1
|
McDonald BA, Zachiu C, Christodouleas J, Naser MA, Ruschin M, Sonke JJ, Thorwarth D, Létourneau D, Tyagi N, Tadic T, Yang J, Li XA, Bernchou U, Hyer DE, Snyder JE, Bubula-Rehm E, Fuller CD, Brock KK. Dose accumulation for MR-guided adaptive radiotherapy: From practical considerations to state-of-the-art clinical implementation. Front Oncol 2023; 12:1086258. [PMID: 36776378 PMCID: PMC9909539 DOI: 10.3389/fonc.2022.1086258] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/21/2022] [Indexed: 01/27/2023] Open
Abstract
MRI-linear accelerator (MR-linac) devices have been introduced into clinical practice in recent years and have enabled MR-guided adaptive radiation therapy (MRgART). However, by accounting for anatomical changes throughout radiation therapy (RT) and delivering different treatment plans at each fraction, adaptive radiation therapy (ART) highlights several challenges in terms of calculating the total delivered dose. Dose accumulation strategies-which typically involve deformable image registration between planning images, deformable dose mapping, and voxel-wise dose summation-can be employed for ART to estimate the delivered dose. In MRgART, plan adaptation on MRI instead of CT necessitates additional considerations in the dose accumulation process because MRI pixel values do not contain the quantitative information used for dose calculation. In this review, we discuss considerations for dose accumulation specific to MRgART and in relation to current MR-linac clinical workflows. We present a general dose accumulation framework for MRgART and discuss relevant quality assurance criteria. Finally, we highlight the clinical importance of dose accumulation in the ART era as well as the possible ways in which dose accumulation can transform clinical practice and improve our ability to deliver personalized RT.
Collapse
Affiliation(s)
- Brigid A. McDonald
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Cornel Zachiu
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Mohamed A. Naser
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mark Ruschin
- Department of Radiation Oncology, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Jan-Jakob Sonke
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Daniel Létourneau
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Neelam Tyagi
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, United States
| | - Tony Tadic
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Jinzhong Yang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - X. Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Uffe Bernchou
- Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Daniel E. Hyer
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Jeffrey E. Snyder
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | | | - Clifton D. Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kristy K. Brock
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
2
|
Kok HP, van Rhoon GC, Herrera TD, Overgaard J, Crezee J. Biological modeling in thermoradiotherapy: present status and ongoing developments toward routine clinical use. Int J Hyperthermia 2022; 39:1126-1140. [PMID: 35998930 DOI: 10.1080/02656736.2022.2113826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
Biological modeling for anti-cancer treatments using mathematical models can be very supportive in gaining more insight into dynamic processes responsible for cellular response to treatment, and predicting, evaluating and optimizing therapeutic effects of treatment. This review presents an overview of the current status of biological modeling for hyperthermia in combination with radiotherapy (thermoradiotherapy). Various distinct models have been proposed in the literature, with varying complexity; initially aiming to model the effect of hyperthermia alone, and later on to predict the effect of the combined thermoradiotherapy treatment. Most commonly used models are based on an extension of the linear-quadratic (LQ)-model enabling an easy translation to radiotherapy where the LQ model is widely used. Basic predictions of cell survival have further progressed toward 3 D equivalent dose predictions, i.e., the radiation dose that would be needed without hyperthermia to achieve the same biological effect as the combined thermoradiotherapy treatment. This approach, with the use of temperature-dependent model parameters, allows theoretical evaluation of the effectiveness of different treatment strategies in individual patients, as well as in patient cohorts. This review discusses the significant progress that has been made in biological modeling for hyperthermia combined with radiotherapy. In the future, when adequate temperature-dependent LQ-parameters will be available for a large number of tumor sites and normal tissues, biological modeling can be expected to be of great clinical importance to further optimize combined treatments, optimize clinical protocols and guide further clinical studies.
Collapse
Affiliation(s)
- H P Kok
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - G C van Rhoon
- Department of Radiation Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Radiation Science and Technology, Delft University of Technology, Delft, The Netherlands
| | - T D Herrera
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - J Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - J Crezee
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Gago-Arias A, Neira S, Pombar M, Gómez-Caamaño A, Pardo-Montero J. Evaluation of indirect damage and damage saturation effects in dose-response curves of hypofractionated radiotherapy of early-stage NSCLC and brain metastases. Radiother Oncol 2021; 161:1-8. [PMID: 34015386 DOI: 10.1016/j.radonc.2021.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE To investigate the possible contribution of indirect damage and damage saturation to tumour control obtained with SBRT/SRS treatments for early-stage NSCLC and brain metastases. METHODS AND MATERIALS We have constructed a dataset of early-stage NSCLC and brain metastases dose-response. These data were fitted to models based on the linear-quadratic (LQ), the linear-quadratic-linear (LQL), and phenomenological modifications of the LQ-model to account for indirect cell damage. We use the Akaike-Information-Criterion formalism to compare performance, and studied the stability of the results with changes in fitting parameters and perturbations on dose/TCP values. RESULTS In NSCLC, a modified LQ-model with a beta-term increasing with dose yields the best-fits for α/β = 10 Gy. Only the inclusion of very fast accelerated proliferation or low α/β values can eliminate such superiority. In brain, the LQL model yields the best-fits, and the ranking is not affected by variations of fitting parameters or dose/TCP perturbations. CONCLUSIONS For α/β = 10 Gy, a modified LQ-model with a beta-term increasing with dose provides better fits to NSCLC dose-response curves. For brain metastases, the LQL provides the best fit. This might be interpreted as a hint of indirect damage in NSCLC, and damage saturation in brain metastases. The results for NSCLC are strongly dependent on the value of α/β and may require further investigation, while those for brain seem to be clearly significant. Our results can assist in the design of improved radiotherapy for NSCLC and brain metastases, aiming at avoiding over/under-treatment.
Collapse
Affiliation(s)
- Araceli Gago-Arias
- Group of Medical Physics and Biomathematics, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain; Department of Medical Physics, Complexo Hospitalario Universitario de Santiago de Compostela, Spain; Institute of Physics, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile.
| | - Sara Neira
- Group of Medical Physics and Biomathematics, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Miguel Pombar
- Department of Medical Physics, Complexo Hospitalario Universitario de Santiago de Compostela, Spain; Group of Molecular Imaging and Oncology, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Antonio Gómez-Caamaño
- Group of Molecular Imaging and Oncology, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain; Department of Radiotherapy, Complexo Hospitalario Universitario de Santiago de Compostela, Spain
| | - Juan Pardo-Montero
- Group of Medical Physics and Biomathematics, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain; Department of Medical Physics, Complexo Hospitalario Universitario de Santiago de Compostela, Spain.
| |
Collapse
|
4
|
Kuperman VY, Lubich LM. Impact of target dose inhomogeneity on BED and EUD in lung SBRT. Phys Med Biol 2021; 66:01NT02. [PMID: 33576337 DOI: 10.1088/1361-6560/abd0d1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE To evaluate the effect of dose heterogeneity in the treatment target on biologically effective dose (BED) for frequently used hypofractionation regimens in stereotactic body radiation therapy (SBRT). METHODS In the case of non-uniform target dose, BED in the planning target volume (PTV) is determined by using the linear-quadratic model. An expression for BED is obtained for an arbitrary dose distribution in the PTV in the case of small variance of the target dose. Another analytical expression for BED is obtained by assuming a Gaussian dose distribution in the target. RESULTS Analytical expressions for BED as a function of the variance of the target dose have been derived. It is shown that a relatively small dose inhomogeneity (<5%-6%) can cause a significant reduction (i.e. >10%) in the corresponding BED and equivalent uniform dose (EUD) compared to the case of uniform target dose. CONCLUSIONS Small variations in the absorbed dose can significantly reduce BED and EUD in the PTV. The effect of dose non-uniformity on BED increases with increasing dose per fraction. The observed reduction in BED compared to that for uniform target dose can be several times greater for SBRT than for standard fractionation with dose per fraction varying between 1.8 and 2 Gy.
Collapse
Affiliation(s)
- Vadim Y Kuperman
- Medical Physics Support, Inc., Tampa, FL 33634, United States of America
| | | |
Collapse
|
5
|
Dahlman EL, Watanabe Y. Evaluating the biologically effective dose (BED) concept using a dynamic tumor simulation model. Med Phys 2020; 47:3710-3720. [DOI: 10.1002/mp.14228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 11/10/2022] Open
Affiliation(s)
- Erik L. Dahlman
- Department of Radiation Oncology University of Minnesota MMC 494 Mayo 8494A 420 Delaware St, SE Minneapolis MN55455USA
| | - Yoichi Watanabe
- Department of Radiation Oncology University of Minnesota MMC 494 Mayo 8494A 420 Delaware St, SE Minneapolis MN55455USA
| |
Collapse
|
6
|
Sánchez-Nieto B, Romero-Expósito M, Terrón J, Irazola L, García Hernández M, Mateos J, Roselló J, Planes D, Paiusco M, Sánchez-Doblado F. External photon radiation treatment for prostate cancer: Uncomplicated and cancer-free control probability assessment of 36 plans. Phys Med 2019; 66:88-96. [DOI: 10.1016/j.ejmp.2019.09.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/18/2019] [Accepted: 09/11/2019] [Indexed: 10/25/2022] Open
|
7
|
Modelling the effect of spread in radiosensitivity parameters and repopulation rate on the probability of tumour control. Phys Med 2019; 63:79-86. [DOI: 10.1016/j.ejmp.2019.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 05/04/2019] [Accepted: 05/09/2019] [Indexed: 11/17/2022] Open
|
8
|
Sakama M, Kanematsu N. An evaluation method of clinical impact with setup, range, and radiosensitivity uncertainties in fractionated carbon-ion therapy. Phys Med Biol 2018; 63:135003. [PMID: 29863484 DOI: 10.1088/1361-6560/aaca19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In light ion therapy, the dose concentration is highly sensitive to setup and range errors. Here we propose a method for evaluating the effects of these errors by using the correlation between fractions on tumour control probability (TCP) in carbon-ion therapy. This method incorporates the concept of equivalent stochastic dose (Cranmer-Sargison and Zavgorodni 2005 Phys. Med. Biol. 50 4097-109), which was defined as a dose that gives the mean expected survival fraction (SF) for the stochastically variable dose. The mean expected SFs were calculated while considering the correlation between fractions for setup and range errors. By using this SF, equivalent stochastic clinical doses (ESCD), which are weighted by relative biological effectiveness, of lung and prostate cases with varying errors were derived. To account for spatial dose heterogeneity, equivalent uniform stochastic clinical doses (EUSCD) were obtained by using the mean expected SF in the volume of interest. TCP curves were calculated for each assumed error considering inter-patient sensitivity variation with a fractionation effect. ESCD distributions, EUSCD, and TCP curves were affected by the inter-fraction correlation and the contribution of setup and range errors. Irradiated areas that could be affected by these errors can be visualized quantitatively by using the ESCD distribution. TCP curves for the errors of various conditions converged around the TCP curve in nominal conditions by using the EUSCD. EUSCD correlated well with TCP in setup and range errors when the errors were not large and was comparatively stably insensitive to uncertain biological parameters. The proposed evaluation method with EUSCD and TCP calculations will be useful to indicate tumour doses to improve realistic dose distributions in carbon-ion therapy.
Collapse
Affiliation(s)
- Makoto Sakama
- Medical Physics Section, National Institute of Radiological Sciences Hospital, QST, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | | |
Collapse
|
9
|
Gago-Arias A, Sánchez-Nieto B, Espinoza I, Karger CP, Pardo-Montero J. Impact of different biologically-adapted radiotherapy strategies on tumor control evaluated with a tumor response model. PLoS One 2018; 13:e0196310. [PMID: 29698534 PMCID: PMC5919644 DOI: 10.1371/journal.pone.0196310] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/10/2018] [Indexed: 11/26/2022] Open
Abstract
Motivated by the capabilities of modern radiotherapy techniques and by the recent developments of functional imaging techniques, dose painting by numbers (DPBN) was proposed to treat tumors with heterogeneous biological characteristics. This work studies different DPBN optimization techniques for virtual head and neck tumors assessing tumor response in terms of cell survival and tumor control probability with a previously published tumor response model (TRM). Uniform doses of 2 Gy are redistributed according to the microscopic oxygen distribution and the density distribution of tumor cells in four virtual tumors with different biological characteristics. In addition, two different optimization objective functions are investigated, which: i) minimize tumor cell survival (OFsurv) or; ii) maximize the homogeneity of the density of surviving tumor cells (OFstd). Several adaptive schemes, ranging from single to daily dose optimization, are studied and the treatment response is compared to that of the uniform dose. The results show that the benefit of DPBN treatments depends on the tumor reoxygenation capability, which strongly differed among the set of virtual tumors investigated. The difference between daily (fraction by fraction) and three weekly optimizations (at the beginning of weeks 1, 3 and 4) was found to be small, and higher benefit was observed for the treatments optimized using OFsurv. This in silico study corroborates the hypothesis that DPBN may be beneficial for treatments of tumors which show reoxygenation during treatment, and that a few optimizations may be sufficient to achieve this therapeutic benefit.
Collapse
Affiliation(s)
- Araceli Gago-Arias
- Instituto de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail:
| | | | - Ignacio Espinoza
- Instituto de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christian P. Karger
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Juan Pardo-Montero
- Grupo de Imaxe Molecular, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
- Servizo de Radiofísica e Protección Radiolóxica, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
10
|
A novel voxel based homogeneity index: Rationale and clinical implications for whole-brain radiation therapy. Radiother Oncol 2018; 128:229-235. [PMID: 29699833 DOI: 10.1016/j.radonc.2018.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 03/30/2018] [Accepted: 04/06/2018] [Indexed: 10/17/2022]
Abstract
PURPOSE OR OBJECTIVE A homogeneity index (HI) measures the uniformity of a dose distribution within a given target volume. Traditional HIs only use a limited number of dose-volume histogram data-points for calculation. A voxel-based homogeneity index (VHI) is proposed which utilizes the entire information of the three-dimensional dose distribution. We compared the VHI with existing HIs and analyzed if VHI results were associated with treatment outcomes in patients who underwent therapeutic WBRT. MATERIAL AND METHODS The VHI analyzes deviations from the prescribed dose in each voxel of the target volume. We retrospectively analyzed WBRT treatment plans. Overall survival (OS), CNS progression-free-survival (CNS PFS) and hazard rates were compared for tertile-split levels of the VHI using the Kaplan-Meier methods and multivariable Cox-regression analysis. RESULTS WBRT treatment plans (n = 770) were used for HIs comparison. OS and CNS PFS were assessed for 430 patients. The VHI showed a higher sensitivity for dose inhomogeneities. Lower OS and CNS PFS were observed for higher levels of VHIUnderdosage, particularly in patients with good performance status (KPS >70%) (OS: Log-rank P = .007, HR = 1.37 95%CI [1.09, 1.72]). CONCLUSION Higher sensitivity and feasibility to assess treatment plan quality using the VHI were demonstrated. First clinical implications were found in terms of compromised OS/CNS PFS for WBRT with radiation underdosage.
Collapse
|
11
|
Lin T, Hossain M, Fan J, Ma CMC. When and how to treat an IMRT patient on a second accelerator without replanning? Med Dosim 2017; 43:334-343. [PMID: 29287919 DOI: 10.1016/j.meddos.2017.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/06/2017] [Indexed: 10/18/2022]
Abstract
When a linear accelerator is unavailable for treatment, a clinical decision is imminent regarding whether a patient should be treated on a linear accelerator other than the machine the patient was scheduled on, or whether treatment should be postponed until the original Linac becomes available. This work investigates the feasibility of switching patients to different accelerators for intensity-modulated radiation therapy (IMRT). We have performed Monte Carlo simulations of photon beams from different Linac models and vendors. Prostate and head and neck (H&N) treatment plans for Siemens Primus, Primart, and Varian 21EX accelerators are studied in this work. Dose distributions for given plans are recalculated using different beam data with the same nominal energy from different Linacs. We have compared dose-volume histograms (DVHs) and the maximum, the minimum, and the mean doses to the target and critical structures because of switching accelerators. In the process of switching a treatment plan to a different accelerator, issues exist, including optimum penumbra compensation, dose distribution at the boundary of target and critical structures, and multileaf collimator (MLC) leaf-width effects, which need to be considered and verified with measurements. Our Monte Carlo simulation results confirm that, for the cases we tested, the dose received by 95% of the planning target volume differs by 0.2% to 1.5% between Siemens Primus and Varian 21EX Linacs. The discrepancy is within our clinical acceptance criteria of 3% for IMRT treatments. In making the final decision on whether to switch machines or not, the tumor control probabilities (TCPs) based on a linear-quadratic model are compared. Based on the analyses performed in this work, it is therapeutically more beneficial to switch a patient to a different machine than to postpone a treatment until the original machine is available, especially for fast-growing tumors such as H&N cancers.
Collapse
Affiliation(s)
- Teh Lin
- Department of Radiation Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| | - Murshed Hossain
- Department of Radiation Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Jiajin Fan
- Department of Radiation Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - C-M Charlie Ma
- Department of Radiation Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| |
Collapse
|
12
|
Church C, Mawko G, Archambault JP, Lewandowski R, Liu D, Kehoe S, Boyd D, Abraham R, Syme A. Absorbed dose kernel and self-shielding calculations for a novel radiopaque glass microsphere for transarterial radioembolization. Med Phys 2017; 45:934-942. [PMID: 29206288 DOI: 10.1002/mp.12717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Radiopaque microspheres may provide intraprocedural and postprocedural feedback during transarterial radioembolization (TARE). Furthermore, the potential to use higher resolution x-ray imaging techniques as opposed to nuclear medicine imaging suggests that significant improvements in the accuracy and precision of radiation dosimetry calculations could be realized for this type of therapy. This study investigates the absorbed dose kernel for novel radiopaque microspheres including contributions of both short and long-lived contaminant radionuclides while concurrently quantifying the self-shielding of the glass network. METHODS Monte Carlo simulations using EGSnrc were performed to determine the dose kernels for all monoenergetic electron emissions and all beta spectra for radionuclides reported in a neutron activation study of the microspheres. Simulations were benchmarked against an accepted 90 Y dose point kernel. Self-shielding was quantified for the microspheres by simulating an isotropically emitting, uniformly distributed source, in glass and in water. The ratio of the absorbed doses was scored as a function of distance from a microsphere. The absorbed dose kernel for the microspheres was calculated for (a) two bead formulations following (b) two different durations of neutron activation, at (c) various time points following activation. RESULTS Self-shielding varies with time postremoval from the reactor. At early time points, it is less pronounced due to the higher energies of the emissions. It is on the order of 0.4-2.8% at a radial distance of 5.43 mm with increased size from 10 to 50 μm in diameter during the time that the microspheres would be administered to a patient. At long time points, self-shielding is more pronounced and can reach values in excess of 20% near the end of the range of the emissions. Absorbed dose kernels for 90 Y, 90m Y, 85m Sr, 85 Sr, 87m Sr, 89 Sr, 70 Ga, 72 Ga, and 31 Si are presented and used to determine an overall kernel for the microspheres based on weighted activities. The shapes of the absorbed dose kernels are dominated at short times postactivation by the contributions of 70 Ga and 72 Ga. Following decay of the short-lived contaminants, the absorbed dose kernel is effectively that of 90 Y. After approximately 1000 h postactivation, the contributions of 85 Sr and 89 Sr become increasingly dominant, though the absorbed dose-rate around the beads drops by roughly four orders of magnitude. CONCLUSIONS The introduction of high atomic number elements for the purpose of increasing radiopacity necessarily leads to the production of radionuclides other than 90 Y in the microspheres. Most of the radionuclides in this study are short-lived and are likely not of any significant concern for this therapeutic agent. The presence of small quantities of longer lived radionuclides will change the shape of the absorbed dose kernel around a microsphere at long time points postadministration when activity levels are significantly reduced.
Collapse
Affiliation(s)
- Cody Church
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - George Mawko
- Department of Diagnostic Imaging, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Medical Physics, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | | | - Robert Lewandowski
- Interventional Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - David Liu
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Sharon Kehoe
- ABK Biomedical Inc., Halifax, Nova Scotia, Canada.,Department of Applied Oral Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Daniel Boyd
- ABK Biomedical Inc., Halifax, Nova Scotia, Canada.,Department of Applied Oral Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert Abraham
- Department of Diagnostic Imaging, Dalhousie University, Halifax, Nova Scotia, Canada.,ABK Biomedical Inc., Halifax, Nova Scotia, Canada
| | - Alasdair Syme
- Department of Medical Physics, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada.,Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
13
|
Sánchez-Nieto B, Romero-Expósito M, Terrón JA, Sánchez-Doblado F. Uncomplicated and Cancer-Free Control Probability (UCFCP): A new integral approach to treatment plan optimization in photon radiation therapy. Phys Med 2017; 42:277-284. [PMID: 28392313 DOI: 10.1016/j.ejmp.2017.03.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/24/2017] [Accepted: 03/29/2017] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Biological treatment plan evaluation does not currently consider second cancer induction from peripheral doses associated to photon radiotherapy. The aim is to propose a methodology to characterize the therapeutic window by means of an integral radiobiological approach, which considers not only Tumour Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) but also Secondary Cancer Probability (SCP). METHODS Uncomplicated and Cancer-Free Control Probability (UCFCP) function has been proposed assuming a statistically uncorrelated response for tumour and normal tissues. The Poisson's and Lyman's models were chosen for TCP and NTCP calculations, respectively. SCP was modelled as the summation of risks associated to photon and neutron irradiation of radiosensitive organs. For the medium (>4Gy) and low dose regions, mechanistic and linear secondary cancer risks models were used, respectively. Two conformal and intensity-modulated prostate plans at 15MV (same prescription dose) were selected to illustrate the UCFCP features. RESULTS UCFCP exhibits a bell-shaped behaviour with its maximum inside the therapeutic window. SCP values were not different for the plans analysed (∼2.4%) and agreed with published epidemiological results. Therefore, main differences in UCFCP came from differences in rectal NTCP (18% vs 9% for 3D-CRT and IMRT, respectively). According to UCFCP values, the evaluated IMRT plan ranked first. CONCLUSIONS The level of SCP was found to be similar to that of NTCP complications which reinforces the importance of considering second cancer risks as part of the possible late sequelae due to treatment. Previous concerns about the effect of peripheral radiation, especially neutrons, in the induction of secondary cancers can be evaluated by quantifying the UCFCP.
Collapse
Affiliation(s)
- Beatriz Sánchez-Nieto
- Instituto de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4880, Macul, Santiago, Chile.
| | - Maite Romero-Expósito
- Departament de Física, Universitat Autònoma de Barcelona, Edifici C, Campus UAB E-08193, Bellaterra, Spain.
| | - José A Terrón
- Servicio de Radiofísica, Hospital Universitario Virgen Macarena, Av. Doctor Fedriani, 3, 41009 Sevilla, Spain.
| | - Francisco Sánchez-Doblado
- Servicio de Radiofísica, Hospital Universitario Virgen Macarena, Av. Doctor Fedriani, 3, 41009 Sevilla, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Av. Doctor Fedriani S/N, 41009 Sevilla, Spain.
| |
Collapse
|
14
|
Oku Y, Arimura H, Nguyen TTT, Hiraki Y, Toyota M, Saigo Y, Yoshiura T, Hirata H. Investigation of whether in-room CT-based adaptive intracavitary brachytherapy for uterine cervical cancer is robust against interfractional location variations of organs and/or applicators. JOURNAL OF RADIATION RESEARCH 2016; 57:677-683. [PMID: 27296250 PMCID: PMC5137287 DOI: 10.1093/jrr/rrw043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/03/2016] [Accepted: 03/23/2016] [Indexed: 06/06/2023]
Abstract
This study investigates whether in-room computed tomography (CT)-based adaptive treatment planning (ATP) is robust against interfractional location variations, namely, interfractional organ motions and/or applicator displacements, in 3D intracavitary brachytherapy (ICBT) for uterine cervical cancer. In ATP, the radiation treatment plans, which have been designed based on planning CT images (and/or MR images) acquired just before the treatments, are adaptively applied for each fraction, taking into account the interfractional location variations. 2D and 3D plans with ATP for 14 patients were simulated for 56 fractions at a prescribed dose of 600 cGy per fraction. The standard deviations (SDs) of location displacements (interfractional location variations) of the target and organs at risk (OARs) with 3D ATP were significantly smaller than those with 2D ATP (P < 0.05). The homogeneity index (HI), conformity index (CI) and tumor control probability (TCP) in 3D ATP were significantly higher for high-risk clinical target volumes than those in 2D ATP. The SDs of the HI, CI, TCP, bladder and rectum D2cc, and the bladder and rectum normal tissue complication probability (NTCP) in 3D ATP were significantly smaller than those in 2D ATP. The results of this study suggest that the interfractional location variations give smaller impacts on the planning evaluation indices in 3D ATP than in 2D ATP. Therefore, the 3D plans with ATP are expected to be robust against interfractional location variations in each treatment fraction.
Collapse
Affiliation(s)
- Yoshifumi Oku
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hidetaka Arimura
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tran Thi Thao Nguyen
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshiyuki Hiraki
- Department of Radiation Oncology, Fujimoto General Hospital, 17-1 Hayasuzucho, Miyakonojo, Miyazaki 885-0055, Japan
| | - Masahiko Toyota
- Division of Radiology, Department of Clinical Technology, Kagoshima University Hospital, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima 890-0075, Japan
| | - Yasumasa Saigo
- Division of Radiology, Department of Clinical Technology, Kagoshima University Hospital, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima 890-0075, Japan
| | - Takashi Yoshiura
- Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima 890-0075, Japan
| | - Hideki Hirata
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
15
|
Impact of microscopic disease extension, extra-CTV tumour islets, incidental dose and dose conformity on tumour control probability. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2016; 39:493-500. [PMID: 27168065 DOI: 10.1007/s13246-016-0446-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
The impact of microscopic disease extension (MDE), extra-CTV tumour islets (TIs), incidental dose and dose conformity on tumour control probability (TCP) is analyzed using insilico simulations in this study. MDE in the region in between GTV and CTV is simulated inclusive of geometric uncertainties (GE) using spherical targets and spherical dose distribution. To study the effect of incidental dose on TIs and the effect of dose-response curve (DRC) on tumour control, islets were randomly distributed and TCP was calculated for various dose levels by rescaling the dose. Further, the impact of dose conformity on required PTV margins is also studied. The required PTV margins are ~2 mm lesser than assuming a uniform clonogen density if an exponential clonogen density fall off in the GTV-CTV is assumed. However, margins are almost equal if GE is higher in both cases. This shows that GE has a profound impact on margins. The effect of TIs showed a bi-phasic relation with increasing dose, indicating that patients with islets not in the beam paths do not benefit from dose escalation. Increasing dose conformity is also found to have considerable effect on TCP loss especially for larger GE. Further, smaller margins in IGRT should be used with caution where uncertainty in CTV definition is of concern.
Collapse
|
16
|
Gul A, Liaquat M, Kanwal A, Abbasi NZ, Kakakhel MB, Ali A. Assessment of dose error due to nylon mesh of treatment couch. Phys Med 2015; 31:1080-1084. [DOI: 10.1016/j.ejmp.2015.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 08/02/2015] [Accepted: 08/10/2015] [Indexed: 11/28/2022] Open
|
17
|
Xu H, Vile DJ, Sharma M, Gordon JJ, Siebers JV. Coverage-based treatment planning to accommodate deformable organ variations in prostate cancer treatment. Med Phys 2015; 41:101705. [PMID: 25281944 DOI: 10.1118/1.4894701] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To compare two coverage-based planning (CP) techniques with standard fixed margin-based planning (FM), considering the dosimetric impact of interfraction deformable organ motion exclusively for high-risk prostate treatments. METHODS Nineteen prostate cancer patients with 8-13 prostate CT images of each patient were used to model patient-specific interfraction deformable organ changes. The model was based on the principal component analysis (PCA) method and was used to predict the patient geometries for virtual treatment course simulation. For each patient, an IMRT plan using zero margin on target structures, prostate (CTVprostate) and seminal vesicles (CTVSV), were created, then evaluated by simulating 1000 30-fraction virtual treatment courses. Each fraction was prostate centroid aligned. Patients whose D98 failed to achieve 95% coverage probability objective D98,95 ≥ 78 Gy (CTVprostate) or D98,95 ≥ 66 Gy (CTVSV) were replanned using planning techniques: (1) FM (PTVprostate = CTVprostate + 5 mm, PTVSV = CTVSV + 8 mm), (2) CPOM which optimized uniform PTV margins for CTVprostate and CTVSV to meet the coverage probability objective, and (3) CPCOP which directly optimized coverage probability objectives for all structures of interest. These plans were intercompared by computing probabilistic metrics, including 5% and 95% percentile DVHs (pDVH) and TCP/NTCP distributions. RESULTS All patients were replanned using FM and two CP techniques. The selected margins used in FM failed to ensure target coverage for 8/19 patients. Twelve CPOM plans and seven CPCOP plans were favored over the other plans by achieving desirable D98,95 while sparing more normal tissues. CONCLUSIONS Coverage-based treatment planning techniques can produce better plans than FM, while relative advantages of CPOM and CPCOP are patient-specific.
Collapse
Affiliation(s)
- Huijun Xu
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 and Department of Radiation Oncology, University of Maryland, Baltimore, Maryland 21201
| | - Douglas J Vile
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Manju Sharma
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298
| | - J James Gordon
- Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan 48202
| | - Jeffrey V Siebers
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 and Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
18
|
Hirashima H, Umezu Y, Fukunaga J, Hirose T, Nagata H, Mohri I, Nakamura K, Hirata H. [Effect of prostate matching on dose distribution by on board imager kV-CBCT image]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2015; 71:222-229. [PMID: 25797665 DOI: 10.6009/jjrt.2015_jsrt_71.3.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
PURPOSE The purpose of this study was to evaluate the effect of prostate matching on dose distribution using kilovolt cone beam computed tomography (kV-CBCT) with image guided radiation therapy for prostate cancer. MATERIALS AND METHOD Sixteen prostate cancer patients were treated with intensity modulated radiation therapy to 76 Gy at 2 Gy per fraction in 38 fractions. Daily target localization was performed using "bone matching" and "prostate matching" based on planning CT and kV-CBCT. Prostate dose coverage was assessed by the proportion of the CTV fully encompassed by 95%, 98% isodose lines, and mean dose lines. As for rectal and bladder, dose coverage was assessed by volumes which received 40 Gy, 60 Gy, 70 Gy, 75 Gy and mean dose at treatment. And we calculated the tumor control probability (TCP) and normal tissue complication probability (NTCP), accordingly. They were compared to the bone and prostate matching image. RESULT Our study found an improvement in dose usage in CTV and bladder which enabled us to compare the bone matching image and the prostate matching image. However, it did not improve dose usage in the rectal. Then we chose patients who were a large shift from bone matching image to prostate matching image. As a result, rectal dose and NTCP were reduced. DISCUSSION Prostate matching is useful and safe when compared to bone matching because of improving CTV dose usage and reducing dose rectal and bladder.
Collapse
Affiliation(s)
- Hideaki Hirashima
- Division of Medical Quantum Science, Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Selvaraj J, Uzan J, Baker C, Nahum A. 4D radiobiological modelling of the interplay effect in conventionally and hypofractionated lung tumour IMRT. Br J Radiol 2014; 88:20140372. [PMID: 25251400 DOI: 10.1259/bjr.20140372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To study the impact of the interplay between respiration-induced tumour motion and multileaf collimator leaf movements in intensity-modulated radiotherapy (IMRT) as a function of number of fractions, dose rate on population mean tumour control probability ([Formula: see text]) using an in-house developed dose model. METHODS Delivered dose was accumulated in a voxel-by-voxel basis inclusive of tumour motion over the course of treatment. The effect of interplay on dose and [Formula: see text] was studied for conventionally and hypofractionated treatments using digital imaging and communications in medicine data sets. Moreover, the effect of dose rate on interplay was also studied for single-fraction treatments. Simulations were repeated several times to obtain [Formula: see text] for each plan. RESULTS The average variation observed in mean dose to the target volumes were -0.76% ± 0.36% for the 20-fraction treatment and -0.26% ± 0.68% and -1.05% ± 0.98% for the three- and single-fraction treatments, respectively. For the 20-fraction treatment, the drop in [Formula: see text] was -1.05% ± 0.39%, whereas for the three- and single-fraction treatments, it was -2.80% ± 1.68% and -4.00% ± 2.84%, respectively. By reducing the dose rate from 600 to 300 MU min(-1) for the single-fraction treatments, the drop in [Formula: see text] was reduced by approximately 1.5%. CONCLUSION The effect of interplay on [Formula: see text] is negligible for conventionally fractionated treatments, whereas considerable drop in [Formula: see text] is observed for the three- and single-fraction treatments. Reduced dose rate could be used in hypofractionated treatments to reduce the interplay effect. ADVANCES IN KNOWLEDGE A novel in silico dose model is presented to determine the impact of interplay effect in IMRT treatments on [Formula: see text].
Collapse
Affiliation(s)
- J Selvaraj
- The Clatterbridge Cancer Centre NHS Foundation Trust, Bebington, Wirral, UK
| | | | | | | |
Collapse
|
20
|
Impact of dose and sensitivity heterogeneity on TCP. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2014; 2014:182935. [PMID: 24899915 PMCID: PMC4036432 DOI: 10.1155/2014/182935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/15/2014] [Indexed: 11/26/2022]
Abstract
This present paper presents an analytical description and numerical simulations of the influence of macroscopic intercell dose variations and intercell sensitivity variations on the probability of controlling the tumour. Computer simulations of tumour control probability accounting for heterogeneity in dose and radiation sensitivity were performed. An analytical expression for tumor control probability accounting for heterogeneity in sensitivity was also proposed and validated against simulations. The results show good agreement between numerical simulations and the calculated TCP using the proposed analytical expression for the case of a heterogeneous dose and sensitivity distributions. When the intratumour variations of dose and sensitivity are taken into account, the total dose required for achieving the same level of control as for the case of homogeneous distribution is only slightly higher, the influence of the variations in the two factors taken into account being additive. The results of this study show that the interplay between cell or tumour variation in the sensitivity to radiation and the inherent heterogeneity in dose distribution is highly complex and therefore should be taken into account when predicting the outcome of a given treatment in terms of tumor control probability.
Collapse
|
21
|
Robotic radiosurgery as an alternative to brachytherapy for cervical cancer patients. Strahlenther Onkol 2014; 190:538-45. [PMID: 24589918 DOI: 10.1007/s00066-014-0614-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/30/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND PURPOSE To compare MRI-guided brachytherapy (BT) and two different dose prescriptions for robotic radiosurgery (RRS) in locally advanced cervical cancer. METHODS AND MATERIALS Eleven patients with FIGO stage IIB-IIIB cervical cancer underwent RRS instead of BT for various reasons. A total dose of 30 Gy was administered in five fractions. The maximum dose was chosen such that the prescribed dose was 70 % of the maximum dose (RRS70). To simulate BT more closely, additional plan calculations were carried out for a higher maximum dose with the same enclosing dose of 30 Gy being now 25 % of the maximum dose (RRS25). BT plans were calculated for the same patients (BTRRS). Finally, the resulting three sets of treatment plans were compared with 38 other patients treated with MRI-guided BT and the same dose prescription (BTref). Plan comparisons were performed based on DVH parameters with regard to target coverage (V100), conformation number (CN), and sparing of the organs at risk (OARs). RESULTS The best coverage of V100 = 100 ± 0 % was obtained with RRS25, followed by RRS70 with 97.1 ± 2.7 %, BTref with 90.9 ± 8.9 %, and the intraindividual BTRRS with 80.6 ± 6.4 %. The sparing of OARs was associated with D0.1 cc, D2 cc, and D5 cc to the rectum, sigmoid, and bladder walls. OAR doses were compliant with the GEC-ESTRO guidelines and comparable among RRS70, RRS25, BTRRS, and BTref. By contrast, RRS25 could not fulfill these guidelines, exceeding considerably the tolerable dose constraints for the walls of the critical OARs. CONCLUSION Despite of the excellent coverage and higher maximum dose, the unacceptably high exposure to the OARs disqualified RRS25 as an alternative for BT in cervical cancer patients. By contrast, RRS70 offered the best protection for the OARs, comparable to BT, and even better target coverage and conformity than BT.
Collapse
|
22
|
Chapman J. Can the two mechanisms of tumor cell killing by radiation be exploited for therapeutic gain? JOURNAL OF RADIATION RESEARCH 2014; 55:2-9. [PMID: 24105710 PMCID: PMC3885134 DOI: 10.1093/jrr/rrt111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 08/15/2013] [Indexed: 05/22/2023]
Abstract
The radiation killing of tumor cells by ionizing radiation is best described by the linear-quadratic (LQ) model. Research into the underlying mechanisms of α- and β-inactivation has suggested that different molecular targets (DNA in different forms) and different microdosimetric energy deposits (spurs versus electron track-ends) are involved. Clinical protocols with fractionated doses of about 2.0 Gy/day were defined empirically, and we now know that they produce cancer cures mainly by the α-inactivation mechanism. Radiobiology studies indicate that α and β mechanisms exhibit widely different characteristics that should be addressed upfront as clinical fractionation schemes are altered. As radiation treatments attempt to exploit the advantages of larger dose fractions over shorter treatment times, the LQ model can be used to predict iso-effective tumor cell killing and possibly iso-effective normal tissue complications. Linking best estimates of radiobiology and tumor biology parameters with tumor control probability (TCP) and normal tissue complication probability (NTCP) models will enable us to improve and optimize cancer treatment protocols, delivering no more fractions than are strictly necessary for a high therapeutic ratio.
Collapse
Affiliation(s)
- J.D. Chapman
- CRM Consulting Services, West Kelowna, BC, V4T 3H7, 2167 Madera Court, Canada
| |
Collapse
|
23
|
Hussein M, Adams EJ, Jordan TJ, Clark CH, Nisbet A. A critical evaluation of the PTW 2D-ARRAY seven29 and OCTAVIUS II phantom for IMRT and VMAT verification. J Appl Clin Med Phys 2013; 14:4460. [PMID: 24257288 PMCID: PMC5714639 DOI: 10.1120/jacmp.v14i6.4460] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 06/18/2013] [Accepted: 06/17/2013] [Indexed: 12/25/2022] Open
Abstract
Quality assurance (QA) for intensity- and volumetric-modulated radiotherapy (IMRT and VMAT) has evolved substantially. In recent years, various commercial 2D and 3D ionization chamber or diode detector arrays have become available, allowing for absolute verification with near real time results, allowing for streamlined QA. However, detector arrays are limited by their resolution, giving rise to concerns about their sensitivity to errors. Understanding the limitations of these devices is therefore critical. In this study, the sensitivity and resolution of the PTW 2D-ARRAY seven29 and OCTAVIUS II phantom combination was comprehensively characterized for use in dynamic sliding window IMRT and RapidArc verification. Measurement comparisons were made between single acquisition and a multiple merged acquisition techniques to improve the effective resolution of the 2D-ARRAY, as well as comparisons against GAFCHROMIC EBT2 film and electronic portal imaging dosimetry (EPID). The sensitivity and resolution of the 2D-ARRAY was tested using two gantry angle 0° modulated test fields. Deliberate multileaf collimator (MLC) errors of 1, 2, and 5 mm and collimator rotation errors were inserted into IMRT and RapidArc plans for pelvis and head & neck sites, to test sensitivity to errors. The radiobiological impact of these errors was assessed to determine the gamma index passing criteria to be used with the 2D-ARRAY to detect clinically relevant errors. For gamma index distributions, it was found that the 2D-ARRAY in single acquisition mode was comparable to multiple acquisition modes, as well as film and EPID. It was found that the commonly used gamma index criteria of 3% dose difference or 3 mm distance to agreement may potentially mask clinically relevant errors. Gamma index criteria of 3%/2 mm with a passing threshold of 98%, or 2%/2 mm with a passing threshold of 95%, were found to be more sensitive. We suggest that the gamma index passing thresholds may be used for guidance, but also should be combined with a visual inspection of the gamma index distribution and calculation of the dose difference to assess whether there may be a clinical impact in failed regions.
Collapse
Affiliation(s)
- Mohammad Hussein
- Royal Surrey County Hospital NHS Foundation Trust, University of Surrey.
| | | | | | | | | |
Collapse
|
24
|
Similar-case-based optimization of beam arrangements in stereotactic body radiotherapy for assisting treatment planners. BIOMED RESEARCH INTERNATIONAL 2013; 2013:309534. [PMID: 24294603 PMCID: PMC3835834 DOI: 10.1155/2013/309534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 09/21/2013] [Indexed: 12/16/2022]
Abstract
Objective. To develop a similar-case-based optimization method for beam arrangements in lung stereotactic body radiotherapy (SBRT) to assist treatment planners. Methods. First, cases that are similar to an objective case were automatically selected based on geometrical features related to a planning target volume (PTV) location, PTV shape, lung size, and spinal cord position. Second, initial beam arrangements were determined by registration of similar cases with the objective case using a linear registration technique. Finally, beam directions of the objective case were locally optimized based on the cost function, which takes into account the radiation absorption in normal tissues and organs at risk. The proposed method was evaluated with 10 test cases and a treatment planning database including 81 cases, by using 11 planning evaluation indices such as tumor control probability and normal tissue complication probability (NTCP). Results. The procedure for the local optimization of beam arrangements improved the quality of treatment plans with significant differences (P < 0.05) in the homogeneity index and conformity index for the PTV, V10, V20, mean dose, and NTCP for the lung. Conclusion. The proposed method could be usable as a computer-aided treatment planning tool for the determination of beam arrangements in SBRT.
Collapse
|
25
|
Intensity modulated proton beam radiation for brachytherapy in patients with cervical carcinoma. Int J Radiat Oncol Biol Phys 2013; 87:897-903. [PMID: 24119834 DOI: 10.1016/j.ijrobp.2013.08.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE To evaluate intensity modulated proton therapy (IMPT) in patients with cervical cancer in terms of coverage, conformity, and dose-volume histogram (DVH) parameters correlated with recommendations from magnetic resonance imaging (MRI)-guided brachytherapy. METHODS AND MATERIALS Eleven patients with histologically proven cervical cancer underwent primary chemoradiation for the pelvic lymph nodes, the uterus, the cervix, and the parametric region, with a symmetric margin of 1 cm. The prescription was for 50.4 Gy, with 1.8 Gy per fraction. The prescribed dose to the parametria was 2.12 Gy up to 59.36 Gy in 28 fractions as a simultaneous boost. For several reasons, the patients were unable to undergo brachytherapy. As an alternative, IMPT was planned with 5 fractions of 6 Gy to the cervix, including the macroscopic tumor with an MRI-guided target definition, with an isotropic margin of 5 mm for planning target volume (PTV) definition. Groupe-Europeen de Curietherapie and European society for Radiotherapy and Oncology (GEC-ESTRO) criteria were used for DVH evaluation. Reference comparison plans were optimized for volumetric modulated rapid arc (VMAT) therapy with the RapidArc (RA). RESULTS The dose to the high-risk volume was calculated with α/β = 10 with 89.6 Gy. For IMPT, the clinical target volume showed a mean dose of 38.2 ± 5.0 Gy (35.0 ±1.8 Gy for RA). The D98% was 31.9 ± 2.6 Gy (RA: 30.8 ± 1.0 Gy). With regard to the organs at risk, the 2Gy Equivalent Dose (EQD2) (α/β = 3) to 2 cm(3) of the rectal wall, sigmoid wall, and bladder wall was 62.2 ± 6.4 Gy, 57.8 ± 6.1 Gy, and 80.6 ± 8.7 Gy (for RA: 75.3 ± 6.1 Gy, 66.9 ± 6.9 Gy, and 89.0 ± 7.2 Gy, respectively). For the IMPT boost plans in combination with external beam radiation therapy, all DVH parameters correlated with <5% risk for grades 2 to 4 late gastrointestinal and genitourinary toxicity. CONCLUSION In patients who are not eligible for brachytherapy, IMPT as a boost technique additionally to external beam radiation therapy provides good target coverage and conformity and superior DVH parameters, compared with recommendations to MRI-guided brachytherapy. For selected patients, IMPT might be a valid alternative to brachytherapy and also superior to reference VMAT plans.
Collapse
|
26
|
Jeong J, Shoghi KI, Deasy JO. Modelling the interplay between hypoxia and proliferation in radiotherapy tumour response. Phys Med Biol 2013; 58:4897-919. [PMID: 23787766 DOI: 10.1088/0031-9155/58/14/4897] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A tumour control probability computational model for fractionated radiotherapy was developed, with the goal of incorporating the fundamental interplay between hypoxia and proliferation, including reoxygenation over a course of radiotherapy. The fundamental idea is that the local delivery of oxygen and glucose limits the amount of proliferation and metabolically-supported cell survival a tumour sub-volume can support. The model has three compartments: a proliferating compartment of cells receiving oxygen and glucose; an intermediate, metabolically-active compartment receiving glucose; and a highly hypoxic compartment of starving cells. Following the post-mitotic cell death of proliferating cells, intermediate cells move into the proliferative compartment and hypoxic cells move into the intermediate compartment. A key advantage of the proposed model is that the initial compartmental cell distribution is uniquely determined from the assumed local growth fraction (GF) and volume doubling time (TD) values. Varying initial cell state distributions, based on the local (voxel) GF and TD, were simulated. Tumour response was simulated for head and neck squamous cell carcinoma using relevant parameter values based on published sources. The tumour dose required to achieve a 50% local control rate (TCD50) was found for various GFs and TD's, and the effect of fraction size on TCD50 was also evaluated. Due to the advantage of reoxygenation over a course of radiotherapy, conventional fraction sizes (2-2.4 Gy fx(-1)) were predicted to result in smaller TCD50's than larger fraction sizes (4-5 Gy fx(-1)) for a 10 cc tumour with GFs of around 0.15. The time to eliminate hypoxic cells (the reoxygenation time) was estimated for a given GF and decreased as GF increased. The extra dose required to overcome accelerated stem cell accumulation in longer treatment schedules was estimated to be 0.68 Gy/day (in EQD26.6), similar to published values derived from clinical data. The model predicts, for a 2 Gy/weekday fractionation, that increased initial proliferation (high GF) should, surprisingly, lead to moderately higher local control values. Tumour hypoxia is predicted to increase the required dose for local control by approximately 30%. Predicted tumour regression patterns are consistent with clinical observations. This simple yet flexible model shows how the local competition for chemical resources might impact local control rates under varying fractionation conditions.
Collapse
Affiliation(s)
- J Jeong
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | |
Collapse
|
27
|
Allen Li X, Alber M, Deasy JO, Jackson A, Ken Jee KW, Marks LB, Martel MK, Mayo C, Moiseenko V, Nahum AE, Niemierko A, Semenenko VA, Yorke ED. The use and QA of biologically related models for treatment planning: short report of the TG-166 of the therapy physics committee of the AAPM. Med Phys 2013; 39:1386-409. [PMID: 22380372 DOI: 10.1118/1.3685447] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Treatment planning tools that use biologically related models for plan optimization and/or evaluation are being introduced for clinical use. A variety of dose-response models and quantities along with a series of organ-specific model parameters are included in these tools. However, due to various limitations, such as the limitations of models and available model parameters, the incomplete understanding of dose responses, and the inadequate clinical data, the use of biologically based treatment planning system (BBTPS) represents a paradigm shift and can be potentially dangerous. There will be a steep learning curve for most planners. The purpose of this task group is to address some of these relevant issues before the use of BBTPS becomes widely spread. In this report, the authors (1) discuss strategies, limitations, conditions, and cautions for using biologically based models and parameters in clinical treatment planning; (2) demonstrate the practical use of the three most commonly used commercially available BBTPS and potential dosimetric differences between biologically model based and dose-volume based treatment plan optimization and evaluation; (3) identify the desirable features and future directions in developing BBTPS; and (4) provide general guidelines and methodology for the acceptance testing, commissioning, and routine quality assurance (QA) of BBTPS.
Collapse
Affiliation(s)
- X Allen Li
- Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhang L, Hub M, Mang S, Thieke C, Nix O, Karger CP, Floca RO. Software for quantitative analysis of radiotherapy: overview, requirement analysis and design solutions. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2013; 110:528-537. [PMID: 23523366 DOI: 10.1016/j.cmpb.2013.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/26/2013] [Accepted: 03/04/2013] [Indexed: 06/02/2023]
Abstract
Radiotherapy is a fast-developing discipline which plays a major role in cancer care. Quantitative analysis of radiotherapy data can improve the success of the treatment and support the prediction of outcome. In this paper, we first identify functional, conceptional and general requirements on a software system for quantitative analysis of radiotherapy. Further we present an overview of existing radiotherapy analysis software tools and check them against the stated requirements. As none of them could meet all of the demands presented herein, we analyzed possible conceptional problems and present software design solutions and recommendations to meet the stated requirements (e.g. algorithmic decoupling via dose iterator pattern; analysis database design). As a proof of concept we developed a software library "RTToolbox" following the presented design principles. The RTToolbox is available as open source library and has already been tested in a larger-scale software system for different use cases. These examples demonstrate the benefit of the presented design principles.
Collapse
Affiliation(s)
- Lanlan Zhang
- Software Development for Integrated Diagnostics and Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
29
|
Selvaraj J, Uzan J, Baker C, Nahum A. Loss of local control due to tumor displacement as a function of margin size, dose-response slope, and number of fractions. Med Phys 2013; 40:041715. [DOI: 10.1118/1.4795131] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
30
|
Changes in radiobiological parameters in 131Cs permanent prostate implants. JOURNAL OF RADIOTHERAPY IN PRACTICE 2013. [DOI: 10.1017/s146039691200009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractIn prostate permanent implants using 131Cs seeds, the prostatic edema developed during the implantation procedure, increases the separation between the seeds. This leads to a decrease in the prostate coverage and thus causes an edema induced dose reduction, which results in an increase in tumour cell surviving fraction (SF) with a corresponding decrease in tumour control probability (TCP). To investigate the impact of edema on the SF and the TCP, the expression of the SF of the linear quadratic (LQ) model was extended to account for the effects of edema using the exponential nature of edema resolution and the dose delivered to the edematous prostate. The SF and the TCP for edematous prostate implants were calculated for 31 patients who underwent real time 131Cs permanent seed implantation. The dose delivered to the edematous prostate was calculated to compute the SF and the TCP for these patients for edema half lives (EHL) ranging from 4 days to 34 days and for edemas of magnitudes (M0) varying from 5 to 60% of the actual prostate volume.A reduction in the dose delivered to the edematous prostate was found with the increase of EHL and edema magnitude which results in an increase of the SF, and corresponding decrease in the TCP. The dose reductions in 131Cs implants varied from 1.1% (for EHL = 4 days and M0 = 5%) to 32.3% (for EHL = 34 days and M0 = 60%). These are higher than the dose reduction in 125I implants, which vary from 0.3% (for EHL = 4 days and M0 = 5%) to 17.5% (for EHL = 34 days and M0 = 60%). As edema half life increased from 4 days to 34 days and edema magnitude increased from 5 to 60% the SF increased by 4.57 log, and the TCP decreased by 0.80. Compensation of edema induced increase in the SF and decrease in the TCP in 131Cs seed implants should be carefully done by redefining seed positions with the guidance of post-needle plans. The presented model in this study can be used to estimate the SF or the TCP for pre plan or real time permanent prostate implants using day 0 post-implant CT images.
Collapse
|
31
|
A method to visualize the uncertainty of the prediction of radiobiological models. Phys Med 2012; 29:556-61. [PMID: 23260766 DOI: 10.1016/j.ejmp.2012.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 11/20/2012] [Accepted: 11/24/2012] [Indexed: 01/06/2023] Open
Abstract
A method for quantitative visualization of the uncertainty in the predicted tumor control probability (TCP) and normal tissue complication probability (NTCP) in radiotherapy has been developed. Uncertainties of TCP and NTCP due to inter-individual variation of the underlying radiosensitivity parameters was simulated by sampling the prescribed dose from a uniform distribution and the radiosensitivity-parameters from a Gaussian distribution. The result is visualized as a scatter-plot superimposed to the population-based dose response curves using the prescribed dose as the common dosimetric variable. In addition, probability histograms are derived quantifying the probability of specific TCP- or NTCP-values for individual patients from the underlying population. The method is exemplified with a pleural mesothelioma case with the lung as organ at risk. A prescribed dose of 54 Gy together with radiosensitivity variations of 6% (tumor) and 10% (normal tissue) results in a TCP of 85% (range 68-94%, 90% confidence interval, CI) and an NTCP of 4% (range 3-6%, 90% CI), respectively. Increasing the radiosensitivity variation of the tumor to 15% and reducing the lung tolerance dose by 25% results in values of 84% (range 51-97%, 90% CI) for TCP and 9% (range 6-12%, 90% CI) for NTCP. Increasing the dose to 60 Gy leads to TCP- and NTCP-values of 93% (range 69-100%, 90% CI) and 12% (range 8-17%, 90% CI), respectively. The new method visualizes the uncertainty of TCP- and NTCP-values and hence of the therapeutic window. This can help the clinician to assess the treatment plan for the individual patient.
Collapse
|
32
|
Lee TF, Ting HM, Chao PJ, Fang FM. Dual Arc Volumetric-modulated Arc Radiotherapy (VMAT) of Nasopharyngeal Carcinomas: A Simultaneous Integrated Boost Treatment Plan Comparison with Intensity-modulated Radiotherapies and Single Arc VMAT. Clin Oncol (R Coll Radiol) 2012; 24:196-207. [DOI: 10.1016/j.clon.2011.06.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 04/24/2011] [Accepted: 05/05/2011] [Indexed: 11/25/2022]
|
33
|
Hussein M, Aldridge S, Guerrero Urbano T, Nisbet A. The effect of 6 and 15 MV on intensity-modulated radiation therapy prostate cancer treatment: plan evaluation, tumour control probability and normal tissue complication probability analysis, and the theoretical risk of secondary induced malignancies. Br J Radiol 2011; 85:423-32. [PMID: 22010028 DOI: 10.1259/bjr/24514638] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE The aim of this study was to investigate the effect of 6 and 15-MV photon energies on intensity-modulated radiation therapy (IMRT) prostate cancer treatment plan outcome and to compare the theoretical risks of secondary induced malignancies. METHODS Separate prostate cancer IMRT plans were prepared for 6 and 15-MV beams. Organ-equivalent doses were obtained through thermoluminescent dosemeter measurements in an anthropomorphic Aldersen radiation therapy human phantom. The neutron dose contribution at 15 MV was measured using polyallyl-diglycol-carbonate neutron track etch detectors. Risk coefficients from the International Commission on Radiological Protection Report 103 were used to compare the risk of fatal secondary induced malignancies in out-of-field organs and tissues for 6 and 15 MV. For the bladder and the rectum, a comparative evaluation of the risk using three separate models was carried out. Dose-volume parameters for the rectum, bladder and prostate planning target volume were evaluated, as well as normal tissue complication probability (NTCP) and tumour control probability calculations. RESULTS There is a small increased theoretical risk of developing a fatal cancer from 6 MV compared with 15 MV, taking into account all the organs. Dose-volume parameters for the rectum and bladder show that 15 MV results in better volume sparing in the regions below 70 Gy, but the volume exposed increases slightly beyond this in comparison with 6 MV, resulting in a higher NTCP for the rectum of 3.6% vs 3.0% (p=0.166). CONCLUSION The choice to treat using IMRT at 15 MV should not be excluded, but should be based on risk vs benefit while considering the age and life expectancy of the patient together with the relative risk of radiation-induced cancer and NTCPs.
Collapse
Affiliation(s)
- M Hussein
- Department of Medical Physics, St Luke's Cancer Centre, Royal Surrey County Hospital NHS Foundation Trust, Guildford, UK.
| | | | | | | |
Collapse
|
34
|
Abstract
PURPOSE Our work on dose-painting based on the possible risk characteristics for local recurrence in tumor subvolumes and the optimization of treatment plans using biological objective functions that are region-specific are reviewed. MATERIALS AND METHODS A series of intensity modulated dose-painting techniques are compared to their corresponding intensity modulated plans in which the entire PTV is treated to a single dose level, delivering the same equivalent uniform dose (EUD) to the entire PTV. Iso-TCP and iso-NTCP maps are introduced as a tool to aid the planner in the evaluation of the resulting non-uniform dose distributions. Iso-TCP and iso-NTCP maps are akin to iso-dose maps in 3D conformal radiotherapy. The impact of the currently limited diagnostic accuracy of functional imaging on a series of dose-painting techniques is also discussed. RESULTS Utilizing biological parameters (risk-adaptive optimization) in the generation of dose-painting plans results in an increase in the therapeutic ratio as compared to conventional dose-painting plans in which optimization techniques based on physical dose are employed. CONCLUSION Dose-painting employing biological parameters appears to be a promising approach for individualized patient- and disease-specific radiotherapy.
Collapse
Affiliation(s)
- Yusung Kim
- Department of Radiation Oncology, University of Iowa, Iowa City, USA
| | | |
Collapse
|
35
|
Jensen I, Carl J, Lund B, Larsen EH, Nielsen J. Radiobiological impact of reduced margins and treatment technique for prostate cancer in terms of tumor control probability (TCP) and normal tissue complication probability (NTCP). Med Dosim 2010; 36:130-7. [PMID: 20488692 DOI: 10.1016/j.meddos.2010.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 02/09/2010] [Accepted: 02/18/2010] [Indexed: 02/07/2023]
Abstract
Dose escalation in prostate radiotherapy is limited by normal tissue toxicities. The aim of this study was to assess the impact of margin size on tumor control and side effects for intensity-modulated radiation therapy (IMRT) and 3D conformal radiotherapy (3DCRT) treatment plans with increased dose. Eighteen patients with localized prostate cancer were enrolled. 3DCRT and IMRT plans were compared for a variety of margin sizes. A marker detectable on daily portal images was presupposed for narrow margins. Prescribed dose was 82 Gy within 41 fractions to the prostate clinical target volume (CTV). Tumor control probability (TCP) calculations based on the Poisson model including the linear quadratic approach were performed. Normal tissue complication probability (NTCP) was calculated for bladder, rectum and femoral heads according to the Lyman-Kutcher-Burman method. All plan types presented essentially identical TCP values and very low NTCP for bladder and femoral heads. Mean doses for these critical structures reached a minimum for IMRT with reduced margins. Two endpoints for rectal complications were analyzed. A marked decrease in NTCP for IMRT plans with narrow margins was seen for mild RTOG grade 2/3 as well as for proctitis/necrosis/stenosis/fistula, for which NTCP <7% was obtained. For equivalent TCP values, sparing of normal tissue was demonstrated with the narrow margin approach. The effect was more pronounced for IMRT than 3DCRT, with respect to NTCP for mild, as well as severe, rectal complications.
Collapse
Affiliation(s)
- Ingelise Jensen
- Department of Medical Physics, Aalborg Hospital, University of Aarhus, Aalborg, Denmark.
| | | | | | | | | |
Collapse
|
36
|
Ebert MA, Haworth A, Kearvell R, Hooton B, Hug B, Spry NA, Bydder SA, Joseph DJ. Comparison of DVH data from multiple radiotherapy treatment planning systems. Phys Med Biol 2010; 55:N337-46. [DOI: 10.1088/0031-9155/55/11/n04] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
37
|
Szlag M, Slosarek K. Two-dimensional imaging of tumour control probabilities and normal tissue complication probabilities. Rep Pract Oncol Radiother 2010; 15:31-9. [PMID: 24376921 DOI: 10.1016/j.rpor.2010.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 11/04/2009] [Accepted: 02/07/2010] [Indexed: 11/24/2022] Open
Abstract
AIM To create a presentation method of TCP and NTCP distributions calculated based on dose distribution for a selected CT slice. MATERIALS AND METHODS Three 24-bit colour maps - of dose distribution, delineated structures and CT information - were converted into m-by-n-by-3 data arrays, containing intensities of red, green, and blue colour components for each pixel. All calculations were performed with Matlab v.6.5. The transformation function, which consists of five linear functions, was prepared to translate the colour map into a one-dimensional data array of dose values. A menu-driven application based on the transformation function and mathematical models of complication risk (NTCP) and treatment control probability (TCP) was designed to allow pixel-by-pixel translation of colour maps into one-dimensional arrays of TCP and NTCP values. RESULTS The result of this work is an application created to visualize the TCP and NTCP distribution for a single CT scan based on the spatial dose distribution calculated in the treatment planning system. The application allows 10 targets (PTV) and 10 organs at risks (OaR) to be defined. The interface allows alpha/beta values to be inserted for each delineated structure. The application computes TCP and NTCP matrices, which are presented as colour maps superimposed on the corresponding CT slice. There is a set of parameters used for TCP/NTCP calculations which can be defined by the user. CONCLUSION Our application is a prototype of an evaluation tool. Although limited to a single plane of the treatment plan, it is believed to be a starting point for further development.
Collapse
Affiliation(s)
- Marta Szlag
- Department of Radiotherapy and Brachytherapy Planning, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice Branch, Poland
| | - Krzysztof Slosarek
- Department of Radiotherapy and Brachytherapy Planning, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice Branch, Poland
| |
Collapse
|
38
|
Vanderspek L, Bauman G, Wang JZ, Yartsev S, Ménard C, Cho YB, Mundt AJ, Lawson JD, Murphy KT. Dosimetric comparison of intensity-modulated radiosurgery and helical tomotherapy for the treatment of multiple intracranial metastases. Technol Cancer Res Treat 2009; 8:361-7. [PMID: 19754212 DOI: 10.1177/153303460900800506] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to evaluate the dosimetry of single fraction, single-isocenter intensity-modulated radiosurgery (IMRS) plans for multiple intracranial metastases and to compare Helical Tomotherapy (HT). Ten treatment plans with 3-6 brain metastases treated with IMRS were re-planned with HT. The mean number of lesions was 5 and mean PTV 22 cm(3). The prescribed dose was 16-20 Gy. The mean V100% was similar for IMRS and HT, and the mean conformity index was 1.4, mean Paddick confirmity index was 0.7, and mean MDPD was 1.1 for both. The mean gradient index was similar for both. The mean 50% _isodose volume was 179.2 cm(3) for IMRS and 277.0 cm(3) for HT (p=0.01). The mean maximum doses to organs at risk were lower for IMRS except brainstem and right optic nerve. For brain, the integral dose was 5.1 and 6.8 Gy-kg (p<0.001) and mean dose 4.0 and 5.4 Gy (p<0.001) for IMRS and HT, respectively. The mean treatment times were 23 (IMRS) and 41 (HT) minutes. Conformity and homogeneity indices were equivalent and sparing of the organs at risk was clinically acceptable for both IMRS and HT. Though the gradient index was similar for IMRS and HT, the mean 50% isodose volume and integral dose to normal brain were lower for IMRS as was treatment time.
Collapse
Affiliation(s)
- Lauren Vanderspek
- Department of Radiation Oncology London Regional Cancer Program University of Western Ontario 790 Commissioners Rd. E. London ON, N6A 4L6, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Strigari L, D'Andrea M, Abate A, Benassi M. A heterogeneous dose distribution in simultaneous integrated boost: the role of the clonogenic cell density on the tumor control probability. Phys Med Biol 2008; 53:5257-73. [PMID: 18758004 DOI: 10.1088/0031-9155/53/19/001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
IMRT with inverse planning allows simultaneous integrated boost strategies that exploit the heterogeneous dose distribution within the planning target volumes (PTVs). In this scenario, the location of cold spots within the target becomes a crucial issue and has to be related to the distribution of the clonogenic cell density (CCD). The main aim of this work is to provide the means to calculate the optimal prescription dose in a relative inhomogeneous dose distribution. To achieve this, the prescription dose has to be assigned to obtain the same tumor control probability (TCP) as the ideal homogeneous distribution, taking into account different CCDs in different PTVs (i.e. visible and subclinical regions). An adapted formulation of the linear-quadratic model, within the F-factor formalism, has been derived to preserve a chosen TCP value for the whole target volume. The F-factor has been investigated to show its potential applications in clinical practice.
Collapse
Affiliation(s)
- L Strigari
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome, Italy.
| | | | | | | |
Collapse
|
40
|
Hazard LJ, Wang B, Skidmore TB, Chern SS, Salter BJ, Jensen RL, Shrieve DC. Conformity of LINAC-based stereotactic radiosurgery using dynamic conformal arcs and micro-multileaf collimator. Int J Radiat Oncol Biol Phys 2008; 73:562-70. [PMID: 18565688 DOI: 10.1016/j.ijrobp.2008.04.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 04/23/2008] [Accepted: 04/23/2008] [Indexed: 11/29/2022]
Abstract
PURPOSE To assess the conformity of dynamic conformal arc linear accelerator-based stereotactic radiosurgery and to describe a standardized method of isodose surface (IDS) selection. METHODS AND MATERIALS In 174 targets, the conformity index (CI) at the prescription IDS used for treatment was calculated as CI = (PIV/PVTV)/(PVTV/TV), where TV is the target volume, PIV (prescription isodose volume) is the total volume encompassed by the prescription IDS, and PVTV is the TV encompassed by the IDS. In addition, a "standardized" prescription IDS (sIDS) was chosen according to the following criteria: 95% of the TV was encompassed by the PIV and 99% of TV was covered by 95% of the prescription dose. The CIs at the sIDS were also calculated. RESULTS The median CI at the prescription IDS and sIDS was 1.63 and 1.47, respectively (p < 0.001). In 132 of 174 cases, the volume of normal tissue in the PIV was reduced by the prescription to the sIDS compared with the prescription IDS, in 20 cases it remained unchanged, and in 22 cases it was increased. CONCLUSION The CIs obtained with linear accelerator-based stereotactic radiosurgery are comparable to those previously reported for gamma knife stereotactic radiosurgery. Using a uniform method to select the sIDS, adequate target coverage was usually achievable with prescription to an IDS greater than that chosen by the treating physician (prescription IDS), providing sparing of normal tissue. Thus, the sIDS might aid physicians in identifying a prescription IDS that balances coverage and conformity.
Collapse
Affiliation(s)
- Lisa J Hazard
- Department of Radiation Oncology, Huntsman Cancer Hospital, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Chau R, Leung S, Kam M, Cheung K, Kwan W, Yu K, Chiu S, Chan A. A Split-organ Delineation Approach for Dose Optimisation for Intensity-modulated Radiotherapy for Advanced T-stage Nasopharyngeal Carcinoma. Clin Oncol (R Coll Radiol) 2008; 20:134-41. [DOI: 10.1016/j.clon.2007.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2007] [Revised: 09/18/2007] [Accepted: 10/15/2007] [Indexed: 10/22/2022]
|
42
|
Chau RM, Teo PM, Kam MK, Leung S, Cheung K, Chan AT. Dosimetric Comparison Between 2-Dimensional Radiation Therapy and Intensity Modulated Radiation Therapy in Treatment of Advanced T-Stage Nasopharyngeal Carcinoma: To Treat Less or More in the Planning Organ-At-Risk Volume of the Brainstem and Spinal Cord. Med Dosim 2007; 32:263-70. [PMID: 17980826 DOI: 10.1016/j.meddos.2007.02.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 02/09/2007] [Indexed: 11/25/2022]
|
43
|
Khan HA. CalcNTCP: a simple tool for computation of normal tissue complication probability (NTCP) associated with cancer radiotherapy. Int J Radiat Biol 2007; 83:717-720. [PMID: 17729166 DOI: 10.1080/09553000701570220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE This study was aimed to develop a simple and user-friendly software for fast and accurate computation of normal tissue complication probability (NTCP) in accordance with the Lyman model. MATERIALS AND METHODS The software CalcNTCP has been developed in Visual Basic and is equipped with two functional modes. Mode 1 is based on pre-stored values of various parameters for 27 different organ systems and the user has only to input the values of volume fraction (v) and radiation dose (D), whereas Mode 2 is designed for the customized entries. RESULTS The results of software validation have demonstrated that CalcNTCP is more efficient and time-saving as compared to manual or semi-manual procedures. The shapes and locations of representative survival curves generated by CalcNTCP-based computations for various radiation doses (10 - 100 Gy) and reference volumes (0.33 - 1.00) absolutely matched with optimal curves. CONCLUSION CalcNTCP is a simple, fast and accurate tool for the computation of NTCP with a direct implication in the evaluation or optimization of radiotherapy treatment plans.
Collapse
Affiliation(s)
- Haseeb Ahmad Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
44
|
Harting C, Peschke P, Borkenstein K, Karger CP. Single-cell-based computer simulation of the oxygen-dependent tumour response to irradiation. Phys Med Biol 2007; 52:4775-89. [PMID: 17671335 DOI: 10.1088/0031-9155/52/16/005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Optimization of treatment plans in radiotherapy requires the knowledge of tumour control probability (TCP) and normal tissue complication probability (NTCP). Mathematical models may help to obtain quantitative estimates of TCP and NTCP. A single-cell-based computer simulation model is presented, which simulates tumour growth and radiation response on the basis of the response of the constituting cells. The model contains oxic, hypoxic and necrotic tumour cells as well as capillary cells which are considered as sources of a radial oxygen profile. Survival of tumour cells is calculated by the linear quadratic model including the modified response due to the local oxygen concentration. The model additionally includes cell proliferation, hypoxia-induced angiogenesis, apoptosis and resorption of inactivated tumour cells. By selecting different degrees of angiogenesis, the model allows the simulation of oxic as well as hypoxic tumours having distinctly different oxygen distributions. The simulation model showed that poorly oxygenated tumours exhibit an increased radiation tolerance. Inter-tumoural variation of radiosensitivity flattens the dose response curve. This effect is enhanced by proliferation between fractions. Intra-tumoural radiosensitivity variation does not play a significant role. The model may contribute to the mechanistic understanding of the influence of biological tumour parameters on TCP. It can in principle be validated in radiation experiments with experimental tumours.
Collapse
Affiliation(s)
- Christine Harting
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
45
|
Myint WK, Niedbala M, Wilkins D, Gerig LH. Investigating treatment dose error due to beam attenuation by a carbon fiber tabletop. J Appl Clin Med Phys 2006; 7:21-7. [PMID: 17533341 PMCID: PMC5722426 DOI: 10.1120/jacmp.v7i3.2247] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 06/28/2006] [Accepted: 12/31/1969] [Indexed: 11/23/2022] Open
Abstract
Carbon fiber is commonly used in radiation therapy for treatment tabletops and various immobilization and support devices, partially because it is generally perceived to be almost radiotransparent to high-energy photons. To avoid exposure to normal tissue during modern radiation therapy, one must deliver the radiation from all gantry angles; hence, beams often transit the couch proximal to the patient. The effects of the beam attenuation by the support structure of the couch are often neglected in the planning process. In this study, we investigate the attenuation of 6-MV and 18-MV photon beams by a Medtec (Orange City, IA) carbon fiber couch. We have determined that neglecting the attenuation of oblique treatment fields by the carbon fiber couch can result in localized dose reduction from 4% to 16%, depending on energy, field size, and geometry. Further, we investigate the ability of a commercial treatment-planning system (Theraplan Plus v3.8) to account for the attenuation by the treatment couch. Results show that incorporating the carbon fiber couch in the patient model reduces the dose error to less than 2%. The variation in dose reduction as a function of longitudinal couch position was also measured. In the triangular strut region of the couch, the attenuation varied +/- 0.5% following the periodic nature of the support structure. Based on these findings, we propose the routine incorporation of the treatment tabletop into patient treatment planning dose calculations.
Collapse
Affiliation(s)
- W Kenji Myint
- Ottawa Hospital Regional Cancer Centre, Ottawa, Ontario, Canada.
| | | | | | | |
Collapse
|
46
|
Haworth A, Ebert M, Waterhouse D, Joseph D, Duchesne G. Assessment of i-125 prostate implants by tumor bioeffect. Int J Radiat Oncol Biol Phys 2004; 59:1405-13. [PMID: 15275726 DOI: 10.1016/j.ijrobp.2004.01.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Revised: 01/21/2004] [Accepted: 01/23/2004] [Indexed: 11/26/2022]
Abstract
PURPOSE A method of prostate implant dose distribution assessment using a bioeffect model that incorporates a distribution of tumor cell densities is demonstrated. This method provides both a quantitative method of describing implant quality and spatial information related to the location of underdosed regions of the prostate. This model, unlike any other, takes into account the likelihood of finding cancer cells in the underdosed region. METHODS AND MATERIAL The prostate volumes of 5 patients were divided into multiple subsections and a unique cell density was assigned to each subsection. The assigned cell density was a function of probability of finding tumor foci in that subsection. The tumor control probability (TCP) for each subsection was then calculated to identify the location of any significantly underdosed part of the prostate. In addition, a single TCP value for the entire prostate was calculated to score the overall quality of the implant. RESULTS Adequately dosed subsections scored TCP values greater than 0.80. The TCP for underdosed regions fell dramatically particularly in subsections at higher risk of containing tumor cells. CONCLUSIONS Despite uncertainties in radiobiological parameters used to calculate the TCP and the distribution of cancer foci through the prostate, the bioeffect model was found to be useful in identifying regions of underdosed prostate that may be at risk of local recurrence due to inadequate dose. Unlike the isodose distribution, the model has the potential to demonstrate that small volumes of tissue underdosed in regions most likely to contain higher numbers of tumor cells may be more significant than larger volumes irradiated to a lower dose but with a lower probability of containing cancer cells.
Collapse
Affiliation(s)
- Annette Haworth
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia 6009, Australia.
| | | | | | | | | |
Collapse
|
47
|
Haworth A, Ebert M, Waterhouse D, Joseph D, Duchesne G. Prostate implant evaluation using tumour control probability—the effect of input parameters. Phys Med Biol 2004; 49:3649-64. [PMID: 15446795 DOI: 10.1088/0031-9155/49/16/012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this paper, we examine the effect of treatment parameters in a model used to evaluate permanent prostate implants. The model considers the prostate to be composed of 12 sub-sections, each sub-section is assigned a cell density based on the probability of finding cancer foci in that sub-section. Wasted dose as a result of the dose rate from the implant falling below a level adequate to counteract repopulation was found to vary by 2-16% over the range of radiosensitivity and repopulation rates considered. Within the model, applied to five dose distributions, the uncertainty in the tumour control probability (TCP) values calculated for each sub-section as a result of differences in the model parameters, was found to be less than 12% in most cases for the good quality implants. The difference in TCP values was much larger for the poor quality implant. Substituting a heterogeneous distribution of alpha for a single mean value resulted in generally lower TCP values though introducing a cutoff value with a Gaussian distribution had a profound effect on the calculated values. Despite uncertainties in the parameters, the model was able to identify sub-sections at risk of local recurrence but as a result of these uncertainties, the TCP values can only be considered in the relative rather than absolute sense.
Collapse
Affiliation(s)
- Annette Haworth
- Department of Radiation Oncology, Sir Charles Gairdner Hospital Nedlands, WA, Australia.
| | | | | | | | | |
Collapse
|
48
|
Heufelder J, Zink K, Scholz M, Kramer KD, Welker K. [A method of computerized evaluation of CT based treatment plants in external radiotherapy]. Z Med Phys 2004; 13:231-9. [PMID: 14732952 DOI: 10.1078/0939-3889-00175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Selection of an optimal treatment plan requires the comparison of dose distributions and dose-volume histograms (DVH) of all plan variants calculated for the patient. Each treatment plan consists generally of 30 to 40 CT slices, making the comparison difficult and time consuming. The present study proposes an objective index that takes into account both physical and biological criteria for the evaluation of the dose distribution. The DHV-based evaluation index can be calculated according to the following four criteria: ICRU conformity (review of the differences between the dose in the planning target volume and the ICRU recommendations); mean dose and dose homogeneity of the planning target volume; the product of tumour complication probability (TCP) and normal tissue complication probability (NTCP); and finally a criterion that takes into account the dose load of non-segmented tissue portions within the CT slice. The application of the objective index is demonstrated for two different clinical cases (esophagus and breast carcinoma). During the evaluation period, the objective index showed a good correlation between the doctor's decision and the proposed objective index. Thus, the objective index is suitable for a computer-based evaluation of treatment plans.
Collapse
|
49
|
Kirkpatrick JP, Marks LB. Modeling killing and repopulation kinetics of subclinical cancer: direct calculations from clinical data. Int J Radiat Oncol Biol Phys 2004; 58:641-54. [PMID: 14751538 DOI: 10.1016/j.ijrobp.2003.09.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE Models for cell killing and repopulation can provide insight into the efficacy of therapies. Using clinical data on breast cancer recurrence after lumpectomy with or without radiotherapy (L+/-RT) and brain metastases after chemotherapy with or without prophylactic cranial irradiation (C+/-PCI) for small-cell lung cancer, estimates of cell killing and subclinical repopulation were tested against the results from simple radiobiologic models. METHODS AND MATERIALS The rates of local breast cancer recurrence after L+/-RT and of brain metastases after C+/-PCI were extracted from published randomized trials. In Method 1, assuming simple exponential growth, the cell number distributions after L+/-RT and C+/-PCI were calculated from the clinical data, and the impact of RT on these distributions was determined. In Method 2, "classic" radiobiology dictates that a typical course of breast RT and PCI results in approximately =7 and approximately =4.5 log of cell kill, respectively. Using an assumption of uniform log-kill, the clinical doubling times (CDTs) can be calculated directly from the clinical data. RESULTS Using Method 1, for breast cancer and assuming a CDT of 110 days and a clinically detectable cell number of 10(9), the calculated cell number distribution would be approximately uniformly distributed from 1 to 10(8) cells, with RT reducing the frequency at all points by approximately =75%. From the brain metastasis data, assuming a CDT of 55 days, a cell number distribution of 10(3) to 10(8) cells would be calculated. PCI reduces the frequency of metastases by roughly 40%. For both the breast and the brain data, the effects of RT on the cell number distribution are not consistent with uniform radiosensitivity. Using Method 2, assuming a cell number of 10 after L+/-RT, the calculated CDTs range from 14 to 124 days. For the brain metastasis case, assuming a starting cell number of 3.16 x 10(3), the CDTs would primarily be in the 10-30-day range. CONCLUSION The distribution of clinical responses to adjuvant RT suggests a broad range of radiosensitivity, rather than uniform log cell kill. The subpopulation of tumors with minimal cell kill appears to be significant. This heterogeneity may be due to radioresistant subpopulations, failure to irradiate tumor cells, and/or new tumor formation. Similarly, the computed CDTs consistent with the clinical data are shorter than those reported in the literature. Simple radiobiologic models that fail to incorporate heterogeneity of radiosensitivity and/or tumor cell repopulation do not adequately describe clinical outcomes.
Collapse
Affiliation(s)
- John P Kirkpatrick
- Department of Radiation Oncology, Duke University Medical Center, DUMC Box 3085, Durham, NC 27710, USA.
| | | |
Collapse
|
50
|
Nahum AE, Movsas B, Horwitz EM, Stobbe CC, Chapman JD. Incorporating clinical measurements of hypoxia into tumor local control modeling of prostate cancer: implications for the alpha/beta ratio. Int J Radiat Oncol Biol Phys 2003; 57:391-401. [PMID: 12957250 DOI: 10.1016/s0360-3016(03)00534-0] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND PURPOSE The recently obtained low value of approximately 1.5 for the alpha/beta of prostate cancer has led us to reexamine the optimal prostate tumor biology parameters, while taking into account everything known about the radiation response of prostate clonogens for use in a predictive dose-response model. METHODS AND MATERIALS Averages of the literature values of the alpha- and beta-inactivation coefficients for human prostate cancer cell lines were calculated. A robust tumor local control probability (TLCP) model was used that required average alpha and beta, as well as sigma(alpha), for the interpatient variation in single-hit killing (alpha). Median PO(2) values <or=1 mm Hg in the prostates of Fox Chase Cancer Center brachytherapy patients had been found in 21% of 115 cases. The oxygen enhancement ratios of 1.75 and 3.25 for alpha- and beta-inactivation, respectively, measured for tumor cells in vitro, were incorporated into the TLCP model, together with a clonogen density of approximately 10(5) cells/cm(3). Severe hypoxia and radioresistance were estimated for a proportion of tumors that was increased with PSA level. RESULTS For asynchronous human prostate cell lines irradiated in air, alpha(mean) was 0.26 +/- 0.07 (standard error) Gy(-1), sigma(alpha) = 0.06 Gy(-1), and beta(mean) was 0.0312 Gy(-2) +/- 0.0064 (standard error) Gy(-2). The TLCP data indicated that most tumors that contained aerobic cells would be cured, whereas most tumors that contained hypoxic cells would not be cured by total doses of 76 to 80 Gy. Clinical response data from the literature for external beam dose escalation, stratified by PSA value, and for low-dose-rate brachytherapy, were well predicted by the model, where the alpha/beta ratio was 8.5 and 15.5 for well-oxygenated and hypoxic clonogens, respectively. CONCLUSIONS Neither alpha/beta ratio nor clonogen number need be extremely low to explain the response of prostate cancer to brachytherapy and external beam therapy, contradicting other recent analyses. It is strongly suggested that severe hypoxia in the prostates of certain patients limits the overall cancer cure rate by conventional radiation therapy.
Collapse
Affiliation(s)
- Alan E Nahum
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | |
Collapse
|