavior of the long-treated group was examined in the forced swim test. Some days after behavioral examination, the animals were decapitated among resting conditions and organ weights, blood hormone levels as well as proopiomelanocortin mRNA level from the anterior lobe of the pituitary gland were measured. Both treatments were ineffective on somatic parameters, namely none of the changes characteristic to chronic stress (body weight reduction, thymus involution and adrenal gland hypertrophy) were present. An enhanced blood glucose level was found after prolonged ELF-EMF exposure (p=0.013). The hormonal stress reaction was similar in control and short-term exposed rats, but significant proopiomelanocortin elevation (p<0.000) and depressive-like behavior (enhanced floating time; p=0.006) were found following long-term ELF-EMF exposure. Taken together, long and continuous exposure to relatively high intensity electromagnetic field may count as a mild stress situation and could be a factor in the development of depressive state or metabolic disturbances. Although we should stress that the average intensity of the human exposure is normally much smaller than in the present experiment.
Collapse
Affiliation(s)
- Renáta Szemerszky
- Department of Physiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | | | | | | |
Collapse
|
37
|
Sforcin JM, Nunes GA, Missima F, Sá-Nunes A, Faccioli LH. Effect of a leukotriene inhibitor (MK886) on nitric oxide and hydrogen peroxide production by macrophages of acutely and chronically stressed mice. J Pharm Pharmacol 2010; 59:1249-54. [PMID: 17883896 DOI: 10.1211/jpp.59.9.0009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
We evaluated the effect of a leukotriene inhibitor (MK886) on nitric oxide (NO) and hydrogen peroxide (H2O2) production by peritoneal macrophages of mice subjected to acute and chronic stress. Acute stress was induced by keeping mice immobilized in a tube for 2 h. Chronic stress was induced over a 7-day period by the same method, but with increasing duration of immobilization. The effects of MK886 were investigated in-vitro after incubation with peritoneal macrophages, and in-vivo by submitting mice to stress and treating them daily with MK886. Supernatants of macrophage cultures were collected for NO determination and adherent cells were used for H2O2 determination. Macrophages from mice submitted to acute or chronic stress showed no alterations in H2O2 production. However, macrophages of acutely and chronically stressed mice showed inhibition of NO after incubation with MK886 in-vitro. Administration of MK886 to chronically stressed mice increased generation of H2O2 and inhibited production of NO. Our data suggest an important role of leukotrienes in NO synthesis, which is important in controlling replication of several infectious agents, mainly in stressed and immunosuppressed animals.
Collapse
Affiliation(s)
- José Maurício Sforcin
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, UNESP, Botucatu, SP 18618-000, Brazil.
| | | | | | | | | |
Collapse
|
38
|
Shi M, Wang JY, Luo F. Depression shows divergent effects on evoked and spontaneous pain behaviors in rats. THE JOURNAL OF PAIN 2010; 11:219-29. [PMID: 20096641 DOI: 10.1016/j.jpain.2009.07.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 07/01/2009] [Accepted: 07/13/2009] [Indexed: 11/26/2022]
Abstract
UNLABELLED Although it has been accepted that depression and pain are common comorbidities, their interaction is not fully understood. The present study was aimed to investigate the effects of depression on both evoked pain behavior (thermal-induced nociception and hyperalgesia) and spontaneous pain behavior (formalin pain) in rats. An unpredictable chronic mild stress (UCMS) paradigm was employed to develop a classical depression. The emotional behaviors were assessed by sucrose preference test, open field test, and elevated plus-maze test. The results showed that the depressed rats always exhibited stronger tolerance to noxious thermal stimulation under both normal and complete Freund's adjuvant (CFA)-induced chronic pain conditions, when compared to nondepressed animals. Interestingly, the spontaneous nociceptive behaviors induced by formalin injection were significantly enhanced in rats exposed to UCMS in comparison to those without UCMS. Systemic administration of antidepressant fluoxetine significantly restored the nociceptive behaviors to normal level in depressed animals. An additional finding was that the inflammatory rats tended to display depressive-like behaviors without being exposed to UCMS. These results demonstrated that depression can have different effects on stimulus-evoked pain and spontaneous pain, with alleviation in the former while aggravation in the latter. PERSPECTIVE The present study provides evidence that depression can have divergent effects on stimulus-evoked and spontaneous pain by confirming that rats exposed to chronic mild stress tend to exhibit decreased pain sensitivity to experimental stimuli but increased intensity of ongoing pain. This may contribute to further understanding of the perplexing relationship between clinical depression and chronic pain.
Collapse
Affiliation(s)
- Miao Shi
- Neuroscience Research Institute and Department of Neurobiology, Peking University, Beijing, China
| | | | | |
Collapse
|
39
|
Musazzi L, Milanese M, Farisello P, Zappettini S, Tardito D, Barbiero VS, Bonifacino T, Mallei A, Baldelli P, Racagni G, Raiteri M, Benfenati F, Bonanno G, Popoli M. Acute stress increases depolarization-evoked glutamate release in the rat prefrontal/frontal cortex: the dampening action of antidepressants. PLoS One 2010; 5:e8566. [PMID: 20052403 PMCID: PMC2797327 DOI: 10.1371/journal.pone.0008566] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 12/06/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Behavioral stress is recognized as a main risk factor for neuropsychiatric diseases. Converging evidence suggested that acute stress is associated with increase of excitatory transmission in certain forebrain areas. Aim of this work was to investigate the mechanism whereby acute stress increases glutamate release, and if therapeutic drugs prevent the effect of stress on glutamate release. METHODOLOGY/FINDINGS Rats were chronically treated with vehicle or drugs employed for therapy of mood/anxiety disorders (fluoxetine, desipramine, venlafaxine, agomelatine) and then subjected to unpredictable footshock stress. Acute stress induced marked increase in depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex in superfusion, and the chronic drug treatments prevented the increase of glutamate release. Stress induced rapid increase in the circulating levels of corticosterone in all rats (both vehicle- and drug-treated), and glutamate release increase was blocked by previous administration of selective antagonist of glucocorticoid receptor (RU 486). On the molecular level, stress induced accumulation of presynaptic SNARE complexes in synaptic membranes (both in vehicle- and drug-treated rats). Patch-clamp recordings of pyramidal neurons in the prefrontal cortex revealed that stress increased glutamatergic transmission through both pre- and postsynaptic mechanisms, and that antidepressants may normalize it by reducing release probability. CONCLUSIONS/SIGNIFICANCE Acute footshock stress up-regulated depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex. Stress-induced increase of glutamate release was dependent on stimulation of glucocorticoid receptor by corticosterone. Because all drugs employed did not block either elevation of corticosterone or accumulation of SNARE complexes, the dampening action of the drugs on glutamate release must be downstream of these processes. This novel effect of antidepressants on the response to stress, shown here for the first time, could be related to the therapeutic action of these drugs.
Collapse
Affiliation(s)
- Laura Musazzi
- Department of Pharmacological Sciences, Center of Neuropharmacology and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milano, Italy
| | - Marco Milanese
- Department of Experimental Medicine, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy
- Center of Excellence for Biomedical Research and National Institute of Neuroscience, Genova, Italy
| | - Pasqualina Farisello
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Genova, Italy
- Department of Experimental Medicine, Section of Physiology, University of Genova and National Institute of Neuroscience, Genova, Italy
| | - Simona Zappettini
- Department of Experimental Medicine, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy
- Center of Excellence for Biomedical Research and National Institute of Neuroscience, Genova, Italy
| | - Daniela Tardito
- Department of Pharmacological Sciences, Center of Neuropharmacology and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milano, Italy
| | - Valentina S. Barbiero
- Department of Pharmacological Sciences, Center of Neuropharmacology and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milano, Italy
| | - Tiziana Bonifacino
- Department of Experimental Medicine, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy
- Center of Excellence for Biomedical Research and National Institute of Neuroscience, Genova, Italy
| | - Alessandra Mallei
- Department of Pharmacological Sciences, Center of Neuropharmacology and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milano, Italy
| | - Pietro Baldelli
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Genova, Italy
- Department of Experimental Medicine, Section of Physiology, University of Genova and National Institute of Neuroscience, Genova, Italy
| | - Giorgio Racagni
- Department of Pharmacological Sciences, Center of Neuropharmacology and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milano, Italy
- Department of Experimental Medicine, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Genova, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico San Giovanni di Dio - Fatebenefratelli, Brescia, Italy
- Center of Excellence for Biomedical Research and National Institute of Neuroscience, Genova, Italy
- Department of Experimental Medicine, Section of Physiology, University of Genova and National Institute of Neuroscience, Genova, Italy
| | - Maurizio Raiteri
- Department of Experimental Medicine, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy
- Center of Excellence for Biomedical Research and National Institute of Neuroscience, Genova, Italy
| | - Fabio Benfenati
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Genova, Italy
- Department of Experimental Medicine, Section of Physiology, University of Genova and National Institute of Neuroscience, Genova, Italy
| | - Giambattista Bonanno
- Department of Experimental Medicine, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy
- Center of Excellence for Biomedical Research and National Institute of Neuroscience, Genova, Italy
| | - Maurizio Popoli
- Department of Pharmacological Sciences, Center of Neuropharmacology and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milano, Italy
| |
Collapse
|
40
|
Murakami T, Yamane H, Tomonaga S, Furuse M. Forced swimming and imipramine modify plasma and brain amino acid concentrations in mice. Eur J Pharmacol 2009; 602:73-7. [DOI: 10.1016/j.ejphar.2008.10.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 10/07/2008] [Accepted: 10/29/2008] [Indexed: 11/30/2022]
|
41
|
Grippo AJ, Johnson AK. Stress, depression and cardiovascular dysregulation: a review of neurobiological mechanisms and the integration of research from preclinical disease models. Stress 2009; 12:1-21. [PMID: 19116888 PMCID: PMC2613299 DOI: 10.1080/10253890802046281] [Citation(s) in RCA: 296] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bidirectional associations between mood disorders and cardiovascular diseases are extensively documented. However, the precise physiological and biochemical mechanisms that underlie such relationships are not well understood. This review focuses on the neurobiological processes and mediators that are common to both mood and cardiovascular disorders. The discussion places an emphasis on the role of exogenous stressors in addition to: (a) neuroendocrine and neurohumoral changes involving dysfunction of the hypothalamic-pituitary-adrenal axis and the activation of the renin-angiotensin-aldosterone system, (b) immune alterations including activation of pro-inflammatory cytokines, (c) autonomic and cardiovascular dysregulation including increased sympathetic drive, withdrawal of parasympathetic tone, cardiac rate and rhythm disturbances, and altered baroreceptor reflex function, (d) central neurotransmitter system dysfunction involving the dopamine, norepinephrine and serotonin systems, and (e) behavioral changes including fatigue and physical inactivity. The review also discusses experimental investigations using preclinical disease models to elucidate the neurobiological mechanisms underlying the link between mood disorders and cardiovascular disease. These include: (a) the chronic mild stress model of depression, (b) a model of congestive heart failure, (c) a model of cardiovascular deconditioning, (d) pharmacological manipulations of body fluid and sodium balance, and (e) pharmacological manipulations of the central serotonergic system. In combination with an extensive human research literature, the investigation of mechanisms underlying mood and cardiovascular regulation using animal models will enhance understanding the association between depression and cardiovascular disease. This will ultimately promote the development of better treatments and interventions for individuals with co-morbid psychological and somatic pathologies.
Collapse
Affiliation(s)
- Angela J Grippo
- Department of Psychiatry and Brain Body Center, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | |
Collapse
|
42
|
Olah A, Jozsa R, Csernus V, Sandor J, Muller A, Zeman M, Hoogerwerf W, Cornélissen G, Halberg F. Stress, geomagnetic disturbance, infradian and circadian sampling for circulating corticosterone and models of human depression? Neurotox Res 2008; 13:85-96. [PMID: 18515211 DOI: 10.1007/bf03033560] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While certain circadian hormonal changes are prominent, their predictable assessment requires a standardization of conditions of sampling. The 24-hour rhythm in circulating corticosterone of rodents, known since the 1950s, was studied as a presumed proxy for stress on 108 rats divided into 9 groups of 6 male and 9 groups of 6 female animals sampled every 4 hours for 24 hours. In a first stress study, the "no-rhythm" (zero-amplitude) assumption failed to be rejected at the 5% probability level in the two control groups and in 16 out of the 18 groups considered. A circadian rhythm could be detected with statistical significance, however, in three separate follow-up studies in the same laboratory, each on 168 rats kept on two antiphasic lighting regimens, with 4-hourly sampling for 7 or 14 days. In the first stress study, pooling of certain groups helped the detection and assessment of the circadian corticosterone rhythm. Without extrapolating to hormones other than corticosterone, which may shift more slowly or adjust differently and in response to different synchronizers, the three follow-up studies yielded uncertainty measures (95% confidence intervals) for the point estimate of its circadian period, of possible use in any future study as a reference standard. The happenstance of a magnetic disturbance at the start of two follow-up studies was associated with the detection of a circasemiseptan component, raising the question whether a geomagnetic disturbance could be considered as a "load". Far beyond the limitations of sample size, the methodological requirements for standardization in the experimental laboratory concerning designs of studies are considered in the context of models of depression. Lessons from nature's unforeseen geomagnetic contribution and from human studies are noted, all to support the advocacy, in the study of loads, of sampling schedules covering more than 24 hours.
Collapse
Affiliation(s)
- A Olah
- Faculty of Health Sciences, University of Pecs, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Long-lasting behavioral effects and recognition memory deficit induced by chronic mild stress in mice: effect of antidepressant treatment. Psychopharmacology (Berl) 2008; 199:1-14. [PMID: 18470507 DOI: 10.1007/s00213-007-1035-1] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 11/27/2007] [Indexed: 12/15/2022]
Abstract
RATIONALE Many studies support the validity of the chronic mild stress (CMS) model of depression in rodents. However, most of them focus on analysis of reactivity to rewards during the CMS and/or depressive-like behavior shortly after stress. In this study, we investigate acute and long-term effects of CMS and antidepressant treatment on depressive, anxiety-like behavior and learning. MATERIALS AND METHODS Mice (C57BL/6) were exposed to CMS for 6 weeks and anhedonia was evaluated by weekly monitoring of sucrose intake. Paroxetine (10 mg kg(-1)day(-1) i.p.) or saline were administered the last 3 weeks of CMS and continued for 2 weeks thereafter. Behavioral tests were performed over the last week of CMS (acute effects) and 1 month later (long-term effects). RESULTS Mice exposed to CMS displayed both acute and long-term decreased sucrose intake, increased immobility in the forced swimming test (FST) and impaired memory in the novel object recognition test. It is interesting to note that a correlation was found between the cognitive deficits and the helpless behavior in the FST induced by CMS. During the CMS procedure, paroxetine treatment reverted partially recognition memory impairment but failed to prevent the increased immobility in the FST. Moreover, it decreased on its own sucrose intake. Importantly, the long-term effects of CMS were partially prevented by chronic paroxetine. CONCLUSIONS CMS leads to a long-term altered behavioral profile that could be partially reverted by chronic antidepressant treatment. This study brings novel features regarding the long-term effects of CMS and on the predictive validity of this depression animal model.
Collapse
|
44
|
Antidepressant-like effects of the mixture of honokiol and magnolol from the barks of Magnolia officinalis in stressed rodents. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:715-25. [PMID: 18093712 DOI: 10.1016/j.pnpbp.2007.11.020] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 11/07/2007] [Accepted: 11/17/2007] [Indexed: 01/22/2023]
Abstract
Honokiol and magnolol are the main constituents simultaneously identified in the barks of Magnolia officinalis, which have been used in traditional Chinese medicine to treat a variety of mental disorders including depression. In the present study, we reported on the antidepressant-like effects of oral administration of the mixture of honokiol and magnolol in well-validated models of depression in rodents: forced swimming test (FST), tail suspension test (TST) and chronic mild stress (CMS) model. The mixture of honokiol and magnolol significantly decreased immobility time in the mouse FST and TST, and reversed CMS-induced reduction in sucrose consumption to prevent anhedonia in rats. However, this mixture was unable to affect ambulatory or rearing behavior in the mouse open-field test. CMS induced alterations in 5-hydroxytryptamine (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) levels in various brain regions of rats. An increase in serum corticosterone concentrations and a reduction in platelet adenylyl cyclase (AC) activity were simultaneously found in the CMS rats. The mixture of honokiol and magnolol at 20 and 40 mg/kg significantly attenuated CMS-induced decreases of 5-HT levels in frontal cortex, hippocampus, striatum, hypothalamus and nucleus accumbens. And it markedly increased 5-HIAA levels in frontal cortex, striatum and nucleus accumbens at 40 mg/kg and in frontal cortex at 20 mg/kg in the CMS rats. A subsequent reduction in 5-HIAA/5-HT ratio was found in hippocampus and nucleus accumbens in the CMS rats receiving this mixture. Furthermore, the mixture of honokiol and magnolol reduced elevated corticosterone concentrations in serum to normalize the hypothalamic-pituitary-adrenal (HPA) hyperactivity in the CMS rats. It also reversed CMS-induced reduction in platelet AC activity, via upregulating the cyclic adenosine monophosphate (cAMP) pathway. These results suggested that the mixture of honokiol and magnolol possessed potent antidepressant-like properties in behaviors involved in normalization of biochemical abnormalities in brain 5-HT and 5-HIAA, serum corticosterone levels and platelet AC activity in the CMS rats. Our findings could provide a basis for examining directly the interaction of the serotonergic system, the HPA axis and AC-cAMP pathway underlying the link between depression and treatment with the mixture of honokiol and magnolol.
Collapse
|
45
|
Yalcin I, Aksu F, Bodard S, Chalon S, Belzung C. Antidepressant-like effect of tramadol in the unpredictable chronic mild stress procedure: possible involvement of the noradrenergic system. Behav Pharmacol 2008; 18:623-31. [PMID: 17912046 DOI: 10.1097/fbp.0b013e3282eff109] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tramadol, which inhibits the reuptake of noradrenaline and serotonin, is effective in animal models of depression. Its antidepressant-like effects may be mediated mainly by the noradrenergic system. This study investigated the role of the noradrenergic system in the antidepressant-like effects of tramadol and desipramine in the unpredictable chronic mild stress model. We assessed the involvement of beta-adrenoreceptors, particularly beta2-receptors in the activity of these drugs. In addition, we measured the level of noradrenaline and its metabolite 3-methoxy-4-hydroxy-phenylglycol (MHPG) in the locus coeruleus, hypothalamus, hippocampus and cerebellum in stressed mice. Unpredictable chronic mild stress induced a degradation of coat state and decreased grooming behaviour in the splash test, which was reversed by the chronic administration of tramadol (20 mg/kg) and desipramine (10 mg/kg). The nonselective beta-adrenoreceptor antagonist propranolol (5 mg/kg, intraperitoneally) and the selective beta2-receptor antagonist ICI 118,551 (2 mg/kg, intraperitoneally) reversed the antidepressant-like effects of tramadol and desipramine. Moreover, chronic tramadol and desipramine treatment increased the level of noradrenaline (NA) and MHPG in the locus coeruleus but not in the cerebellum, whereas only MHPG level was increased in the hypothalamus. Tramadol, however, increased the levels of MHPG and NA in the hippocampus, whereas desipramine only increased NA level. These data support the view that the noradrenergic system plays an important role in the antidepressant-like action of tramadol.
Collapse
Affiliation(s)
- Ipek Yalcin
- EA 3248 Psychobiology of Emotions, Faculty of Science and Technics, Parc Grandmont, University François Rabelais Tours, France
| | | | | | | | | |
Collapse
|
46
|
Grippo AJ, Gerena D, Huang J, Kumar N, Shah M, Ughreja R, Carter CS. Social isolation induces behavioral and neuroendocrine disturbances relevant to depression in female and male prairie voles. Psychoneuroendocrinology 2007; 32:966-80. [PMID: 17825994 PMCID: PMC2174914 DOI: 10.1016/j.psyneuen.2007.07.004] [Citation(s) in RCA: 263] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 06/06/2007] [Accepted: 07/09/2007] [Indexed: 10/22/2022]
Abstract
Supportive social interactions may be protective against stressors and certain mental and physical illness, while social isolation may be a powerful stressor. Prairie voles are socially monogamous rodents that model some of the behavioral and physiological traits displayed by humans, including sensitivity to social isolation. Neuroendocrine and behavioral parameters, selected for their relevance to stress and depression, were measured in adult female and male prairie voles following 4 weeks of social isolation versus paired housing. In Experiment 1, oxytocin-immunoreactive cell density was higher in the hypothalamic paraventricular nucleus (PVN) and plasma oxytocin was elevated in isolated females, but not in males. In Experiment 2, sucrose intake, used as an operational definition of hedonia, was reduced in both sexes following 4 weeks of isolation. Animals then received a resident-intruder test, and were sacrificed either 10 min later for the analysis of circulating hormones and peptides, or 2h later to examine neural activation, indexed by c-Fos expression in PVN cells immunoreactive for oxytocin or corticotropin-releasing factor (CRF). Compared to paired animals, plasma oxytocin, ACTH and corticosterone were elevated in isolated females and plasma oxytocin was elevated in isolated males, following the resident-intruder test. The proportion of cells double-labeled for c-Fos and oxytocin or c-Fos and CRF was elevated in isolated females, and the proportion of cells double-labeled for c-Fos and oxytocin was elevated in isolated males following this test. These findings suggest that social isolation induces behavioral and neuroendocrine responses relevant to depression in male and female prairie voles, although neuroendocrine responses in females may be especially sensitive to isolation.
Collapse
Affiliation(s)
- Angela J Grippo
- Department of Psychiatry, Brain-Body Center, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Pan Y, Kong LD, Li YC, Xia X, Kung HF, Jiang FX. Icariin from Epimedium brevicornum attenuates chronic mild stress-induced behavioral and neuroendocrinological alterations in male Wistar rats. Pharmacol Biochem Behav 2007; 87:130-40. [PMID: 17509675 DOI: 10.1016/j.pbb.2007.04.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 03/31/2007] [Accepted: 04/10/2007] [Indexed: 10/23/2022]
Abstract
Chronic mild stress (CMS) is suggested to produce abnormalities in the hypothalamic-pituitary-adrenal (HPA) axis and hypothalamus-pituitary-thyroid (HPT) axis. Therefore, compound that attenuates the neuroendocrinological alterations may have potential as antidepressant. The behavioral and neuroendocrinological effects of icariin, a major constituent of flavonoids isolated from Epimedium brevicornum, were investigated in the CMS model of depression in male Wistar rats. CMS procedure caused an anhedonic state in rats resulted in increased corticotropin-releasing factor (CRF) concentrations in dissected brain regions and serum, decreased total triiodothyronine (tT3) in serum with no significant changes in serum adrenocorticotrophic hormone (ACTH) and thyroxine (tT4). Administration of icariin reversed CMS-induced sucrose intake reduction and CRF elevation. These results suggested that icariin possessed potent antidepressant-like activities which were at least in part mediated by improving the abnormalities in the HPA axis functions. However, we did not find a clear correlation between the HPT axis and icariin treatment in the CMS-treated rats.
Collapse
Affiliation(s)
- Ying Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | | | | | | | | | | |
Collapse
|
48
|
Renault J, Aubert A. Immunity and emotions: lipopolysaccharide increases defensive behaviours and potentiates despair in mice. Brain Behav Immun 2006; 20:517-26. [PMID: 16647244 DOI: 10.1016/j.bbi.2006.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 02/24/2006] [Accepted: 03/09/2006] [Indexed: 11/30/2022] Open
Abstract
Many studies have pointed out the relationships between immunity and depression, supporting a neuroimmune hypothesis of depressive disorders. However, despite the growing interest for such a hypothesis and the amount of clinical and experimental data available, the precise nature of this relationship between immunity and depression remains unclear. The present study aimed to investigate further the link between depression and immunity in mice using the modified version of the forced-swimming test. Based on a two-session test, results from our first experiment showed that endotoxin enhanced active defensive behaviours in mice during the first exposure to water, but was associated with increased immobility (i.e., 'behavioural despair') in the subsequent session. In our second experiment, we showed that these effects were blocked by a chronic antidepressant treatment with imipramine. Finally, we suggest a link between immunity and depression, based on the behavioural context in which immune activation takes place. We hypothesize that immune activation, by enhancing reactivity to the negative features of a given situation, increases defensive motivation of subjects, but therefore makes them more vulnerable to the deleterious emotional consequences of failure in defensive strategies.
Collapse
Affiliation(s)
- Julien Renault
- EA3248, Psychobiologie des Emotions, Faculté des Sciences, Parc de Grandmont, 37200 Tours, France
| | | |
Collapse
|
49
|
Consoli D, Fedotova J, Micale V, Sapronov NS, Drago F. Stressors affect the response of male and female rats to clomipramine in a model of behavioral despair (forced swim test). Eur J Pharmacol 2006; 520:100-7. [PMID: 16150440 DOI: 10.1016/j.ejphar.2005.08.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 08/02/2005] [Accepted: 08/08/2005] [Indexed: 10/25/2022]
Abstract
Aim of the present study was to evaluate the effects of physical stressors (electric foot-shocks) on effect of the antidepressant drug, clomipramine and plasma corticosterone levels in male and female rats tested in a model of behavioral despair (forced swim test,). Male and female rats of the Wistar strain were injected with clomipramine (50 mg/kg, i.p.) or saline. A group of animals also received electric shocks of different intensity and duration of 24, 5 and 1 h before being subjected to forced swim test. At the end of behavioral procedures, vaginal smears were assessed in all female animals and data on immobility time were plotted according to the ovarian cycle phase. After decapitation, corticosterone plasma levels were measured by radioimmunoassay in both male and female rats. Application of mild shocks (5 ms, 0.1 mA) significantly reduced immobility time in forced swim test of untreated male rats and augmented clomipramine effect on this parameter. Moderate shocks of higher intensity or duration (5 ms, 1.0 mA) also resulted in decreased immobility time of untreated male rats, but in reduced effect of clomipramine treatment. Furthermore, application of severe shocks (10 ms, 1.0 mA) increased the immobility time in untreated animals and totally abolished clomipramine effect in forced swim test. Untreated non-shocked female rats in proestrous and estrous phases exhibited a longer immobility time as compared to diestrous animals. Immobility time appeared to be generally higher when mild, moderate or severe shocks were applied prior to behavioral testing in proestrous and estrous animals, while the behavioral response of diestrous and metestrous animals did not differ from that of controls. Clomipramine effect on immobility time was generally reduced by application of shocks of every strengths. Stress-induced plasma corticosterone levels surge correlated with intensity and duration of shocks in both male and female rats, but clomipramine treatment generally blunted the hormonal response. However, severe shocks were followed by a surge of plasma corticosterone levels in both male and female clomipramine-treated rats. These results demonstrate that duration and intensity of stressful stimuli may deeply affect the behavioral response of rats in forced swim test and influence clomipramine effect in this behavioral model depending on gender-based variables, probably of the hormonal type. Plasma corticosterone levels correlate with the behavioral response to clomipramine treatment suggesting that reactivity of hypothalamus-pituitary-adrenal axis to stress may be involved in the antidepressant effect of this drug.
Collapse
Affiliation(s)
- Daniele Consoli
- Department of Experimental and Clinical Pharmacology, Faculty of Medicine, University of Catania Medical School, Viale A. Doria, 6 95125 Catania, Italy
| | | | | | | | | |
Collapse
|
50
|
Baker SL, Kentner AC, Konkle ATM, Santa-Maria Barbagallo L, Bielajew C. Behavioral and physiological effects of chronic mild stress in female rats. Physiol Behav 2006; 87:314-22. [PMID: 16386277 DOI: 10.1016/j.physbeh.2005.10.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 10/19/2005] [Indexed: 11/22/2022]
Abstract
Anhedonia, a core symptom of clinical depression, refers to the loss of interest in normally rewarding stimuli; the chronic mild stress paradigm, an animal model of depression, was designed with this as an underlying feature. The procedure consists of the administration of a variety of ecologically relevant stressors over long durations. Its effects have been thoroughly investigated in male but not female rats. This study examines the appropriateness of stressors designed to evaluate the development and progression of depression in two strains of female rats, the effectiveness of two measures of anhedonia, and the relationship between stress reactivity and the estrous cycle. Changes in hedonic status were indexed for three weeks following a three week baseline period using two standard behavioral measures of anhedonia: sucrose intake and preference and thresholds for brain stimulation reward. Decreases in 24 h sucrose intake were observed in both strains during the first week of stress manipulations, and continued to decline thereafter for the remainder of the stress phase; in contrast, sucrose preference was unaffected by the stressors, indicating an overall reduction in fluid intake. No changes in the thresholds for brain stimulation reward were observed. The cyclical pattern of estrous was altered in both strains with a significant reduction in the number of regular cycles as a consequence of both the stressors and brain stimulation reward. Furthermore, cyclicity was not reinstated in many animals even six weeks after stress manipulations and behavioral tests had ceased. While the physiological measures suggest that the mild stressors are disruptive to female rats, the results of the behavioral tests are not consistent with the notion that the stressors induce an anhedonic state.
Collapse
Affiliation(s)
- Stephanie L Baker
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada, K1N 6N5
| | | | | | | | | |
Collapse
|