1
|
Kölmel EG, Pombar M, Pardo-Montero J. Radiobiological Meta-Analysis of the Response of Prostate Cancer to High-Dose-Rate Brachytherapy: Investigation of the Reduction in Control for Extreme Hypofractionation. Cancers (Basel) 2025; 17:1338. [PMID: 40282514 PMCID: PMC12025418 DOI: 10.3390/cancers17081338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Clinical studies have shown a marked reduction in tumor control in prostate cancer treated with radically hypofractionated high-dose-rate brachytherapy (HDR-BT). The purpose of this study was to analyze the dose-response of prostate cancer treated with HDR-BT, specifically aiming at investigating the potential failure of the linear-quadratic (LQ) model to describe the response at large doses-per-fraction. METHODS We collated a dataset of dose-response to HDR-BT (3239 patients). The analysis was conducted separately for low and intermediate risk, resulting in 21 schedules (1633 patients) and 23 schedules (1606 patients), respectively. Data were fitted to tumor control probability models based on the LQ model, the linear-quadratic-linear (LQL), and a modification of the LQ model to include the effect of reoxygenation during treatment. RESULTS The LQ cannot fit the data unless the α/β is allowed to be high (∼[20, >100] Gy, 95% confidence interval). If the α/β is constrained to be low (≤8 Gy), the LQ model cannot reproduce the clinical results, and the LQL model, which includes a moderation of radiation damage with increasing dose, significantly improves the fitting. On the other hand, the reoxygenation model does not match the results obtained with the LQL. The clinically observed reduction in tumor control in prostate cancer treated with radical HDR-BT is better described by the LQL model. Using the best-fitting parameters, the BED for a 20 Gy × 1 treatment (128 Gyα/β) is far less than that of a conventional 2 Gy × 37 fractionation (196 Gyα/β). CONCLUSIONS Our analysis showed that the substantial loss of tumor control observed in extremely hypofractionated HDR-BT trials can only be explained by the LQ model if the α/β is very large (≥100 Gy), in clear disagreement with the limits set in the analysis of external radiotherapy data. It seems more reasonable that there is a moderation of the LQ-predicted effect with increasing dose per fraction. These results may assist in the design of radical HDR-BT treatments.
Collapse
Affiliation(s)
- Eva G. Kölmel
- Group of Medical Physics and Biomathematics, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain
- Department of Medical Physics, Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Department of Particle Physics, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Miguel Pombar
- Department of Medical Physics, Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Juan Pardo-Montero
- Group of Medical Physics and Biomathematics, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain
- Department of Medical Physics, Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| |
Collapse
|
2
|
Chen ZJ, Li XA, Brenner DJ, Hellebust TP, Hoskin P, Joiner MC, Kirisits C, Nath R, Rivard MJ, Thomadsen BR, Zaider M. AAPM Task Group Report 267: A joint AAPM GEC-ESTRO report on biophysical models and tools for the planning and evaluation of brachytherapy. Med Phys 2024; 51:3850-3923. [PMID: 38721942 DOI: 10.1002/mp.17062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 06/05/2024] Open
Abstract
Brachytherapy utilizes a multitude of radioactive sources and treatment techniques that often exhibit widely different spatial and temporal dose delivery patterns. Biophysical models, capable of modeling the key interacting effects of dose delivery patterns with the underlying cellular processes of the irradiated tissues, can be a potentially useful tool for elucidating the radiobiological effects of complex brachytherapy dose delivery patterns and for comparing their relative clinical effectiveness. While the biophysical models have been used largely in research settings by experts, it has also been used increasingly by clinical medical physicists over the last two decades. A good understanding of the potentials and limitations of the biophysical models and their intended use is critically important in the widespread use of these models. To facilitate meaningful and consistent use of biophysical models in brachytherapy, Task Group 267 (TG-267) was formed jointly with the American Association of Physics in Medicine (AAPM) and The Groupe Européen de Curiethérapie and the European Society for Radiotherapy & Oncology (GEC-ESTRO) to review the existing biophysical models, model parameters, and their use in selected brachytherapy modalities and to develop practice guidelines for clinical medical physicists regarding the selection, use, and interpretation of biophysical models. The report provides an overview of the clinical background and the rationale for the development of biophysical models in radiation oncology and, particularly, in brachytherapy; a summary of the results of literature review of the existing biophysical models that have been used in brachytherapy; a focused discussion of the applications of relevant biophysical models for five selected brachytherapy modalities; and the task group recommendations on the use, reporting, and implementation of biophysical models for brachytherapy treatment planning and evaluation. The report concludes with discussions on the challenges and opportunities in using biophysical models for brachytherapy and with an outlook for future developments.
Collapse
Affiliation(s)
- Zhe Jay Chen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Medical Center, New York, New York, USA
| | - Taran P Hellebust
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Peter Hoskin
- Mount Vernon Cancer Center, Mount Vernon Hospital, Northwood, UK
- University of Manchester, Manchester, UK
| | - Michael C Joiner
- Department of Radiation Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Christian Kirisits
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Ravinder Nath
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mark J Rivard
- Department of Radiation Oncology, Brown University School of Medicine, Providence, Rhode Island, USA
| | - Bruce R Thomadsen
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
| | - Marco Zaider
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
3
|
Inaniwa T, Kanematsu N, Nakajima M. Modeling of the resensitization effect on carbon-ion radiotherapy for stage I non-small cell lung cancer. Phys Med Biol 2024; 69:105015. [PMID: 38604184 DOI: 10.1088/1361-6560/ad3dbb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Objective. To investigate the effect of redistribution and reoxygenation on the 3-year tumor control probability (TCP) of patients with stage I non-small cell lung cancer (NSCLC) treated with carbon-ion radiotherapy.Approach. A meta-analysis of published clinical data of 233 NSCLC patients treated by carbon-ion radiotherapy under 18-, 9-, 4-, and single-fraction schedules was conducted. The linear-quadratic (LQ)-based cell-survival model incorporating the radiobiological 5Rs, radiosensitivity, repopulation, repair, redistribution, and reoxygenation, was developed to reproduce the clinical TCP data. Redistribution and reoxygenation were regarded together as a single phenomenon and termed 'resensitization' in the model. The optimum interval time between fractions was investigated for each fraction schedule using the determined model parameters.Main results.The clinical TCP data for 18-, 9-, and 4-fraction schedules were reasonably reproduced by the model without the resensitization effect, whereas its incorporation was essential to reproduce the TCP data for all fraction schedules including the single fraction. The curative dose for the single-fraction schedule was estimated to be 49.0 Gy (RBE), which corresponds to the clinically adopted dose prescription of 50.0 Gy (RBE). For 18-, 9-, and 4-fraction schedules, a 2-to-3-day interval is required to maximize the resensitization effect during the time interval. In contrast, the single-fraction schedule cannot benefit from the resensitization effect, and the shorter treatment time is preferable to reduce the effect of sub-lethal damage repair during the treatment.Significance.The LQ-based cell-survival model incorporating the radiobiological 5Rs was developed and used to evaluate the effect of the resensitization on clinical results of NSCLC patients treated with hypo-fractionated carbon-ion radiotherapy. The incorporation of the resensitization into the cell-survival model improves the reproducibility to the clinical TCP data. A shorter treatment time is preferable in the single-fraction schedule, while a 2-to-3-day interval between fractions is preferable in the multi-fraction schedules for effective treatments.
Collapse
Affiliation(s)
- Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Department of Medical Physics and Engineering, Graduate School of Medicine, Division of Health Sciences, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nobuyuki Kanematsu
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Mio Nakajima
- QST Hospital, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
4
|
Choudhury M, Thomas SS, Cain A, Palvai S, Nageshwaran S, Zhang J, Hayden K, Cain A, Hoskin P, Ahmed I. Timing of High-Dose-Rate Brachytherapy With External Beam Radiation Therapy in Patients With Intermediate- and High-Risk Localized Prostate Cancer and Its Effects on Toxicity and Quality of Life: A Randomized Controlled Trial (THEPCA). Int J Radiat Oncol Biol Phys 2024; 119:90-99. [PMID: 38163520 DOI: 10.1016/j.ijrobp.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/26/2023] [Accepted: 11/05/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE High-dose-rate brachytherapy (HDR-BT) and external beam radiation therapy (EBRT) are effective treatments for prostate cancer but cause genitourinary (GU) and gastrointestinal (GI) toxicities. There is no consensus on the timing of HDR-BT in relation to EBRT and the effect of sequencing on patients. The primary objective was to assess differences, if any, in the incidence of grade (G) 3 or higher GU toxicities from treatment. We also aimed to explore the incidence of G1 to G4 GI toxicities, quality of life (QOL), and patient satisfaction. Suppression of prostate-specific antigen (PSA) and signals for survival differences were also analyzed. METHODS AND MATERIALS This was a single-center randomized trial in patients with intermediate- and high-risk localized prostate cancer who received HDR-BT before (Arm A) or after (Arm B) EBRT. Toxicities were graded using Common Terminology Criteria for Adverse Events (CTCAE). The International Prostate Symptom Score (IPSS) was used to assess lower urinary tract symptoms. The International Index of Erectile Function scale (IIEF) and Functional Assessment of Cancer Therapy-Prostate (FACT-P) were used to assess erectile dysfunction and QOL at 0, 3, 9, and 12 months. RESULTS Fifty patients were recruited to each arm, with 48 and 46 patients completing treatment and follow-up in each arm, 81.5% of whom had high-risk disease. There were no G3 or G4 GU or GI toxicities. G1 urinary frequency was the most common adverse event experienced in both arms, peaking in incidence 3 months after treatment commenced (45.7% and 42.2% in Arm A and B, respectively). Up to 11% of patients reported G1 urinary frequency at 12 months. Other G1 GU toxicities experienced by >10% of patients were urinary tract obstruction, tract pain, and urgency. These symptoms also peaked in incidence at 3 months. G2 GU toxicities were uncommon and experienced in a maximum of 2 patients within each arm at any time point. Over 30% of patients had G1 flatulence at baseline, and this remained the most frequently occurring G1 GI toxicity throughout the study, peaking at 12 months (21.4% and 25.6% in Arm A and B, respectively). Other GI toxicities experienced by more than 10% of patients were GI pain, proctitis, and rectal mucositis, most of which demonstrated a peak incidence at 3 or 9 months. G2 GI toxicities were uncommon except for G2 flatulence. No significant difference was found in CTCAE, IPSS, IIEF, FACT-P, and QOL scores between the arms. Median prostate-specific antigen (PSA) follow-up was 5 years. Seven patients had treatment failure in each arm. Disease Free Survival (DFS) was 93.3% and 90.7% at 5 years in Arm A and B, respectively, with median failure time of 60 and 48 months in Arm A and B, respectively. There were no statistically significant differences between arms. CONCLUSIONS The sequencing of HDR-BT and EBRT did not affect the incidence of G3 or G4 toxicities, and no significant differences were seen in other patient-reported outcomes. Treatment was well tolerated with maintained QOL scores. Treatment failure was low in both arms in a high-risk cohort; however, a larger study with longer follow-up is underway to establish whether the difference in median time to failure between the 2 arms is a signal of superiority.
Collapse
Affiliation(s)
- Mahbuba Choudhury
- Oncology Department, Southend University Hospital National Health Service Foundation Trust, National Health Service, Essex, United Kingdom
| | - Sharon Shibu Thomas
- Oncology Department, Southend University Hospital National Health Service Foundation Trust, National Health Service, Essex, United Kingdom
| | - Alexander Cain
- Oncology Department, Southend University Hospital National Health Service Foundation Trust, National Health Service, Essex, United Kingdom
| | - Sreekanth Palvai
- Oncology Department, Southend University Hospital National Health Service Foundation Trust, National Health Service, Essex, United Kingdom
| | - Saiji Nageshwaran
- Oncology Department, Royal Free Hospital National Health Service Trust, London, United Kingdom
| | - Jufen Zhang
- Anglia Ruskin - Clinical Trials Unit, Postgraduate Medical Institute, Anglia Ruskin University, Chelmsford, United Kingdom
| | - Karen Hayden
- Anglia Ruskin - Clinical Trials Unit, Postgraduate Medical Institute, Anglia Ruskin University, Chelmsford, United Kingdom
| | - Alexander Cain
- Oncology Department, Southend University Hospital National Health Service Foundation Trust, National Health Service, Essex, United Kingdom
| | - Peter Hoskin
- Mount Vernon Cancer Centre, Northwood, Middlesex, United Kingdom; Oncology Department, Royal Free Hospital National Health Service Trust, London, United Kingdom
| | - Imtiaz Ahmed
- Oncology Department, Southend University Hospital National Health Service Foundation Trust, National Health Service, Essex, United Kingdom.
| |
Collapse
|
5
|
Kamer S, Yilmaz Susluer S, Balci Okcanoglu T, Kayabasi C, Ozmen Yelken B, Hoca S, Tavlayan E, Olacak N, Anacak Y, Olukman M, Gunduz C. Evaluation of the effect of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc radiotherapy (VMAT) techniques on survival response in cell lines with a new radiobiological modeling. Cancer Med 2023; 12:19874-19888. [PMID: 37754559 PMCID: PMC10587949 DOI: 10.1002/cam4.6593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/18/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND The optimal radiobiological model, which assesses the biological effects of novel radiotherapy techniques that concurrently modify multiple physical factors, has not yet been defined. This study aimed to investigate the impact of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) on cellular response in head and neck cancer and melanoma models. METHODS Clonogenic analysis, DNA double-strand break analysis, apoptosis, and cell cycle analysis were performed on cancer stem cell models, cancer models, and normal tissue cell models to assess radiation sensitivity. RESULTS The segmented radiation approach used in IMRT applications enhanced radiosensitivity and cytotoxicity in the cancer models, while changes in dose rate had varying effects on cytotoxicity depending on the tumor cell type. VMAT increased cellular resistance, favoring treatment outcomes. CONCLUSIONS The biological processes were influenced differently by dose rate, IMRT, and VMAT depending on the tumor cell type. The selection of the most appropriate technique is crucial in representing new radiotherapy approaches. The obtained data can serve as a model to address clinical questions in daily practice. The integration of non-standard outcomes with standard applications should be considered in clinical settings.
Collapse
Affiliation(s)
- Serra Kamer
- Department of Radiation OncologyEge University Medical FacultyIzmirTurkey
| | | | | | - Cagla Kayabasi
- Department of Medical BiologyEge University Medical FacultyIzmirTurkey
| | | | - Sinan Hoca
- Department of Radiation OncologyEge University Medical FacultyIzmirTurkey
| | - Emin Tavlayan
- Department of Radiation OncologyEge University Medical FacultyIzmirTurkey
| | - Nezahat Olacak
- Department of Radiation OncologyEge University Medical FacultyIzmirTurkey
| | - Yavuz Anacak
- Department of Radiation OncologyEge University Medical FacultyIzmirTurkey
| | - Murat Olukman
- Department of PharmacologyEge University Medical FacultyIzmirTurkey
| | - Cumhur Gunduz
- Department of Medical BiologyEge University Medical FacultyIzmirTurkey
| |
Collapse
|
6
|
Pardo-Montero J, González-Crespo I, Gómez-Caamaño A, Gago-Arias A. Radiobiological Meta-Analysis of the Response of Prostate Cancer to Different Fractionations: Evaluation of the Linear-Quadratic Response at Large Doses and the Effect of Risk and ADT. Cancers (Basel) 2023; 15:3659. [PMID: 37509320 PMCID: PMC10377316 DOI: 10.3390/cancers15143659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The purpose of this work was to investigate the response of prostate cancer to different radiotherapy schedules, including hypofractionation, to evaluate potential departures from the linear-quadratic (LQ) response, to obtain the best-fitting parameters for low-(LR), intermediate-(IR), and high-risk (HR) prostate cancer and to investigate the effect of ADT on the radiobiological response. We constructed a dataset of the dose-response containing 87 entries/16,536 patients (35/5181 LR, 32/8146 IR, 20/3209 HR), with doses per fraction ranging from 1.8 to 10 Gy. These data were fit to tumour control probability models based on the LQ model, linear-quadratic-linear (LQL) model, and a modification of the LQ (LQmod) model accounting for increasing radiosensitivity at large doses. Fits were performed with the maximum likelihood expectation methodology, and the Akaike information criterion (AIC) was used to compare the models. The AIC showed that the LQ model was superior to the LQL and LQmod models for all risks, except for IR, where the LQL model outperformed the other models. The analysis showed a low α/β for all risks: 2.0 Gy for LR (95% confidence interval: 1.7-2.3), 3.4 Gy for IR (3.0-4.0), and 2.8 Gy for HR (1.4-4.2). The best fits did not show proliferation for LR and showed moderate proliferation for IR/HR. The addition of ADT was consistent with a suppression of proliferation. In conclusion, the LQ model described the response of prostate cancer better than the alternative models. Only for IR, the LQL model outperformed the LQ model, pointing out a possible saturation of radiation damage with increasing dose. This study confirmed a low α/β for all risks.
Collapse
Affiliation(s)
- Juan Pardo-Montero
- Group of Medical Physics and Biomathematics, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain
- Department of Medical Physics, Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Isabel González-Crespo
- Group of Medical Physics and Biomathematics, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain
- Department of Applied Mathematics, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Antonio Gómez-Caamaño
- Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Araceli Gago-Arias
- Group of Medical Physics and Biomathematics, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain
- Department of Medical Physics, Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Institute of Physics, Pontificia Universidad Católica de Chile, Santiago de Chile 7820436, Chile
| |
Collapse
|
7
|
Wakisaka Y, Minami K, Okada N, Tsubouchi T, Hamatani N, Yagi M, Takashina M, Kanai T. Treatment planning of carbon ion radiotherapy for prostate cancer based on cellular experiments with PC3 human prostate cancer cells. Phys Med 2023; 107:102537. [PMID: 36780791 DOI: 10.1016/j.ejmp.2023.102537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/10/2023] [Accepted: 01/31/2023] [Indexed: 02/13/2023] Open
Abstract
[Purpose] Treatment plans for carbon ion radiotherapy (CIRT) in Japan are designed to uniformly deliver the prescribed clinical dose based on the radiosensitivity of human salivary gland (HSG) cells to the planning target volume (PTV). However, sensitivity to carbon beams varies between cell lines, that is, it should be checked that the clinical dose distribution based on the cell radiosensitivity of the treatment site is uniform within the PTV. [Methods] We modeled the linear energy transfer (LET) dependence of the linear-quadratic (LQ) coefficients specific to prostate cancer, which accounts for the majority of CIRT. This was achieved by irradiating prostate cancer cells (PC3) with X-rays from a 4 MV-Linac and carbon beams with different LETs of 11.1-214.3 keV/μm. By using the radiosensitivity of PC3 cells derived from cellular experiments, we reconstructed prostate-cancer-specific clinical dose distributions on patient computed tomography (CT). [Results] The LQ coefficient, α, of PC3 cells was larger than that of HSG cells at low (<50 keV/μm) LET and smaller at high (>50 keV/μm) LET, which was validated by cellular experiments performed on rectangular SOBPs. The reconstructed dose distribution on patient CT was sloped when 1 fraction incident from the one side of the patient was considered, but remained uniform from the sum of 12 fractions of the left-right opposing beams (as is used in clinical practice). [Conclusion] Our study reveals the inhomogeneity of clinical doses in single-field plans calculated using the PC3 radiosensitivity data. However, this inhomogeneity is compensated by using the combination of left-right opposing beams.
Collapse
Affiliation(s)
- Yushi Wakisaka
- Osaka Heavy Ion Therapy Center, Osaka City, Osaka, Japan; Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Osaka City, Osaka, Japan.
| | - Kazumasa Minami
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Osaka City, Osaka, Japan
| | - Nao Okada
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Osaka City, Osaka, Japan
| | | | | | - Masashi Yagi
- Osaka Heavy Ion Therapy Center, Osaka City, Osaka, Japan; Department of Carbon Ion Radiotherapy, Osaka University Graduate School of Medicine, Osaka City, Osaka, Japan
| | | | - Tatsuaki Kanai
- Osaka Heavy Ion Therapy Center, Osaka City, Osaka, Japan; Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Osaka City, Osaka, Japan
| |
Collapse
|
8
|
Kok HP, van Rhoon GC, Herrera TD, Overgaard J, Crezee J. Biological modeling in thermoradiotherapy: present status and ongoing developments toward routine clinical use. Int J Hyperthermia 2022; 39:1126-1140. [PMID: 35998930 DOI: 10.1080/02656736.2022.2113826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
Biological modeling for anti-cancer treatments using mathematical models can be very supportive in gaining more insight into dynamic processes responsible for cellular response to treatment, and predicting, evaluating and optimizing therapeutic effects of treatment. This review presents an overview of the current status of biological modeling for hyperthermia in combination with radiotherapy (thermoradiotherapy). Various distinct models have been proposed in the literature, with varying complexity; initially aiming to model the effect of hyperthermia alone, and later on to predict the effect of the combined thermoradiotherapy treatment. Most commonly used models are based on an extension of the linear-quadratic (LQ)-model enabling an easy translation to radiotherapy where the LQ model is widely used. Basic predictions of cell survival have further progressed toward 3 D equivalent dose predictions, i.e., the radiation dose that would be needed without hyperthermia to achieve the same biological effect as the combined thermoradiotherapy treatment. This approach, with the use of temperature-dependent model parameters, allows theoretical evaluation of the effectiveness of different treatment strategies in individual patients, as well as in patient cohorts. This review discusses the significant progress that has been made in biological modeling for hyperthermia combined with radiotherapy. In the future, when adequate temperature-dependent LQ-parameters will be available for a large number of tumor sites and normal tissues, biological modeling can be expected to be of great clinical importance to further optimize combined treatments, optimize clinical protocols and guide further clinical studies.
Collapse
Affiliation(s)
- H P Kok
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - G C van Rhoon
- Department of Radiation Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Radiation Science and Technology, Delft University of Technology, Delft, The Netherlands
| | - T D Herrera
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - J Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - J Crezee
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
9
|
ACCURATE PREDICTION OF LONG-TERM RISK OF BIOCHEMICAL FAILURE AFTER SALVAGE RADIOTHERAPY INCLUDING THE IMPACT OF PELVIC NODE IRRADIATION. Radiother Oncol 2022; 175:26-32. [DOI: 10.1016/j.radonc.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/12/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022]
|
10
|
Hsiao YY, Chen FH, Chan CC, Tsai CC. Monte Carlo Simulation of Double-Strand Break Induction and Conversion after Ultrasoft X-rays Irradiation. Int J Mol Sci 2021; 22:ijms222111713. [PMID: 34769142 PMCID: PMC8583805 DOI: 10.3390/ijms222111713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/26/2022] Open
Abstract
This paper estimates the yields of DNA double-strand breaks (DSBs) induced by ultrasoft X-rays and uses the DSB yields and the repair outcomes to evaluate the relative biological effectiveness (RBE) of ultrasoft X-rays. We simulated the yields of DSB induction and predicted them in the presence and absence of oxygen, using a Monte Carlo damage simulation (MCDS) software, to calculate the RBE. Monte Carlo excision repair (MCER) simulations were also performed to calculate the repair outcomes (correct repairs, mutations, and DSB conversions). Compared to 60Co γ-rays, the RBE values for ultrasoft X-rays (titanium K-shell, aluminum K-shell, copper L-shell, and carbon K-shell) for DSB induction were respectively 1.3, 1.9, 2.3, and 2.6 under aerobic conditions and 1.3, 2.1, 2.5, and 2.9 under a hypoxic condition (2% O2). The RBE values for enzymatic DSBs were 1.6, 2.1, 2.3, and 2.4, respectively, indicating that the enzymatic DSB yields are comparable to the yields of DSB induction. The synergistic effects of DSB induction and enzymatic DSB formation further facilitate cell killing and the advantage in cancer treatment.
Collapse
Affiliation(s)
- Ya-Yun Hsiao
- Department of Radiology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Fang-Hsin Chen
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan 33302, Taiwan;
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Radiation Oncology, Chang Gung Memorial Hospital-Linkou Branch, Taoyuan 33305, Taiwan
| | - Chun-Chieh Chan
- Department of Electrical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
- Correspondence: (C.-C.C.); (C.-C.T.); Tel.: +886-4-22851549-222 (C.-C.T.)
| | - Ching-Chih Tsai
- Department of Electrical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
- Correspondence: (C.-C.C.); (C.-C.T.); Tel.: +886-4-22851549-222 (C.-C.T.)
| |
Collapse
|
11
|
The Impact of Different Timing Schedules on Prostate HDR-Mono-Brachytherapy. A TCP Modeling Investigation. Cancers (Basel) 2021; 13:cancers13194899. [PMID: 34638379 PMCID: PMC8507871 DOI: 10.3390/cancers13194899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Reported clinical data on high dose rate mono brachytherapy of prostate cancer carried out using two different treatment regimens are analyzed in this study. The analysis is based on a mechanistic tumor control probability model, which accounts for a possible increase in the tumor radio-sensitivity during treatment. The aim of the study was to verify a hypothesis that the clinically observed better performance of the longer treatment regimen (28 days vs. 14 days) might be due to a state of initial hypoxia and its ensued overcoming by re-oxygenation and, hence, re-sensitization of the prostate cancer. The performed investigation confirmed the assumption of initially hypoxic stage of the tumor followed by its re-sensitization, thus providing a foundation for the use of prolonged schedules for low- to intermediate-risk prostate cancer treatment. Abstract Background: Mechanistic TCP (tumor control probability) models exist that account for possible re-sensitization of an initially hypoxic tumor during treatment. This phenomenon potentially explains the better outcome of a 28-day vs 14-day treatment schedule of HDR (high dose rate) brachytherapy of low- to intermediate-risk prostate cancer as recently reported. Methods: A TCP model accounting for tumor re-sensitization developed earlier is used to analyze the reported clinical data. In order to analyze clinical data using individual TCP model, TCP distributions are constructed assuming inter-individual spread in radio-sensitivity. Results: Population radio-sensitivity parameter values are found that result in TCP population values which are close to the reported ones. Using the estimated population parameters, two hypothetical regimens are investigated that are shorter than the ones used clinically. The impact of the re-sensitization rate on the calculated treatment outcome is also investigated as is the anti-hypothesis that there is no re-sensitization during treatment. Conclusions: The carried out investigation shows that the observed clinical data cannot be described without assuming an initially hypoxic state of the tumor followed by re-oxygenation and, hence, re-sensitization. This phenomenon explains the better outcome of the prolonged treatment schedule compared to shorter regimens based on the fact that prostate cancer is a slowly repopulating tumor.
Collapse
|
12
|
Oxygen-Sensitive MRI: A Predictive Imaging Biomarker for Tumor Radiation Response? Int J Radiat Oncol Biol Phys 2021; 110:1519-1529. [PMID: 33775857 DOI: 10.1016/j.ijrobp.2021.03.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/15/2021] [Accepted: 03/21/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE To develop a noninvasive prognostic imaging biomarker related to hypoxia to predict SABR tumor control. METHODS AND MATERIALS A total of 145 subcutaneous syngeneic Dunning prostate R3327-AT1 rat tumors were focally irradiated once using cone beam computed tomography guidance on a small animal irradiator at 225 kV. Various doses in the range of 0 to 100 Gy were administered, while rats breathed air or oxygen, and tumor control was assessed up to 200 days. Oxygen-sensitive magnetic resonance imaging (MRI) (T1-weighted, ΔR1, ΔR2*) was applied to 79 of these tumors at 4.7 T to assess response to an oxygen gas breathing challenge on the day before irradiation as a probe of tumor hypoxia. RESULTS Increasing radiation dose in the range of 0 to 90 Gy enhanced tumor control of air-breathing rats with a TCD50 estimated at 59.6 ± 1.5 Gy. Control was significantly improved at some doses when rats breathed oxygen during irradiation (eg, 40 Gy; P < .05), and overall there was a modest left shift in the control curve: TCD50(oxygen) = 53.1 ± 3.1 Gy (P < .05 vs air). Oxygen-sensitive MRI showed variable response to oxygen gas breathing challenge; the magnitude of T1-weighted signal response (%ΔSI) allowed stratification of tumors in terms of local control at 40 Gy. Tumors showing %ΔSI >0.922 with O2-gas breathing challenge showed significantly better control at 40 Gy during irradiation while breathing oxygen (75% vs 0%, P < .01). In addition, increased radiation dose (50 Gy) substantially overcame resistance, with 50% control for poorly oxygenated tumors. Stratification of dose-response curves based on %ΔSI >0.922 revealed different survival curves, with TCD50 = 36.2 ± 3.2 Gy for tumors responsive to oxygen gas breathing challenge; this was significantly less than the 54.7 ± 2.4 Gy for unresponsive tumors (P < .005), irrespective of the gas inhaled during tumor irradiation. CONCLUSIONS Oxygen-sensitive MRI allowed stratification of tumors in terms of local control at 40 Gy, indicating its use as a potential predictive imaging biomarker. Increasing dose to 50 Gy overcame radiation resistance attributable to hypoxia in 50% of tumors.
Collapse
|
13
|
Trappetti V, Fazzari JM, Fernandez-Palomo C, Scheidegger M, Volarevic V, Martin OA, Djonov VG. Microbeam Radiotherapy-A Novel Therapeutic Approach to Overcome Radioresistance and Enhance Anti-Tumour Response in Melanoma. Int J Mol Sci 2021; 22:7755. [PMID: 34299373 PMCID: PMC8303317 DOI: 10.3390/ijms22147755] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 12/19/2022] Open
Abstract
Melanoma is the deadliest type of skin cancer, due to its invasiveness and limited treatment efficacy. The main therapy for primary melanoma and solitary organ metastases is wide excision. Adjuvant therapy, such as chemotherapy and targeted therapies are mainly used for disseminated disease. Radiotherapy (RT) is a powerful treatment option used in more than 50% of cancer patients, however, conventional RT alone is unable to eradicate melanoma. Its general radioresistance is attributed to overexpression of repair genes in combination with cascades of biochemical repair mechanisms. A novel sophisticated technique based on synchrotron-generated, spatially fractionated RT, called Microbeam Radiation Therapy (MRT), has been shown to overcome these treatment limitations by allowing increased dose delivery. With MRT, a collimator subdivides the homogeneous radiation field into an array of co-planar, high-dose microbeams that are tens of micrometres wide and spaced a few hundred micrometres apart. Different preclinical models demonstrated that MRT has the potential to completely ablate tumours, or significantly improve tumour control while dramatically reducing normal tissue toxicity. Here, we discuss the role of conventional RT-induced immunity and the potential for MRT to enhance local and systemic anti-tumour immune responses. Comparative gene expression analysis from preclinical tumour models indicated a specific gene signature for an 'MRT-induced immune effect'. This focused review highlights the potential of MRT to overcome the inherent radioresistance of melanoma which could be further enhanced for future clinical use with combined treatment strategies, in particular, immunotherapy.
Collapse
Affiliation(s)
- Verdiana Trappetti
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (V.T.); (J.M.F.); (C.F.-P.); (M.S.); (O.A.M.)
| | - Jennifer M. Fazzari
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (V.T.); (J.M.F.); (C.F.-P.); (M.S.); (O.A.M.)
| | - Cristian Fernandez-Palomo
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (V.T.); (J.M.F.); (C.F.-P.); (M.S.); (O.A.M.)
| | - Maximilian Scheidegger
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (V.T.); (J.M.F.); (C.F.-P.); (M.S.); (O.A.M.)
| | - Vladislav Volarevic
- Department of Genetics, Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Olga A. Martin
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (V.T.); (J.M.F.); (C.F.-P.); (M.S.); (O.A.M.)
- Peter MacCallum Cancer Centre, Division of Radiation Oncology, Melbourne, VIC 3000, Australia
- University of Melbourne, Parkville, VIC 3010, Australia
| | - Valentin G. Djonov
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (V.T.); (J.M.F.); (C.F.-P.); (M.S.); (O.A.M.)
| |
Collapse
|
14
|
Macedo-Silva C, Benedetti R, Ciardiello F, Cappabianca S, Jerónimo C, Altucci L. Epigenetic mechanisms underlying prostate cancer radioresistance. Clin Epigenetics 2021; 13:125. [PMID: 34103085 PMCID: PMC8186094 DOI: 10.1186/s13148-021-01111-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/02/2021] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy (RT) is one of the mainstay treatments for prostate cancer (PCa), a highly prevalent neoplasm among males worldwide. About 30% of newly diagnosed PCa patients receive RT with a curative intent. However, biochemical relapse occurs in 20–40% of advanced PCa treated with RT either alone or in combination with adjuvant-hormonal therapy. Epigenetic alterations, frequently associated with molecular variations in PCa, contribute to the acquisition of a radioresistant phenotype. Increased DNA damage repair and cell cycle deregulation decreases radio-response in PCa patients. Moreover, the interplay between epigenome and cell growth pathways is extensively described in published literature. Importantly, as the clinical pattern of PCa ranges from an indolent tumor to an aggressive disease, discovering specific targetable epigenetic molecules able to overcome and predict PCa radioresistance is urgently needed. Currently, histone-deacetylase and DNA-methyltransferase inhibitors are the most studied classes of chromatin-modifying drugs (so-called ‘epidrugs’) within cancer radiosensitization context. Nonetheless, the lack of reliable validation trials is a foremost drawback. This review summarizes the major epigenetically induced changes in radioresistant-like PCa cells and describes recently reported targeted epigenetic therapies in pre-clinical and clinical settings. ![]()
Collapse
Affiliation(s)
- Catarina Macedo-Silva
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy.,Cancer Biology and Epigenetics Group, Research Center at Portuguese Oncology Institute of Porto, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy
| | - Fortunato Ciardiello
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center at Portuguese Oncology Institute of Porto, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology and Molecular Immunology at School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal.
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy.
| |
Collapse
|
15
|
Donath E, Alcaidinho A, Delouya G, Taussky D. The one hundred most cited publications in prostate brachytherapy. Brachytherapy 2021; 20:611-623. [PMID: 33674184 DOI: 10.1016/j.brachy.2021.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/23/2020] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE The aim of this study is to identify the leaders in research on prostate brachytherapy through a bibliometric analysis of the top 100 most cited publications in the field. METHODS AND MATERIALS A broad search was performed with the term "prostate brachytherapy" using the Web of Science database to generate wide-ranging results that were reviewed by reading the abstracts and, if necessary, the articles to select the top 100 most cited publications. RESULTS The median of the total citation count was 187 (range 132-1464). The median citation per year index (citations/year since publication) was 13.5 (range 6.3-379.0). In all publications, the first author was also the corresponding author. The top publishing countries of the first author included the United States (n = 78), Canada (n = 6), the UK (n = 5), and Germany (n = 4). The journal with the most publications was the International Journal of Radiation Oncology Biology Physics (n = 38). There were 27 more publications on low-dose-rate (LDR) than on high-dose-rate (HDR) (43 vs 16) among the top 100. HDR publications had only one first author that had three articles in comparison to LDR publications, which had four first authors, each with three articles on LDR. The United States was the leading country in 43.8% of HDR publications (n = 7) and 88.4% of LDR publications (n = 38). CONCLUSIONS Our bibliometric analysis of the top 100 most cited publications clearly demonstrates the North American dominance in the publications of prostate brachytherapy, especially in LDR. However, European first authors were more frequent in HDR publications.
Collapse
Affiliation(s)
- Elisheva Donath
- Department of Radiation Oncology, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Alexandre Alcaidinho
- Department of Radiation Oncology, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Guila Delouya
- Department of Radiation Oncology, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Daniel Taussky
- Department of Radiation Oncology, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
16
|
Ablative Radiotherapy in Prostate Cancer: Stereotactic Body Radiotherapy and High Dose Rate Brachytherapy. Cancers (Basel) 2020; 12:cancers12123606. [PMID: 33276562 PMCID: PMC7761604 DOI: 10.3390/cancers12123606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Radiation therapy is a standard of care treatment option for men with localized prostate cancer. Over the years, various radiation delivery modalities have contributed to the increased precision of radiation, employing radiobiological insights to shorten the overall treatment time with hypofractionation, while improving oncological control without increasing toxicities. Here, we discuss and compare two ablative radiation modalities, stereotactic body radiation therapy (SBRT) and high-dose-rate brachytherapy (HDRBT), in terms of oncological control, dose/fractionation and toxicities in men with localized prostate cancer. This review will highlight the levels of evidence available to support either modality as a monotherapy, will summarize safety and efficacy, help clinicians gain a deeper understanding of the safety and efficacy profiles of these two modalities, and highlight ongoing research efforts to address many unanswered questions regarding ablative prostate radiation. Abstract Prostate cancer (PCa) is the most common noncutaneous solid organ malignancy among men worldwide. Radiation therapy is a standard of care treatment option that has historically been delivered in the form of small daily doses of radiation over the span of multiple weeks. PCa appears to have a unique sensitivity to higher doses of radiation per fraction, rendering it susceptible to abbreviated forms of treatment. Stereotactic body radiation therapy (SBRT) and high-dose-rate brachytherapy (HDRBT) are both modern radiation modalities that allow the precise delivery of ablative doses of radiation to the prostate while maximally sparing sensitive surrounding normal structures. In this review, we highlight the evidence regarding the radiobiology, oncological outcomes, toxicity and dose/fractionation schemes of SBRT and HDRBT monotherapy in men with low-and intermediate-risk PCa.
Collapse
|
17
|
Applications of Nonlinear Programming to the Optimization of Fractionated Protocols in Cancer Radiotherapy. INFORMATION 2020. [DOI: 10.3390/info11060313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The present work of review collects and evidences the main results of our previous papers on the optimization of fractionated radiotherapy protocols. The problem under investigation is presented here in a unitary framework as a nonlinear programming application that aims to determine the optimal schemes of dose fractionation commonly used in external beam radiotherapy. The radiation responses of tumor and normal tissues are described by means of the linear quadratic model. We formulate a nonlinear, non-convex optimization problem including two quadratic constraints to limit the collateral normal tissue damages and linear box constraints on the fractional dose sizes. The general problem is decomposed into two subproblems: (1) analytical determination of the optimal fraction dose sizes as a function of the model parameters for arbitrarily fixed treatment lengths; and (2) numerical determination of the optimal fraction number, and of the optimal treatment time, in different parameter settings. After establishing the boundedness of the optimal number of fractions, we investigate by numerical simulation the optimal solution behavior for experimentally meaningful parameter ranges, recognizing the crucial role of some parameters, such as the radiosensitivity ratio, in determining the optimality of hypo- or equi-fractionated treatments. Our results agree with findings of the theoretical and clinical literature.
Collapse
|
18
|
Avkshtol V, Ruth KJ, Ross EA, Hallman MA, Greenberg RE, Price RA, Leachman B, Uzzo RG, Ma C, Chen D, Geynisman DM, Sobczak ML, Zhang E, Wong JK, Pollack A, Horwitz EM. Ten-Year Update of a Randomized, Prospective Trial of Conventional Fractionated Versus Moderate Hypofractionated Radiation Therapy for Localized Prostate Cancer. J Clin Oncol 2020; 38:1676-1684. [PMID: 32119599 DOI: 10.1200/jco.19.01485] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PURPOSE The previously published single institution randomized prospective trial failed to show superiority in the 5-year biochemical and/or clinical disease failure (BCDF) rate with moderate hypofractionated intensity-modulated radiation therapy (H-IMRT) versus conventionally fractionated IMRT (C-IMRT). We now present 10-year disease outcomes using updated risk groups and definitions of biochemical failure. METHODS Men with protocol-defined intermediate- and high-risk prostate adenocarcinoma were randomly assigned to receive C-IMRT (76 Gy in 38 fractions) or H-IMRT (70.2 Gy in 26 fractions). Men with high-risk disease were all prescribed 24 months of androgen deprivation therapy (ADT) and had lymph node irradiation. Men with intermediate risk were prescribed 4 months of ADT at the discretion of the treating physician. The primary endpoint was cumulative incidence of BCDF. We compared disease outcomes and overall mortality by treatment arm, with sensitivity analyses for National Comprehensive Cancer Network (NCCN) risk group adjustment. RESULTS Overall, 303 assessable men were randomly assigned to C-IMRT or H-IMRT. The median follow-up was 122.9 months. Per updated NCCN risk classification, there were 28 patients (9.2%) with low-risk, 189 (62.4%) with intermediate-risk, and 86 (28.4%) with high-risk prostate cancer. The arms were equally balanced for clinicopathologic factors, except that there were more black patients in the C-IMRT arm (17.8% v 7.3%; P = .02). There was no difference in ADT use (P = .56). The 10-year cumulative incidence of BCDF was 25.9% in the C-IMRT arm and was 30.6% in the H-IMRT arm (hazard ratio, 1.31; 95% CI, 0.82 to 2.11). The two arms also had similar cumulative 10-year rates of biochemical failure, prostate cancer-specific mortality, and overall mortality; however, the 10-year cumulative incidence of distant metastases was higher in the H-IMRT arm (rate difference, 7.8%; 95% CI, 0.7% to 15.1%). CONCLUSION H-IMRT failed to demonstrate superiority compared with C-IMRT in long-term disease outcomes.
Collapse
Affiliation(s)
- Vladimir Avkshtol
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA
| | - Karen J Ruth
- Department of Biostatistics, Fox Chase Cancer Center, Philadelphia, PA
| | - Eric A Ross
- Department of Biostatistics, Fox Chase Cancer Center, Philadelphia, PA
| | - Mark A Hallman
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA
| | - Richard E Greenberg
- Division of Urologic Oncology, Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA
| | - Robert A Price
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA
| | - Brooke Leachman
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA
| | - Robert G Uzzo
- Division of Urologic Oncology, Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA
| | - Charlie Ma
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA
| | - David Chen
- Division of Urologic Oncology, Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA
| | - Daniel M Geynisman
- Division of Genitourinary Oncology, Department of Hematology and Oncology, Fox Chase Cancer Center, Philadelphia, PA
| | - Mark L Sobczak
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA
| | - Eddie Zhang
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA
| | - Jessica K Wong
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA
| | - Alan Pollack
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL
| | - Eric M Horwitz
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA
| |
Collapse
|
19
|
Yan W, Khan MK, Wu X, Simone CB, Fan J, Gressen E, Zhang X, Limoli CL, Bahig H, Tubin S, Mourad WF. Spatially fractionated radiation therapy: History, present and the future. Clin Transl Radiat Oncol 2020; 20:30-38. [PMID: 31768424 PMCID: PMC6872856 DOI: 10.1016/j.ctro.2019.10.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 12/30/2022] Open
Affiliation(s)
- Weisi Yan
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mohammad K. Khan
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | | | - Charles B. Simone
- New York Proton Center, Department of Radiation Oncology, New York, NY, USA
| | - Jiajin Fan
- Radiation Oncology, Inova Schar Cancer Institute, Inova Health System, USA
| | - Eric Gressen
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Xin Zhang
- Boston University School of Medicine, Boston, MA, USA
| | - Charles L. Limoli
- Department of Radiation Oncology, University of California, Ivine 92697-2695, USA
| | - Houda Bahig
- Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Slavisa Tubin
- KABEG Klinikum Klagenfurt, Institute of Radiation Oncology, Feschnigstraße 11, 9020 Klagenfurt am Wörthersee, Austria
| | - Waleed F. Mourad
- Department of Radiation Medicine, Markey Cancer Center, University of Kentucky – College of Medicine, USA
| |
Collapse
|
20
|
Alaswad M, Kleefeld C, Foley M. Optimal tumour control for early-stage non-small-cell lung cancer: A radiobiological modelling perspective. Phys Med 2019; 66:55-65. [DOI: 10.1016/j.ejmp.2019.09.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 12/25/2022] Open
|
21
|
Pratx G, Kapp DS. A computational model of radiolytic oxygen depletion during FLASH irradiation and its effect on the oxygen enhancement ratio. Phys Med Biol 2019; 64:185005. [PMID: 31365907 DOI: 10.1088/1361-6560/ab3769] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent results from animal irradiation studies have demonstrated the potential of ultra-high dose rate irradiation (also known as FLASH) for reducing radiation toxicity in normal tissues. However, despite mounting evidence of a 'FLASH effect', a mechanism has yet to be elucidated. This article hypothesizes that the radioprotecting effect of FLASH irradiation could be due to the specific sparing of hypoxic stem cell niches, which have been identified in several organs including the bone marrow and the brain. To explore this hypothesis, a new computational model is presented that frames transient radiolytic oxygen depletion (ROD) during FLASH irradiation in terms of its effect on the oxygen enhancement ratio (OER). The model takes into consideration oxygen diffusion through the tissue, its consumption by metabolic cells, and its radiolytic depletion to estimate the relative decrease in radiosensitivity of cells receiving FLASH irradiation. Based on this model and the following parameters (oxygen diffusion constant [Formula: see text] = 2 · 10-5 cm2 s-1, oxygen metabolic rate m = 3 mmHg s-1, ROD rate L ROD = [Formula: see text] mmHg Gy-1, prescribed dose D p = 10 Gy, and capillary oxygen tension p 0 = 40 mmHg), several predictions are made that could be tested in future experiments: (1) the FLASH effect should gradually disappear as the radiation pulse duration is increased from <1 s to 10 s; (2) dose should be deposited using the smallest number of radiation pulses to achieve the greatest FLASH effect; (3) a FLASH effect should only be observed in cells that are already hypoxic at the time of irradiation; and (4) changes in capillary oxygen tension (increase or decrease) should diminish the FLASH effect.
Collapse
Affiliation(s)
- Guillem Pratx
- 300 Pasteur Dr, Grant S277, Stanford, CA 94305-5132, United States of America. Author to whom any correspondence should be addressed
| | | |
Collapse
|
22
|
Forster JC, Marcu LG, Bezak E. Approaches to combat hypoxia in cancer therapy and the potential for in silico models in their evaluation. Phys Med 2019; 64:145-156. [PMID: 31515013 DOI: 10.1016/j.ejmp.2019.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/17/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023] Open
Abstract
AIM The negative impact of tumour hypoxia on cancer treatment outcome has been long-known, yet there has been little success combating it. This paper investigates the potential role of in silico modelling to help test emerging hypoxia-targeting treatments in cancer therapy. METHODS A Medline search was undertaken on the current landscape of in silico models that simulate cancer therapy and evaluate their ability to test hypoxia-targeting treatments. Techniques and treatments to combat tumour hypoxia and their current challenges are also presented. RESULTS Hypoxia-targeting treatments include tumour reoxygenation, hypoxic cell radiosensitization with nitroimidazoles, hypoxia-activated prodrugs and molecular targeting. Their main challenges are toxicity and not achieving adequate delivery to hypoxic regions of the tumour. There is promising research toward combining two or more of these techniques. Different types of in silico therapy models have been developed ranging from temporal to spatial and from stochastic to deterministic models. Numerous models have compared the effectiveness of different radiotherapy fractionation schedules for controlling hypoxic tumours. Similarly, models could help identify and optimize new treatments for overcoming hypoxia that utilize novel hypoxia-targeting technology. CONCLUSION Current therapy models should attempt to incorporate more sophisticated modelling of tumour angiogenesis/vasculature and vessel perfusion in order to become more useful for testing hypoxia-targeting treatments, which typically rely upon the tumour vasculature for delivery of additional oxygen, (pro)drugs and nanoparticles.
Collapse
Affiliation(s)
- Jake C Forster
- SA Medical Imaging, Department of Nuclear Medicine, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; Department of Physics, University of Adelaide, North Terrace, Adelaide SA 5005, Australia
| | - Loredana G Marcu
- Faculty of Science, University of Oradea, Oradea 410087, Romania; Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA 5001, Australia.
| | - Eva Bezak
- Department of Physics, University of Adelaide, North Terrace, Adelaide SA 5005, Australia; Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA 5001, Australia
| |
Collapse
|
23
|
Quel rapport alpha/bêta pour le cancer prostatique en 2019 ? Cancer Radiother 2019; 23:342-345. [DOI: 10.1016/j.canrad.2019.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/29/2018] [Accepted: 01/06/2019] [Indexed: 12/13/2022]
|
24
|
Modelling the effect of spread in radiosensitivity parameters and repopulation rate on the probability of tumour control. Phys Med 2019; 63:79-86. [DOI: 10.1016/j.ejmp.2019.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 05/04/2019] [Accepted: 05/09/2019] [Indexed: 11/17/2022] Open
|
25
|
Ha B, Cho KH, Lee KH, Joung JY, Kim YJ, Lee SU, Kim H, Suh YG, Moon SH, Lim YK, Jeong JH, Kim H, Park WS, Kim SH. Long-term results of a phase II study of hypofractionated proton therapy for prostate cancer: moderate versus extreme hypofractionation. Radiat Oncol 2019; 14:4. [PMID: 30630500 PMCID: PMC6327508 DOI: 10.1186/s13014-019-1210-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/02/2019] [Indexed: 12/04/2022] Open
Abstract
Background We performed a prospective phase II study to compare acute toxicity among five different hypofractionated schedules using proton therapy. This study was an exploratory analysis to investigate the secondary end-point of biochemical failure-free survival (BCFFS) of patients with long-term follow-up. Methods Eighty-two patients with T1-3bN0M0 prostate cancer who had not received androgen-deprivation therapy were randomized to one of five arms: Arm 1, 60 cobalt gray equivalent (CGE)/20 fractions/5 weeks; Arm 2, 54 CGE/15 fractions/5 weeks; Arm 3, 47 CGE/10 fractions/5 weeks; Arm 4, 35 CGE/5 fractions/2.5 weeks; and Arm 5, 35 CGE/5 fractions/4 weeks. In the current exploratory analysis, these ardms were categorized into the moderate hypofractionated (MHF) group (52 patients in Arms 1–3) and the extreme hypofractionated (EHF) group (30 patients in Arms 4–5). Results At a median follow-up of 7.5 years (range, 1.3–9.6 years), 7-year BCFFS was 76.2% for the MHF group and 46.2% for the EHF group (p = 0.005). The 7-year BCFFS of the MHF and EHF groups were 90.5 and 57.1% in the low-risk group (p = 0.154); 83.5 and 42.9% in the intermediate risk group (p = 0.018); and 41.7 and 40.0% in the high risk group (p = 0.786), respectively. Biochemical failure tended to be a late event with a median time to occurrence of 5 years. Acute GU toxicities were more common in the MHF than the EHF group (85 vs. 57%, p = 0.009), but late GI and GU toxicities did not differ between groups. Conclusions Our results suggest that the efficacy of EHF is potentially inferior to that of MHF and that further studies are warranted, therefore, to confirm these findings. Trial registration This study is registered at ClinicalTrials.gov, no. NCT01709253; registered October 18, 2012; retrospectively registered).
Collapse
Affiliation(s)
- Boram Ha
- Proton Therapy Center, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10408, Republic of Korea.,Department of Radiation Oncology, Hallym University Dongtan Sacred Heart Hospital, Seoku-dong, Hwaseong-si, Gyeonggi-do, 18450, Republic of Korea
| | - Kwan Ho Cho
- Proton Therapy Center, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10408, Republic of Korea.
| | - Kang Hyun Lee
- Center for Prostate Cancer, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Jae Young Joung
- Center for Prostate Cancer, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Yeon-Joo Kim
- Proton Therapy Center, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Sung Uk Lee
- Proton Therapy Center, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Hyunjung Kim
- Proton Therapy Center, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Yang-Gun Suh
- Proton Therapy Center, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Sung Ho Moon
- Proton Therapy Center, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Young Kyung Lim
- Proton Therapy Center, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Jong Hwi Jeong
- Proton Therapy Center, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Haksoo Kim
- Proton Therapy Center, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Weon Seo Park
- Center for Prostate Cancer, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Sun Ho Kim
- Center for Prostate Cancer, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| |
Collapse
|
26
|
The Effect of Neoadjuvant Androgen Deprivation Therapy on Tumor Hypoxia in High-Grade Prostate Cancer: An 18F-MISO PET-MRI Study. Int J Radiat Oncol Biol Phys 2018; 102:1210-1218. [DOI: 10.1016/j.ijrobp.2018.02.170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/16/2018] [Accepted: 02/28/2018] [Indexed: 12/16/2022]
|
27
|
Belfatto A, Jereczek-Fossa BA, Baroni G, Cerveri P. Model-Supported Radiotherapy Personalization: In silico Test of Hyper- and Hypo-Fractionation Effects. Front Physiol 2018; 9:1445. [PMID: 30374310 PMCID: PMC6197078 DOI: 10.3389/fphys.2018.01445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 09/24/2018] [Indexed: 12/25/2022] Open
Abstract
The need for radiotherapy personalization is now widely recognized, however, it would require considerations not only on the probability of control and survival of the tumor, but also on the possible toxic effects, on the quality of the expected life and the economic efficiency of the treatment. In this paper, we propose a simulation tool that can be integrated into a decision support system that allows selection of the most suitable irradiation regimen. We used a macroscale mathematical model, which includes active and necrotic tumor dynamics and the role of oxygenation to simulate the effects of different hypo-/hyper-fractional regimens using retrospective data of seven virtual patients from as many cervical cancer patients used for its training in a previous study. The results confirmed the heterogeneous response across the patients as a function of treatment regimen and suggested the tumor growth rate as a main factor in the final tumor regression. In addition to the maximum regression, another criterion was suggested to select the most suitable regimen (minimum number of fractions to achieve a regression of 80%) minimizing the toxicity and maximizing the cost-effectiveness ratio. Despite the lack of direct validation, the simulation results are in agreement with the literature findings that suggest the need for hypo-fractionated regimens in case of aggressive tumor phenotypes. Finally, the paper suggests a possible exploitation of the model within a tool to support clinical decisions.
Collapse
Affiliation(s)
- Antonella Belfatto
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy,Division of Radiotherapy, European Institute of Oncology, Milan, Italy
| | - Guido Baroni
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Pietro Cerveri
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy,*Correspondence: Pietro Cerveri,
| |
Collapse
|
28
|
Gago-Arias A, Sánchez-Nieto B, Espinoza I, Karger CP, Pardo-Montero J. Impact of different biologically-adapted radiotherapy strategies on tumor control evaluated with a tumor response model. PLoS One 2018; 13:e0196310. [PMID: 29698534 PMCID: PMC5919644 DOI: 10.1371/journal.pone.0196310] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/10/2018] [Indexed: 11/26/2022] Open
Abstract
Motivated by the capabilities of modern radiotherapy techniques and by the recent developments of functional imaging techniques, dose painting by numbers (DPBN) was proposed to treat tumors with heterogeneous biological characteristics. This work studies different DPBN optimization techniques for virtual head and neck tumors assessing tumor response in terms of cell survival and tumor control probability with a previously published tumor response model (TRM). Uniform doses of 2 Gy are redistributed according to the microscopic oxygen distribution and the density distribution of tumor cells in four virtual tumors with different biological characteristics. In addition, two different optimization objective functions are investigated, which: i) minimize tumor cell survival (OFsurv) or; ii) maximize the homogeneity of the density of surviving tumor cells (OFstd). Several adaptive schemes, ranging from single to daily dose optimization, are studied and the treatment response is compared to that of the uniform dose. The results show that the benefit of DPBN treatments depends on the tumor reoxygenation capability, which strongly differed among the set of virtual tumors investigated. The difference between daily (fraction by fraction) and three weekly optimizations (at the beginning of weeks 1, 3 and 4) was found to be small, and higher benefit was observed for the treatments optimized using OFsurv. This in silico study corroborates the hypothesis that DPBN may be beneficial for treatments of tumors which show reoxygenation during treatment, and that a few optimizations may be sufficient to achieve this therapeutic benefit.
Collapse
Affiliation(s)
- Araceli Gago-Arias
- Instituto de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail:
| | | | - Ignacio Espinoza
- Instituto de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christian P. Karger
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Juan Pardo-Montero
- Grupo de Imaxe Molecular, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
- Servizo de Radiofísica e Protección Radiolóxica, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
29
|
Personalising Prostate Radiotherapy in the Era of Precision Medicine: A Review. J Med Imaging Radiat Sci 2018; 49:376-382. [PMID: 30514554 DOI: 10.1016/j.jmir.2018.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/27/2017] [Accepted: 01/18/2018] [Indexed: 12/14/2022]
Abstract
Prostate cancer continues to be the most commonly diagnosed cancer among Canadian men. The introduction of routine screening and advanced treatment options have allowed for a decrease in prostate cancer-related mortality, but outcomes following treatment continue to vary widely. In addition, the overtreatment of indolent prostate cancers causes unnecessary treatment toxicities and burdens health care systems. Accurate identification of patients who should undergo aggressive treatment, and those which should be managed more conservatively, needs to be implemented. More tumour and patient information is needed to stratify patients into low-, intermediate-, and high-risk groups to guide treatment options. This paper reviews the current literature on personalised prostate cancer management, including targeting tumour hypoxia, genomic and radiomic prognosticators, and radiobiological tumour targeting. A review of the current applications and future directions for the use of big data in radiation therapy is also presented. Prostate cancer management has a lot to gain from the implementation of personalised medicine into practice. Using specific tumour and patient characteristics to personalise prostate radiotherapy in the era of precision medicine will improve survival, decrease unnecessary toxicities, and minimise the heterogeneity of outcomes following treatment.
Collapse
|
30
|
Bruni C, Conte F, Papa F, Sinisgalli C. Optimal number and sizes of the doses in fractionated radiotherapy according to the LQ model. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2018; 36:1-53. [DOI: 10.1093/imammb/dqx020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 12/10/2017] [Indexed: 01/18/2023]
Affiliation(s)
- C Bruni
- Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti” – CNR, Via dei Taurini 19, Rome, Italy
| | - F Conte
- Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti” – CNR, Via dei Taurini 19, Rome, Italy
| | - F Papa
- Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti” – CNR, Via dei Taurini 19, Rome, Italy
| | - C Sinisgalli
- Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti” – CNR, Via dei Taurini 19, Rome, Italy
| |
Collapse
|
31
|
Lin T, Hossain M, Fan J, Ma CMC. When and how to treat an IMRT patient on a second accelerator without replanning? Med Dosim 2017; 43:334-343. [PMID: 29287919 DOI: 10.1016/j.meddos.2017.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/06/2017] [Indexed: 10/18/2022]
Abstract
When a linear accelerator is unavailable for treatment, a clinical decision is imminent regarding whether a patient should be treated on a linear accelerator other than the machine the patient was scheduled on, or whether treatment should be postponed until the original Linac becomes available. This work investigates the feasibility of switching patients to different accelerators for intensity-modulated radiation therapy (IMRT). We have performed Monte Carlo simulations of photon beams from different Linac models and vendors. Prostate and head and neck (H&N) treatment plans for Siemens Primus, Primart, and Varian 21EX accelerators are studied in this work. Dose distributions for given plans are recalculated using different beam data with the same nominal energy from different Linacs. We have compared dose-volume histograms (DVHs) and the maximum, the minimum, and the mean doses to the target and critical structures because of switching accelerators. In the process of switching a treatment plan to a different accelerator, issues exist, including optimum penumbra compensation, dose distribution at the boundary of target and critical structures, and multileaf collimator (MLC) leaf-width effects, which need to be considered and verified with measurements. Our Monte Carlo simulation results confirm that, for the cases we tested, the dose received by 95% of the planning target volume differs by 0.2% to 1.5% between Siemens Primus and Varian 21EX Linacs. The discrepancy is within our clinical acceptance criteria of 3% for IMRT treatments. In making the final decision on whether to switch machines or not, the tumor control probabilities (TCPs) based on a linear-quadratic model are compared. Based on the analyses performed in this work, it is therapeutically more beneficial to switch a patient to a different machine than to postpone a treatment until the original machine is available, especially for fast-growing tumors such as H&N cancers.
Collapse
Affiliation(s)
- Teh Lin
- Department of Radiation Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| | - Murshed Hossain
- Department of Radiation Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Jiajin Fan
- Department of Radiation Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - C-M Charlie Ma
- Department of Radiation Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| |
Collapse
|
32
|
Effect of Hypofractionation on Prostate Cancer Radiotherapy. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2017. [DOI: 10.5812/ijcm.12204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Cosset JM. [Hypofractionated irradiation of prostate cancer: What is the radiobiological understanding in 2017?]. Cancer Radiother 2017; 21:447-453. [PMID: 28847464 DOI: 10.1016/j.canrad.2017.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 06/16/2017] [Indexed: 01/10/2023]
Abstract
For prostate cancer, hypofractionation has been based since 1999 on radiobiological data, which calculated a very low alpha/beta ratio (1.2 to 1.5Gy). This suggested that a better local control could be obtained, without any toxicity increase. Consequently, two types of hypofractionated schemes were proposed: "moderate" hypofractionation, with fractions of 2.5 to 4Gy, and "extreme" hypofractionation, utilizing stereotactic techniques, with fractions of 7 to 10Gy. For moderate hypofractionation, the linear-quadratic (LQ) model has been used to calculate the equivalent doses of the new protocols. The available trials have often shown a "non-inferiority", but no advantage, while the equivalent doses calculated for the hypofractionated arms were sometimes very superior to the doses of the conventional arms. This finding could suggest either an alpha/beta ratio lower than previously calculated, or a negative impact of other radiobiological parameters, which had not been taken into account. For "extreme" hypofractionation, the use of the LQ model is discussed for high dose fractions. Moreover, a number of radiobiological questions are still pending. The reduced overall irradiation time could be either a positive point (better local control) or a negative one (reduced reoxygenation). The prolonged duration of the fractions could lead to a decrease of efficacy (because allowing for reparation of sublethal lesions). Finally, the impact of the large fractions on the microenvironment and/or immunity remains discussed. The reported series appear to show encouraging short to mid-term results, but the results of randomized trials are still awaited. Today, it seems reasonable to only propose those extreme hypofractionated schemes to well-selected patients, treating small volumes with high-level stereotactic techniques.
Collapse
Affiliation(s)
- J-M Cosset
- GIE Charlebourg, groupe Amethyst, 65, avenue Foch, 92250 La Garenne-Colombes, France.
| |
Collapse
|
34
|
Guimas V, Quivrin M, Bertaut A, Martin E, Chambade D, Maingon P, Mazoyer F, Cormier L, Créhange G. Focal or whole-gland salvage prostate brachytherapy with iodine seeds with or without a rectal spacer for postradiotherapy local failure: How best to spare the rectum? Brachytherapy 2017; 15:406-411. [PMID: 27317949 DOI: 10.1016/j.brachy.2016.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 11/17/2022]
Abstract
PURPOSE Salvage prostate permanent implant (sPPI) for postradiation local failure provides high rates of biochemical control. The cumulative dose delivered to the prostate and the rectum is still unknown. METHODS AND MATERIALS We reviewed the postimplant CT-based dosimetry of 18 selected patients who underwent sPPI with (125)I seeds for isolated biopsy-proven local failure several years after external beam radiation therapy. Ten patients had whole-prostate sPPI, and 8 patients had multiparametric MRI-based focal sPPI. In 8 patients, hyaluronic acid (HA) gel was injected into the prostate-rectum space. RESULTS The median cumulative biological effective dose after EBRT + sPPI for the prostate and the rectum was higher in patients treated with whole-gland sPPI than in patients treated with focal sPPI (313.5 Gy2 vs. 174.4 Gy2; p = 0.06 and 258.1 Gy3 vs. 172.6 Gy3; p < 0.01, respectively). The median D0.1cc for the rectum was significantly lower in patients who had HA gel: 63.3 Gy (29.0-78.3) vs. 83.9 Gy (34.9-180.0) (p = 0.04). CONCLUSIONS Cumulative prostate and rectum biological effective doses were lower with focal sPPI. D0.1cc delivered to the rectum was significantly lower with HA gel, while there was no difference between focal or whole-gland plans.
Collapse
Affiliation(s)
- Valentine Guimas
- Department of Radiation Oncology, Centre Georges François Leclerc, University of Burgundy, Dijon, Burgundy, France
| | - Magali Quivrin
- Department of Radiation Oncology, Centre Georges François Leclerc, University of Burgundy, Dijon, Burgundy, France; Medical Imaging Group, IMAC CNRS 6306, University of Burgundy, Dijon, Burgundy, France
| | - Aurélie Bertaut
- Department of Biostatistics, Centre Georges François Leclerc, University of Burgundy, Dijon, Burgundy, France
| | - Etienne Martin
- Department of Radiation Oncology, Centre Georges François Leclerc, University of Burgundy, Dijon, Burgundy, France
| | - Damien Chambade
- Department of Radiation Oncology, Centre Georges François Leclerc, University of Burgundy, Dijon, Burgundy, France
| | - Philippe Maingon
- Department of Radiation Oncology, Centre Georges François Leclerc, University of Burgundy, Dijon, Burgundy, France
| | - Frédéric Mazoyer
- Department of Radiation Oncology, Centre Georges François Leclerc, University of Burgundy, Dijon, Burgundy, France
| | - Luc Cormier
- Department of Urology, University Hospital François Mitterand, Dijon, France
| | - Gilles Créhange
- Department of Radiation Oncology, Centre Georges François Leclerc, University of Burgundy, Dijon, Burgundy, France; Medical Imaging Group, IMAC CNRS 6306, University of Burgundy, Dijon, Burgundy, France.
| |
Collapse
|
35
|
Sánchez-Nieto B, Romero-Expósito M, Terrón JA, Sánchez-Doblado F. Uncomplicated and Cancer-Free Control Probability (UCFCP): A new integral approach to treatment plan optimization in photon radiation therapy. Phys Med 2017; 42:277-284. [PMID: 28392313 DOI: 10.1016/j.ejmp.2017.03.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/24/2017] [Accepted: 03/29/2017] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Biological treatment plan evaluation does not currently consider second cancer induction from peripheral doses associated to photon radiotherapy. The aim is to propose a methodology to characterize the therapeutic window by means of an integral radiobiological approach, which considers not only Tumour Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) but also Secondary Cancer Probability (SCP). METHODS Uncomplicated and Cancer-Free Control Probability (UCFCP) function has been proposed assuming a statistically uncorrelated response for tumour and normal tissues. The Poisson's and Lyman's models were chosen for TCP and NTCP calculations, respectively. SCP was modelled as the summation of risks associated to photon and neutron irradiation of radiosensitive organs. For the medium (>4Gy) and low dose regions, mechanistic and linear secondary cancer risks models were used, respectively. Two conformal and intensity-modulated prostate plans at 15MV (same prescription dose) were selected to illustrate the UCFCP features. RESULTS UCFCP exhibits a bell-shaped behaviour with its maximum inside the therapeutic window. SCP values were not different for the plans analysed (∼2.4%) and agreed with published epidemiological results. Therefore, main differences in UCFCP came from differences in rectal NTCP (18% vs 9% for 3D-CRT and IMRT, respectively). According to UCFCP values, the evaluated IMRT plan ranked first. CONCLUSIONS The level of SCP was found to be similar to that of NTCP complications which reinforces the importance of considering second cancer risks as part of the possible late sequelae due to treatment. Previous concerns about the effect of peripheral radiation, especially neutrons, in the induction of secondary cancers can be evaluated by quantifying the UCFCP.
Collapse
Affiliation(s)
- Beatriz Sánchez-Nieto
- Instituto de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4880, Macul, Santiago, Chile.
| | - Maite Romero-Expósito
- Departament de Física, Universitat Autònoma de Barcelona, Edifici C, Campus UAB E-08193, Bellaterra, Spain.
| | - José A Terrón
- Servicio de Radiofísica, Hospital Universitario Virgen Macarena, Av. Doctor Fedriani, 3, 41009 Sevilla, Spain.
| | - Francisco Sánchez-Doblado
- Servicio de Radiofísica, Hospital Universitario Virgen Macarena, Av. Doctor Fedriani, 3, 41009 Sevilla, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Av. Doctor Fedriani S/N, 41009 Sevilla, Spain.
| |
Collapse
|
36
|
Schimpf O, Hindel S, Lüdemann L. Assessment of micronecrotic tumor tissue using dynamic contrast-enhanced magnetic resonance imaging. Phys Med 2017; 34:38-47. [PMID: 28139354 PMCID: PMC5320396 DOI: 10.1016/j.ejmp.2017.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/22/2016] [Accepted: 01/14/2017] [Indexed: 12/26/2022] Open
Abstract
Contrast agent diffusion in inhomogeneous tissue using a macroscopic model is described. Methodology of diffusion simulation in an inhomogeneous tissue is presented. The impact of necrotic tumor tissue on contrast enhancement is investigated. Why compartment models may provide an interstitial volume >100. The possibility to assess necrotic tumor tissue using DCE-MRI is demonstrated.
Compartmental models for evaluation of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) datasets assume a homogeneous interstitital volume distribution and homogeneous contrast agent (CA) distribution within each compartment, neglecting effects of CA diffusion within the compartments. When necrotic or micronecrotic tumor tissue is present, these assumptions may no longer be valid. Therefore, the present study investigates the validity of three compartmental models in assessing tumors with necrotic components. The general diffusion equation for inhomogeneous tissue was used to simulate the extravasation of a low-molecular-weight contrast agent from a feeding vessel into the interstitial space. The simulated concentration-time curves were evaluated using the extended Tofts model, a parallel 3-compartment model, and a sequential 3-compartment model. The extended Tofts model overestimated the interstitial volume fraction by a median of 6.9% resp. 10.0% and the parallel 3-compartment model by 8.6% resp. 15.5%, while the sequential 3-compartment model overestimated it by 0.2% resp. underestimated it by 18.8% when simulating a mean vessel distance of 100 μm resp. 150 μm. Overall, the sequential 3-compartment model provided more reliable results both for the total fractional interstitial volume and for the interstitial subcompartments.
Collapse
Affiliation(s)
- Olga Schimpf
- Department of Radiation Therapy, Hufelandstr. 55, Universitätsklinikum Essen, 45147 Essen, Germany
| | - Stefan Hindel
- Department of Radiation Therapy, Hufelandstr. 55, Universitätsklinikum Essen, 45147 Essen, Germany
| | - Lutz Lüdemann
- Department of Radiation Therapy, Hufelandstr. 55, Universitätsklinikum Essen, 45147 Essen, Germany.
| |
Collapse
|
37
|
Walsh S, Roelofs E, Kuess P, Lambin P, Jones B, Georg D, Verhaegen F. A validated tumor control probability model based on a meta-analysis of low, intermediate, and high-risk prostate cancer patients treated by photon, proton, or carbon-ion radiotherapy. Med Phys 2016; 43:734-47. [PMID: 26843237 DOI: 10.1118/1.4939260] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE A fully heterogeneous population averaged mechanistic tumor control probability (TCP) model is appropriate for the analysis of external beam radiotherapy (EBRT). This has been accomplished for EBRT photon treatment of intermediate-risk prostate cancer. Extending the TCP model for low and high-risk patients would be beneficial in terms of overall decision making. Furthermore, different radiation treatment modalities such as protons and carbon-ions are becoming increasingly available. Consequently, there is a need for a complete TCP model. METHODS A TCP model was fitted and validated to a primary endpoint of 5-year biological no evidence of disease clinical outcome data obtained from a review of the literature for low, intermediate, and high-risk prostate cancer patients (5218 patients fitted, 1088 patients validated), treated by photons, protons, or carbon-ions. The review followed the preferred reporting item for systematic reviews and meta-analyses statement. Treatment regimens include standard fractionation and hypofractionation treatments. Residual analysis and goodness of fit statistics were applied. RESULTS The TCP model achieves a good level of fit overall, linear regression results in a p-value of <0.000 01 with an adjusted-weighted-R(2) value of 0.77 and a weighted root mean squared error (wRMSE) of 1.2%, to the fitted clinical outcome data. Validation of the model utilizing three independent datasets obtained from the literature resulted in an adjusted-weighted-R(2) value of 0.78 and a wRMSE of less than 1.8%, to the validation clinical outcome data. The weighted mean absolute residual across the entire dataset is found to be 5.4%. CONCLUSIONS This TCP model fitted and validated to clinical outcome data, appears to be an appropriate model for the inclusion of all clinical prostate cancer risk categories, and allows evaluation of current EBRT modalities with regard to tumor control prediction.
Collapse
Affiliation(s)
- Seán Walsh
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center (MUMC+), Maastricht 6229 ET, The Netherlands and Department of Oncology, Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Erik Roelofs
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center (MUMC+), Maastricht 6229 ET, The Netherlands
| | - Peter Kuess
- Department of Radiation Oncology and Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna 1090, Austria
| | - Philippe Lambin
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center (MUMC+), Maastricht 6229 ET, The Netherlands
| | - Bleddyn Jones
- Department of Oncology, Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Dietmar Georg
- Department of Radiation Oncology and Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna 1090, Austria
| | - Frank Verhaegen
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center (MUMC+), Maastricht 6229 ET, The Netherlands and Medical Physics Unit, Department of Oncology, McGill University, Montréal, Québec H4A 3J1, Canada
| |
Collapse
|
38
|
Belfatto A, White DA, Zhang Z, Zhang Z, Cerveri P, Baroni G, Mason RP. Mathematical modeling of tumor response to radiation: radio-sensitivity correlation with BOLD, TOLD, ΔR1 and ΔR2* investigated in large Dunning R3327-AT1 rat prostate tumors. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:3266-9. [PMID: 26736989 DOI: 10.1109/embc.2015.7319089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Tumor response to radiation therapy can vary highly across patients. Several factors, both tumor- and environment-specific, can influence the radio-sensitivity, one of the most well-known being hypoxia. In this work, we investigated possible correlations between the radio-sensitivity parameters determined by means of a simple mathematical model of tumor volume evolution, and the MRI-based indicators of oxygenation in Dunning R3327-AT1 rats. Prior to irradiation the rats were subjected to an oxygen-breathing challenge, which was evaluated by MRI. The tumors were administered a single irradiation dose (30 Gy), while breathing air or oxygen. Despite a poor fitting performance, the model was able to identify two different tumor volume regression patterns. Moreover, the radio-sensitivity of the oxygen-breathing group was found to correlate with the variation of the transverse relaxation rate ΔR2* (-0.89). This suggests that MRI-based indices of tumor oxygenation may provide information about radio-sensitivity.
Collapse
|
39
|
Fractionated radiation exposure amplifies the radioresistant nature of prostate cancer cells. Sci Rep 2016; 6:34796. [PMID: 27703211 PMCID: PMC5050515 DOI: 10.1038/srep34796] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 09/19/2016] [Indexed: 12/20/2022] Open
Abstract
The risk of recurrence following radiation therapy remains high for a significant number of prostate cancer patients. The development of in vitro isogenic models of radioresistance through exposure to fractionated radiation is an increasingly used approach to investigate the mechanisms of radioresistance in cancer cells and help guide improvements in radiotherapy standards. We treated 22Rv1 prostate cancer cells with fractionated 2 Gy radiation to a cumulative total dose of 60 Gy. This process selected for 22Rv1-cells with increased clonogenic survival following subsequent radiation exposure but increased sensitivity to Docetaxel. This RR-22Rv1 cell line was enriched in S-phase cells, less susceptible to DNA damage, radiation-induced apoptosis and acquired enhanced migration potential, when compared to wild type and aged matched control 22Rv1 cells. The selection of radioresistant cancer cells during fractionated radiation therapy may have implications in the development and administration of future targeted therapy in conjunction with radiation therapy.
Collapse
|
40
|
Fiorino C, Broggi S, Fossati N, Cozzarini C, Goldner G, Wiegel T, Hinkelbein W, Karnes RJ, Boorjian SA, Haustermans K, Joniau S, Palorini F, Shariat S, Montorsi F, Van Poppel H, Di Muzio N, Calandrino R, Briganti A. Predicting the 5-Year Risk of Biochemical Relapse After Postprostatectomy Radiation Therapy in ≥PT2, pN0 Patients With a Comprehensive Tumor Control Probability Model. Int J Radiat Oncol Biol Phys 2016; 96:333-340. [DOI: 10.1016/j.ijrobp.2016.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 05/23/2016] [Accepted: 06/10/2016] [Indexed: 11/26/2022]
|
41
|
van Vulpen M, Wang L, Orton CG. Within the next five years, adaptive hypofractionation will become the most common form of radiotherapy. Med Phys 2016; 43:3941. [DOI: 10.1118/1.4951735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
42
|
Combining high dose external beam radiotherapy with a simultaneous integrated boost to the dominant intraprostatic lesion: Analysis of genito-urinary and rectal toxicity. Radiother Oncol 2016; 119:398-404. [PMID: 27162160 DOI: 10.1016/j.radonc.2016.04.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 04/04/2016] [Accepted: 04/20/2016] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND PURPOSE Local recurrences after radiotherapy are dose-dependent and occur in the dominant intraprostatic lesion (DIL). The purpose of this study was to evaluate the impact of a simultaneous integrated boost (SIB) to the magnetic resonance imaging (MRI)-defined DIL on toxicity. MATERIALS AND METHODS Four-hundred and ten patients were treated with intensity-modulated radiotherapy. A median dose of 78Gy was prescribed to the prostate. A SIB of 82Gy to the DIL was performed in 225 patients (SIB+). Genitourinary and rectal toxicity on fixed time points up to 8years were compared between SIB- (185 patients) and SIB+ patients. Chi-square, Fisher's exact and Kaplan-Meier statistics were applied. With a median follow up of 72months, the six-year actuarial risk of genitourinary and rectal toxicity grade⩾2 was 31% and 12% respectively. The actuarial risk of developing toxicity and incidence of symptoms at fixed time points were not increased with a SIB. CONCLUSION Performing a SIB did not increase genitourinary or rectal toxicity up to 8years' follow-up.
Collapse
|
43
|
Boonstra PS, Taylor JMG, Smolska-Ciszewska B, Behrendt K, Dworzecki T, Gawkowska-Suwinska M, Bialas B, Suwinski R. Alpha/beta (α/β) ratio for prostate cancer derived from external beam radiotherapy and brachytherapy boost. Br J Radiol 2016; 89:20150957. [PMID: 26903392 DOI: 10.1259/bjr.20150957] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE There is disagreement regarding the value of the α/β ratio for prostate cancer. Androgen deprivation therapy (ADT) may dominate the effects of dose fractionation on prostate-specific antigen (PSA) response and confound estimates of the α/β ratio. We estimate this ratio from combined data on external beam radiation therapy (EBRT) and brachytherapy (BT)-treated patients, providing a range of doses per fraction, while accounting for the effects of ADT. METHODS We analyse data on 289 patients with local prostate cancer treated with EBRT (2 Gy per fraction) or EBRT plus one or two BT boosts of 10 Gy each. The timing of ADT was heterogeneous. We develop statistical models to estimate the α/β ratio based upon PSA measurements at 1 year as a surrogate for the surviving fraction of cancer cells as well as combined biochemical + clinical recurrence-free survival (bcRFS), controlling for ADT. RESULTS For the PSA-based end point, the α/β ratio estimate is 7.7 Gy [95% confidence interval (CI): 4.1 to 12.5]. Based on the bcRFS end point, the estimate is 18.0 Gy (95% CI: 8.2 to ∞). CONCLUSION Our model-based estimates of the α/β ratio, which account for the effects of ADT and other important confounders, are higher than some previous estimates. ADVANCES IN KNOWLEDGE Although dose inhomogeneities and other limitations may limit the scope of our findings, the data suggest caution regarding the assumptions of the α/β ratio for prostate cancer in some clinical environments.
Collapse
Affiliation(s)
- Philip S Boonstra
- 1 Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Jeremy M G Taylor
- 1 Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Beata Smolska-Ciszewska
- 2 Radiotherapy Clinic and Teaching Hospital, M. Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Poland
| | - Katarzyna Behrendt
- 2 Radiotherapy Clinic and Teaching Hospital, M. Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Poland
| | - Tomasz Dworzecki
- 2 Radiotherapy Clinic and Teaching Hospital, M. Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Poland
| | - Marzena Gawkowska-Suwinska
- 2 Radiotherapy Clinic and Teaching Hospital, M. Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Poland
| | - Brygida Bialas
- 3 Department of Brachytherapy, M. Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Poland
| | - Rafal Suwinski
- 2 Radiotherapy Clinic and Teaching Hospital, M. Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Poland
| |
Collapse
|
44
|
Crezee H, van Leeuwen CM, Oei AL, Stalpers LJA, Bel A, Franken NA, Kok HP. Thermoradiotherapy planning: Integration in routine clinical practice. Int J Hyperthermia 2015; 32:41-9. [PMID: 26670625 DOI: 10.3109/02656736.2015.1110757] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Planning of combined radiotherapy and hyperthermia treatments should be performed taking the synergistic action between the two modalities into account. This work evaluates the available experimental data on cytotoxicity of combined radiotherapy and hyperthermia treatment and the requirements for integration of hyperthermia and radiotherapy treatment planning into a single planning platform. The underlying synergistic mechanisms of hyperthermia include inhibiting DNA repair, selective killing of radioresistant hypoxic tumour tissue and increased radiosensitivity by enhanced tissue perfusion. Each of these mechanisms displays different dose-effect relations, different optimal time intervals and different optimal sequences between radiotherapy and hyperthermia. Radiosensitisation can be modelled using the linear-quadratic (LQ) model to account for DNA repair inhibition by hyperthermia. In a recent study, an LQ model-based thermoradiotherapy planning (TRTP) system was used to demonstrate that dose escalation by hyperthermia is equivalent to ∼10 Gy for prostate cancer patients treated with radiotherapy. The first step for more reliable TRTP is further expansion of the data set of LQ parameters for normally oxygenated normal and tumour tissue valid over the temperature range used clinically and for the relevant time intervals between radiotherapy and hyperthermia. The next step is to model the effect of hyperthermia in hypoxic tumour cells including the physiological response to hyperthermia and the resulting reoxygenation. Thermoradiotherapy planning is feasible and a necessity for an optimal clinical application of hyperthermia combined with radiotherapy in individual patients.
Collapse
Affiliation(s)
- Hans Crezee
- a Department of Radiation Oncology , Academic Medical Centre , Amsterdam and
| | | | - Arlene L Oei
- a Department of Radiation Oncology , Academic Medical Centre , Amsterdam and.,b Laboratory for Experimental Oncology and Radiobiology , Academic Medical Centre , Amsterdam , The Netherlands
| | - Lukas J A Stalpers
- a Department of Radiation Oncology , Academic Medical Centre , Amsterdam and
| | - Arjan Bel
- a Department of Radiation Oncology , Academic Medical Centre , Amsterdam and
| | - Nicolaas A Franken
- a Department of Radiation Oncology , Academic Medical Centre , Amsterdam and.,b Laboratory for Experimental Oncology and Radiobiology , Academic Medical Centre , Amsterdam , The Netherlands
| | - H Petra Kok
- a Department of Radiation Oncology , Academic Medical Centre , Amsterdam and
| |
Collapse
|
45
|
Chang JH, Gehrke C, Prabhakar R, Gill S, Wada M, Lim Joon D, Khoo V. RADBIOMOD: A simple program for utilising biological modelling in radiotherapy plan evaluation. Phys Med 2015; 32:248-54. [PMID: 26549777 DOI: 10.1016/j.ejmp.2015.10.091] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 10/15/2015] [Accepted: 10/17/2015] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Radiotherapy plan evaluation is currently performed by assessing physical parameters, which has many limitations. Biological modelling can potentially allow plan evaluation that is more reflective of clinical outcomes, however further research is required into this field before it can be used clinically. METHODS A simple program, RADBIOMOD, has been developed using Visual Basic for Applications (VBA) for Microsoft Excel that incorporates multiple different biological models for radiotherapy plan evaluation, including modified Poisson tumour control probability (TCP), modified Zaider-Minerbo TCP, Lyman-Kutcher-Burman normal tissue complication probability (NTCP), equivalent uniform dose (EUD), EUD-based TCP, EUD-based NTCP, and uncomplicated tumour control probability (UTCP). RADBIOMOD was compared to existing biological modelling calculators for 15 sample cases. RESULTS Comparing RADBIOMOD to the existing biological modelling calculators, all models tested had mean absolute errors and root mean square errors less than 1%. CONCLUSIONS RADBIOMOD produces results that are non-significantly different from existing biological modelling calculators for the models tested. It is hoped that this freely available, user-friendly program will aid future research into biological modelling.
Collapse
Affiliation(s)
- Joe H Chang
- Radiation Oncology Centre, Austin Health, Heidelberg, Victoria, Australia; Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; University of Melbourne, Victoria, Australia.
| | - Christopher Gehrke
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Ramachandran Prabhakar
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Suki Gill
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Morikatsu Wada
- Radiation Oncology Centre, Austin Health, Heidelberg, Victoria, Australia
| | - Daryl Lim Joon
- Radiation Oncology Centre, Austin Health, Heidelberg, Victoria, Australia; University of Melbourne, Victoria, Australia
| | - Vincent Khoo
- Radiation Oncology Centre, Austin Health, Heidelberg, Victoria, Australia; University of Melbourne, Victoria, Australia; Department of Clinical Oncology, Royal Marsden Hospital Trust & Institute of Cancer Research, London, UK
| |
Collapse
|
46
|
Akudugu J, Serafin A. Estimation of transition doses for human glioblastoma, neuroblastoma and prostate cell lines using the linear-quadratic formalism. INTERNATIONAL JOURNAL OF CANCER THERAPY AND ONCOLOGY 2015. [DOI: 10.14319/ijcto.33.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
47
|
Liu HX, Du L, Yu W, Cai BN, Xu SP, Xie CB, Ma L. Hypofractionated Helical Tomotherapy for Older Aged Patients With Prostate Cancer: Preliminary Results of a Phase I-II Trial. Technol Cancer Res Treat 2015; 15:546-54. [PMID: 26152749 DOI: 10.1177/1533034615593189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/28/2015] [Indexed: 11/16/2022] Open
Abstract
In our center, the feasibility and related acute toxicities of hypofractionated helical tomotherapy have been evaluated in older aged patients with prostate cancer . Between February 2009 and February 2014, 67 patients (older than 65 years) were enrolled in a prospective phase I-II study (registered number, ChiCTR-ONC-13004037). Patients in cohort 1 (n = 33) and cohort 2 (n = 34) received 76 Gy in 34 fractions (2.25 Gy/F) and 71.6 Gy in 28 fractions (2.65 Gy/F), respectively, to the prostate and seminal vesicles, while 25 patients in cohort 2 also received integrated elective lymph node irradiation (50.4 Gy). All patients were treated with helical tomotherapy, and daily image guidance was performed before each treatment. Acute toxicities were assessed with Radiation Therapy Oncology Group (RTOG)/European Organization for Research on Treatment of Cancer (EORTC) criteria. No significant difference was detected between the 2 cohorts in the incidence of acute toxicities. In cohort 1, the incidences of grade 1 and 2 genitourinary and gastrointestinal toxicities were 45.5% and 45.4%, respectively, and without grade 3 and 4 toxicities. In cohort 2, the incidences of acute grade 1 and 2 genitourinary and gastrointestinal toxicities were 47.1% and 55.9%, respectively, and grade 3 genitourinary toxicity (hematuria) was noted only in 1 patient. No significant difference was detected in the incidence of acute toxicities between the patients receiving integrated elective lymph node irradiation and those receiving irradiation to prostate and seminal vesicle in cohort 2. Univariate and multivariate analyses were performed with clinical parameters. Only the baseline weight was found negatively correlated with genitourinary toxicities at a weak level (relative risk = 0.946, 95% confidence interval 0.896-0.998], P = .043). This study shows that 2 hypofractionation regimens (76 Gy/34F and 71.6 Gy/28F) delivered with HT are well tolerated in older aged patients having prostate cancer without significant difference for acute toxicities between the 2 cohorts. Late toxicities and treatment outcomes for these patients are under investigation.
Collapse
Affiliation(s)
- Hai-Xia Liu
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, China
| | - Lei Du
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, China Department of Radiation Oncology, Hainan Branch of Chinese PLA General Hospital, Sanya, China
| | - Wei Yu
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, China
| | - Bo-Ning Cai
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, China
| | - Shou-Ping Xu
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, China
| | - Chuan-Bin Xie
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, China
| | - Lin Ma
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, China Department of Radiation Oncology, Hainan Branch of Chinese PLA General Hospital, Sanya, China
| |
Collapse
|
48
|
Validation of Perfusion Quantification with 3D Gradient Echo Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using a Blood Pool Contrast Agent in Skeletal Swine Muscle. PLoS One 2015; 10:e0128060. [PMID: 26061498 PMCID: PMC4465215 DOI: 10.1371/journal.pone.0128060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/23/2015] [Indexed: 01/10/2023] Open
Abstract
The purpose of our study was to validate perfusion quantification in a low-perfused tissue by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with shared k-space sampling using a blood pool contrast agent. Perfusion measurements were performed in a total of seven female pigs. An ultrasonic Doppler probe was attached to the right femoral artery to determine total flow in the hind leg musculature. The femoral artery was catheterized for continuous local administration of adenosine to increase blood flow up to four times the baseline level. Three different stable perfusion levels were induced. The MR protocol included a 3D gradient-echo sequence with a temporal resolution of approximately 1.5 seconds. Before each dynamic sequence, static MR images were acquired with flip angles of 5°, 10°, 20°, and 30°. Both static and dynamic images were used to generate relaxation rate and baseline magnetization maps with a flip angle method. 0.1 mL/kg body weight of blood pool contrast medium was injected via a central venous catheter at a flow rate of 5 mL/s. The right hind leg was segmented in 3D into medial, cranial, lateral, and pelvic thigh muscles, lower leg, bones, skin, and fat. The arterial input function (AIF) was measured in the aorta. Perfusion of the different anatomic regions was calculated using a one- and a two-compartment model with delay- and dispersion-corrected AIFs. The F-test for model comparison was used to decide whether to use the results of the one- or two-compartment model fit. Total flow was calculated by integrating volume-weighted perfusion values over the whole measured region. The resulting values of delay, dispersion, blood volume, mean transit time, and flow were all in physiologically and physically reasonable ranges. In 107 of 160 ROIs, the blood signal was separated, using a two-compartment model, into a capillary and an arteriolar signal contribution, decided by the F-test. Overall flow in hind leg muscles, as measured by the ultrasound probe, highly correlated with total flow determined by MRI, R = 0.89 and P = 10−7. Linear regression yielded a slope of 1.2 and a y-axis intercept of 259 mL/min. The mean total volume of the investigated muscle tissue corresponds to an offset perfusion of 4.7mL/(min ⋅ 100cm3). The DCE-MRI technique presented here uses a blood pool contrast medium in combination with a two-compartment tracer kinetic model and allows absolute quantification of low-perfused non-cerebral organs such as muscles.
Collapse
|
49
|
Palvai S, Harrison M, Shibu Thomas S, Hayden K, Green J, Anderson O, Romero L, Lodge R, Burns P, Ahmed I. Timing of High-Dose Rate Brachytherapy With External Beam Radiotherapy in Intermediate and High-Risk Localized Prostate CAncer (THEPCA) Patients and Its Effects on Toxicity and Quality of Life: Protocol of a Randomized Feasibility Trial. JMIR Res Protoc 2015; 4:e49. [PMID: 25926023 PMCID: PMC4430680 DOI: 10.2196/resprot.4462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/08/2015] [Indexed: 11/24/2022] Open
Abstract
Background Prostate cancer is the most common cancer in males in the UK and affects around 105 men for every 100,000. The role of radiotherapy in the management of prostate cancer significantly changed over the last few decades with developments in brachytherapy, external beam radiotherapy (EBRT), intensity-modulated radiotherapy (IMRT), and image-guided radiotherapy (IGRT). One of the challenging factors of radiotherapy treatment of localized prostate cancer is the development of acute and late genitourinary and gastrointestinal toxicities.
The recent European guidelines suggest that there is no consensus regarding the timing of high-dose rate (HDR) brachytherapy and EBRT. The schedules vary in different institutions where an HDR boost can be given either before or after EBRT. Few centers deliver HDR in between the fractions of EBRT. Objective Assessment of acute genitourinary and gastrointestinal toxicities at various time points to better understand if the order in which treatment modality is delivered (ie, HDR brachytherapy or EBRT first) has an effect on the toxicity profile. Methods Timing of HDR brachytherapy with EBRT in Prostate CAncer (THEPCA) is a single-center, open, randomized controlled feasibility trial in patients with intermediate and high-risk localized prostate cancer.
A group of 50 patients aged 18 years old and over with histological diagnosis of prostate cancer (stages T1b-T3BNOMO), will be randomized to one of two treatment arms (ratio 1:1), following explanation of the study and informed consent. Patients in both arms of the study will be treated with HDR brachytherapy and EBRT, however, the order in which they receive the treatments will vary. In Arm A, patients will receive HDR brachytherapy before EBRT. In Arm B (control arm), patients will receive EBRT before HDR brachytherapy.
Study outcomes will look at prospective assessment of genitourinary and gastrointestinal toxicities. The primary endpoint will be grade 3 genitourinary toxicity and the secondary endpoints will be all other grades of genitourinary toxicities (grades 1 and 2), gastrointestinal toxicities (grades 1 to 4), prostate-specific antigen (PSA) recurrence-free survival, overall survival, and quality of life. Results Results from this feasibility trial will be available in mid-2016. Conclusions If the results from this feasibility trial show evidence that the sequence of treatment modality does affect the patients’ toxicity profiles, then funding would be sought to conduct a large, multicenter, randomized controlled trial. Trial Registration International Standard Randomized Controlled Trial Number (ISRCTN): 15835424; http://www.isrctn.com/ISRCTN15835424 (Archived by WebCite at http://www.webcitation.org/6Xz7jfg1u).
Collapse
Affiliation(s)
- Sreekanth Palvai
- Southend University Hospital National Health Service Foundation Trust, National Health Service, Essex, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Nahum AE. The radiobiology of hypofractionation. Clin Oncol (R Coll Radiol) 2015; 27:260-9. [PMID: 25797579 DOI: 10.1016/j.clon.2015.02.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/05/2015] [Indexed: 12/25/2022]
Abstract
If the α/β ratio is high (e.g. 10 Gy) for tumour clonogen killing, but low (e.g. 3 Gy) for late normal tissue complications, then delivering external beam radiotherapy in a large number (20-30) of small (≈2 Gy) dose fractions should yield the highest 'therapeutic ratio'; this is demonstrated via the linear-quadratic model of cell killing. However, this 'conventional wisdom' is increasingly being challenged, partly by the success of stereotactic body radiotherapy (SBRT) or stereotactic ablative radiotherapy (SABR) extreme hypofractionation regimens of three to five large fractions for early stage non-small cell lung cancer and partly by indications that for certain tumours (prostate, breast) the α/β ratio may be of the same order or even lower than that characterising late complications. It is shown how highly conformal dose delivery combined with quasi-parallel normal tissue behaviour (n close to 1) enables 'safe' hypofractionation; this can be predicted by the (α/β)eff concept for normal tissues. Recent analyses of the clinical outcomes of non-small cell lung cancer radiotherapy covering 'conventional' hyper- to extreme hypofractionation (stereotactic ablative radiotherapy) regimens are consistent with linear-quadratic radiobiology, even at the largest fraction sizes, despite there being theoretical reasons to expect 'LQ violation' above a certain dose. Impairment of re-oxygenation between fractions and the very high (α/β) for hypoxic cells can complicate the picture regarding the analysis of clinical outcomes; it has also been suggested that vascular damage may play a role for very large dose fractions. Finally, the link between high values of (α/β)eff and normal-tissue sparing for quasi-parallel normal tissues, thereby favouring hypofractionation, may be particularly important for proton therapy, but more generally, improved conformality, achieved by whatever technique, can be translated into individualisation of both prescription dose and fraction number via the 'isotoxic' (iso-normal tissue complication probability) concept.
Collapse
|