1
|
Functional metagenomic analysis of quorum sensing signaling in a nitrifying community. NPJ Biofilms Microbiomes 2021; 7:79. [PMID: 34711833 PMCID: PMC8553950 DOI: 10.1038/s41522-021-00250-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/08/2021] [Indexed: 01/12/2023] Open
Abstract
Quorum sensing (QS) can function to shape the microbial community interactions, composition, and function. In wastewater treatment systems, acylated homoserine lactone (AHL)-based QS has been correlated with the conversion of floccular biomass into microbial granules, as well as EPS production and the nitrogen removal process. However, the role of QS in such complex communities is still not fully understood, including the QS-proficient taxa and the functional QS genes involved. To address these questions, we performed a metagenomic screen for AHL genes in an activated sludge microbial community from the Ulu Pandan wastewater treatment plant (WWTP) in Singapore followed by functional validation of luxI activity using AHL biosensors and LC–MSMS profiling. We identified 13 luxI and 30 luxR homologs from the activated sludge metagenome. Of those genes, two represented a cognate pair of luxIR genes belonging to a Nitrospira spp. and those genes were demonstrated to be functionally active. The LuxI homolog synthesized AHLs that were consistent with the dominant AHLs in the activated sludge system. Furthermore, the LuxR homolog was shown to bind to and induce expression of the luxI promoter, suggesting this represents an autoinduction feedback system, characteristic of QS circuits. Additionally, a second, active promoter was upstream of a gene encoding a protein with a GGDEF/EAL domain, commonly associated with modulating the intracellular concentration of the secondary messenger, c-di-GMP. Thus, the metagenomic approach used here was demonstrated to effectively identify functional QS genes and suggests that Nitrospira spp. maybe QS is active in the activated sludge community.
Collapse
|
2
|
Wang Y, Li Q, Tian P, Tan T. Charting the landscape of RNA polymerases to unleash their potential in strain improvement. Biotechnol Adv 2021; 54:107792. [PMID: 34216775 DOI: 10.1016/j.biotechadv.2021.107792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/28/2021] [Accepted: 06/26/2021] [Indexed: 11/19/2022]
Abstract
One major mission of microbial cell factory is overproduction of desired chemicals. To this end, it is necessary to orchestrate enzymes that affect metabolic fluxes. However, only modification of a small number of enzymes in most cases cannot maximize desired metabolites, and global regulation is required. Of myriad enzymes influencing global regulation, RNA polymerase (RNAP) may be the most versatile enzyme in biological realm because it not only serves as the workhorse of central dogma but also participates in a plethora of biochemical events. In fact, recent years have witnessed extensive exploitation of RNAPs for phenotypic engineering. While a few impressive reviews showcase the structures and functionalities of RNAPs, this review not only summarizes the state-of-the-art advance in the structures of RNAPs but also points out their enormous potentials in metabolic engineering and synthetic biology. This review aims to provide valuable insights for strain improvement.
Collapse
Affiliation(s)
- Ye Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qingyang Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Pingfang Tian
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Tianwei Tan
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
3
|
Jayaraman P, Devarajan K, Chua TK, Zhang H, Gunawan E, Poh CL. Blue light-mediated transcriptional activation and repression of gene expression in bacteria. Nucleic Acids Res 2016; 44:6994-7005. [PMID: 27353329 PMCID: PMC5001607 DOI: 10.1093/nar/gkw548] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/06/2016] [Indexed: 11/14/2022] Open
Abstract
Light-regulated modules offer unprecedented new ways to control cellular behavior in precise spatial and temporal resolution. The availability of such tools may dramatically accelerate the progression of synthetic biology applications. Nonetheless, current optogenetic toolbox of prokaryotes has potential issues such as lack of rapid and switchable control, less portable, low dynamic expression and limited parts. To address these shortcomings, we have engineered a novel bidirectional promoter system for Escherichia coli that can be induced or repressed rapidly and reversibly using the blue light dependent DNA-binding protein EL222. We demonstrated that by modulating the dosage of light pulses or intensity we could control the level of gene expression precisely. We show that both light-inducible and repressible system can function in parallel with high spatial precision in a single cell and can be switched stably between ON- and OFF-states by repetitive pulses of blue light. In addition, the light-inducible and repressible expression kinetics were quantitatively analysed using a mathematical model. We further apply the system, for the first time, to optogenetically synchronize two receiver cells performing different logic behaviors over time using blue light as a molecular clock signal. Overall, our modular approach layers a transformative platform for next-generation light-controllable synthetic biology systems in prokaryotes.
Collapse
Affiliation(s)
- Premkumar Jayaraman
- Department of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore
| | - Kavya Devarajan
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Tze Kwang Chua
- Department of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore
| | - Hanzhong Zhang
- Department of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore
| | - Erry Gunawan
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Chueh Loo Poh
- Department of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore
| |
Collapse
|
4
|
Li Z, Nair SK. Quorum sensing: how bacteria can coordinate activity and synchronize their response to external signals? Protein Sci 2012; 21:1403-17. [PMID: 22825856 DOI: 10.1002/pro.2132] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/18/2012] [Accepted: 07/18/2012] [Indexed: 01/14/2023]
Abstract
Quorum sensing is used by a large variety of bacteria to regulate gene expression in a cell-density-dependent manner. Bacteria can synchronize population behavior using small molecules called autoinducers that are produced by cognate synthases and recognized by specific receptors. Quorum sensing plays critical roles in regulating diverse cellular functions in bacteria, including bioluminescence, virulence gene expression, biofilm formation, and antibiotic resistance. The best-studied autoinducers are acyl homoserine lactone (AHL) molecules, which are the primary quorum sensing signals used by Gram-negative bacteria. In this review we focus on the AHL-dependent quorum sensing system and highlight recent progress on structural and mechanistic studies of AHL synthases and the corresponding receptors. Crystal structures of LuxI-type AHL synthases provide insights into acyl-substrate specificity, but the current knowledge is still greatly limited. Structural studies of AHL receptors have facilitated a more thorough understanding of signal perception and established the molecular framework for the development of quorum sensing inhibitors.
Collapse
Affiliation(s)
- Zhi Li
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
5
|
Activity of the Rhodopseudomonas palustris p-coumaroyl-homoserine lactone-responsive transcription factor RpaR. J Bacteriol 2011; 193:2598-607. [PMID: 21378182 DOI: 10.1128/jb.01479-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rhodopseudomonas palustris transcriptional regulator RpaR responds to the RpaI-synthesized quorum-sensing signal p-coumaroyl-homoserine lactone (pC-HSL). Other characterized RpaR homologs respond to fatty acyl-HSLs. We show here that RpaR functions as a transcriptional activator, which binds directly to the rpaI promoter. We developed an RNAseq method that does not require a ribosome depletion step to define a set of transcripts regulated by pC-HSL and RpaR. The transcripts include several noncoding RNAs. A footprint analysis showed that purified His-tagged RpaR (His(6)-RpaR) binds to an inverted repeat element centered 48.5 bp upstream of the rpaI transcript start site, which we mapped by S1 nuclease protection and primer extension analyses. Although pC-HSL-RpaR bound to rpaI promoter DNA, it did not bind to the promoter regions of a number of RpaR-regulated genes not in the rpaI operon. This indicates that RpaR control of these other genes is indirect. Because the RNAseq analysis allowed us to track transcript strand specificity, we discovered that there is pC-HSL-RpaR-activated antisense transcription of rpaR. These data raise the possibility that this antisense RNA or other RpaR-activated noncoding RNAs mediate the indirect activation of genes in the RpaR-controlled regulon.
Collapse
|
6
|
Stevens AM, Queneau Y, Soulère L, Bodman SV, Doutheau A. Mechanisms and Synthetic Modulators of AHL-Dependent Gene Regulation. Chem Rev 2010; 111:4-27. [DOI: 10.1021/cr100064s] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ann M. Stevens
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States, INSA Lyon, Laboratoire de Chimie Organique et Bioorganique, 69621 Villeurbanne Cedex, France, CNRS, UMR 5246 ICBMS, Université Lyon 1, INSA-Lyon, CPE-Lyon, 69622 Villeurbanne Cedex, France, Department of Plant Science, University of Connecticut, Storrs, Connecticut 06269, United States, and National Science Foundation, Arlington, Virginia 22230, United States
| | - Yves Queneau
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States, INSA Lyon, Laboratoire de Chimie Organique et Bioorganique, 69621 Villeurbanne Cedex, France, CNRS, UMR 5246 ICBMS, Université Lyon 1, INSA-Lyon, CPE-Lyon, 69622 Villeurbanne Cedex, France, Department of Plant Science, University of Connecticut, Storrs, Connecticut 06269, United States, and National Science Foundation, Arlington, Virginia 22230, United States
| | - Laurent Soulère
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States, INSA Lyon, Laboratoire de Chimie Organique et Bioorganique, 69621 Villeurbanne Cedex, France, CNRS, UMR 5246 ICBMS, Université Lyon 1, INSA-Lyon, CPE-Lyon, 69622 Villeurbanne Cedex, France, Department of Plant Science, University of Connecticut, Storrs, Connecticut 06269, United States, and National Science Foundation, Arlington, Virginia 22230, United States
| | - Susanne von Bodman
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States, INSA Lyon, Laboratoire de Chimie Organique et Bioorganique, 69621 Villeurbanne Cedex, France, CNRS, UMR 5246 ICBMS, Université Lyon 1, INSA-Lyon, CPE-Lyon, 69622 Villeurbanne Cedex, France, Department of Plant Science, University of Connecticut, Storrs, Connecticut 06269, United States, and National Science Foundation, Arlington, Virginia 22230, United States
| | - Alain Doutheau
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States, INSA Lyon, Laboratoire de Chimie Organique et Bioorganique, 69621 Villeurbanne Cedex, France, CNRS, UMR 5246 ICBMS, Université Lyon 1, INSA-Lyon, CPE-Lyon, 69622 Villeurbanne Cedex, France, Department of Plant Science, University of Connecticut, Storrs, Connecticut 06269, United States, and National Science Foundation, Arlington, Virginia 22230, United States
| |
Collapse
|
7
|
Abstract
The ability of LuxR-type proteins to regulate transcription is controlled by bacterial pheromones, N-acylhomoserine lactones (AHLs). Most LuxR-family proteins require their cognate AHLs for activity, and at least some of them require AHLs for folding and protease resistance. However, a few members of this family are able to fold, dimerize, bind DNA, and regulate transcription in the absence of AHLs; moreover, these proteins are antagonized by their cognate AHLs. Complexes between some of these proteins and their DNA binding sites are disrupted by AHLs in vitro. All such proteins are fairly closely related within the larger LuxR family, indicating that they share a relatively recent common ancestor. The 3' ends of the genes encoding these receptors invariably overlap with the 3' ends of the cognate AHL synthase genes, suggesting additional antagonism at the level of mRNA synthesis, stability or translation.
Collapse
Affiliation(s)
- Ching-Sung Tsai
- Department of Microbiology, Cornell University, Ithaca, New York 14853
| | - Stephen C. Winans
- Department of Microbiology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
8
|
Construction of self-transmissible green fluorescent protein-based biosensor plasmids and their use for identification of N-acyl homoserine-producing bacteria in lake sediments. Appl Environ Microbiol 2010; 76:6119-27. [PMID: 20675456 DOI: 10.1128/aem.00677-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many bacteria utilize quorum sensing (QS) systems to communicate with each other by means of the production, release, and response to signal molecules. N-Acyl homoserine lactone (AHL)-based QS systems are particularly widespread among the Proteobacteria, in which they regulate various functions. It has become evident that AHLs can also serve as signals for interspecies communication. However, knowledge on the impact of AHLs for the ecology of bacteria in their natural habitat is scarce, due mainly to the lack of tools that allow the study of QS in bacterial communities in situ. Here, we describe the construction of self-mobilizable green fluorescent protein (GFP)-based AHL sensors that utilize the conjugation and replication properties of the broad-host-range plasmid RP4. We show that these novel AHL sensor plasmids can be easily transferred to different bacterial species by biparental mating and that they give rise to green fluorescent cells in case the recipient is an AHL producer. We also demonstrate that these sensor plasmids are capable of self-spreading within mixed biofilms and are a suitable tool for the identification of AHL-producing bacteria in lake sediment.
Collapse
|
9
|
Structure/function analysis of the Pantoea stewartii quorum-sensing regulator EsaR as an activator of transcription. J Bacteriol 2009; 191:7402-9. [PMID: 19820098 DOI: 10.1128/jb.00994-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Pantoea stewartii subsp. stewartii, two regulatory proteins are key to the process of cell-cell communication known as quorum sensing: the LuxI and LuxR homologues EsaI and EsaR. Most LuxR homologues function as activators of transcription in the presence of their cognate acylated homoserine lactone (AHL) signal. However, EsaR was initially found to function as a repressor in the absence of AHL. Previous studies demonstrated that, in the absence of AHL, EsaR retains the ability to function as a weak activator of the lux operon in recombinant Escherichia coli. Here it is shown that both the N-terminal and the C-terminal domains of EsaR are necessary for positive regulation. A site-directed mutagenesis study, guided by homology modeling to LuxR and TraR, has revealed three critical residues in EsaR that are involved in activation of RNA polymerase. In addition, a native EsaR-activated promoter has been identified, which controls expression of a putative regulatory sRNA in P. stewartii.
Collapse
|
10
|
Qin Y, Keenan C, Farrand SK. N- and C-terminal regions of the quorum-sensing activator TraR cooperate in interactions with the alpha and sigma-70 components of RNA polymerase. Mol Microbiol 2009; 74:330-46. [PMID: 19732344 PMCID: PMC2765545 DOI: 10.1111/j.1365-2958.2009.06865.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Positive control (PC) mutants defining 20 residues of the quorum-sensing activator TraR were isolated that bind DNA but show defects in activating transcription from class I, class II or both types of promoters. These PC residues, located in both the N- and C-terminal regions, combine to form three patches, one on the top (II) and two near the DNA binding domain on both lateral faces of the dimer (I and III). Patches I and II, but not patch III, involve residues from both protomers and are essential for activation. TraR-mediated activation in Escherichia coli requires expression of the alpha-subunit of Agrobacterium (alpha(At)). We report that TraR also activates a class II promoter in E. coli when coexpressed with sigma(70)(At). Analyses in E. coli expressing alpha(At), sigma(70)(At) or both subunits indicate that most of the PC residues are important for interactions with alpha(At) and that these interactions are predominant for activation of class II promoters. Using the E. coli system we identified nine residues in the C-terminal domain of alpha(At) that are required for stimulating TraR-mediated activation. We conclude that N- and C-terminal residues of TraR from both protomers cooperate to define regions of the protein important for interactions with RNAP.
Collapse
Affiliation(s)
- Yinping Qin
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Carrie Keenan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Stephen K. Farrand
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
11
|
Gilbert KB, Kim TH, Gupta R, Greenberg EP, Schuster M. Global position analysis of the Pseudomonas aeruginosa quorum-sensing transcription factor LasR. Mol Microbiol 2009; 73:1072-85. [PMID: 19682264 PMCID: PMC2759405 DOI: 10.1111/j.1365-2958.2009.06832.x] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In Pseudomonas aeruginosa quorum sensing (QS), the transcriptional regulator LasR controls the expression of more than 300 genes. Several of these genes are activated indirectly via a second, subordinate QS regulator, RhlR. Conserved sequence elements upstream of individual other genes have been shown to bind LasR in vitro. To comprehensively identify all regions that are bound by LasR in vivo, we employed chromatin immunoprecipitation in conjunction with microarray analysis. We identified 35 putative promoter regions that direct the expression of up to 74 genes. In vitro DNA binding studies allowed us to distinguish between cooperative and non-cooperative LasR binding sites, and allowed us to build consensus sequences according to the mode of binding. Five promoter regions were not previously recognized as QS-controlled. Two of the associated transcript units encode proteins involved in the cold-shock response and in Psl exopolysaccharide synthesis respectively. The LasR regulon includes seven genes encoding transcriptional regulators, while secreted factors and secretion machinery are the most over-represented functional categories overall. This supports the notion that the core function of LasR is to co-ordinate the production of extracellular factors, although many of its effects on global gene expression are likely mediated indirectly by regulatory genes under its control.
Collapse
Affiliation(s)
- Kerrigan B. Gilbert
- Department of Microbiology, Oregon State University, Corvallis, OR 97331
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331
| | - Tae Hoon Kim
- Department of Genetics, Yale University, New Haven, CT 06520
| | - Rashmi Gupta
- Department of Microbiology, Oregon State University, Corvallis, OR 97331
| | - E. P. Greenberg
- Department of Microbiology, University of Washington, Seattle, WA 98195
| | - Martin Schuster
- Department of Microbiology, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
12
|
Costa ED, Cho H, Winans SC. Identification of amino acid residues of the pheromone-binding domain of the transcription factor TraR that are required for positive control. Mol Microbiol 2009; 73:341-51. [PMID: 19602141 PMCID: PMC2748755 DOI: 10.1111/j.1365-2958.2009.06755.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genes required for replication and for conjugal transfer of the Agrobacterium tumefaciens Ti plasmid are regulated by the quorum sensing transcription factor TraR, whose N-terminal domain binds to the pheromone 3-oxo-octanoylhomoserine lactone (OOHL) and whose C-terminal domain binds to specific DNA sequences called tra boxes. Here, we constructed 117 mutants, altering 103 surface-exposed amino acid residues of the TraR N-terminal domain. Each mutant was tested for activation of the traI promoter, where TraR binds to a site centred 45 nucleotides upstream of the transcription start site, and of the traM promoter, where TraR binds a site centred 66 nucleotides upstream. Alteration of 18 residues blocked activity at the traI promoter. Of these, alteration at three positions impaired TraR abundance or DNA binding, leaving 15 residues that are specifically needed for positive control. Of these 15 residues, nine also blocked or reduced activity at the traM promoter, while six had no effect. Amino acid residues required for activation of both promoters probably contact the C-terminal domain of the RNA polymerase alpha subunit, while residues required only for traI promoter activation may contact another RNA polymerase component.
Collapse
Affiliation(s)
- Esther D. Costa
- Department of Microbiology, Cornell University, Ithaca, New York 14853
| | - Hongbaek Cho
- Department of Microbiology, Cornell University, Ithaca, New York 14853
| | - Stephen C. Winans
- Department of Microbiology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
13
|
Sayut DJ, Niu Y, Sun L. Construction and enhancement of a minimal genetic and logic gate. Appl Environ Microbiol 2009; 75:637-42. [PMID: 19060164 PMCID: PMC2632134 DOI: 10.1128/aem.01684-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 11/29/2008] [Indexed: 11/20/2022] Open
Abstract
The ability of genetic networks to integrate multiple inputs in the generation of cellular responses is critical for the adaptation of cellular phenotype to distinct environments and of great interest in the construction of complex artificial circuits. To develop artificial genetic circuits that can integrate intercellular signaling molecules and commonly used inducing agents, we have constructed an artificial genetic AND gate based on the P(luxI) quorum-sensing promoter and the lac repressor. The hybrid promoter exhibited reduced basal and induced expression levels but increased expression capacity, generating clear logical responses that could be described using a simple mathematical model. The model also predicted that the AND gate's logic could be improved by altering the properties of the LuxR transcriptional activator and, in particular, by increasing its rate of transcriptional activation. Following these predictions, we were able to improve the AND gate's logic by approximately 1.5-fold using a LuxR mutant library generated by directed evolution, providing the first example of the use of mutant transcriptional activators to improve the logic of a complex regulatory circuit. In addition, detailed characterizations of the AND gate's responses shed light on how LuxR, LacI, and RNA polymerase interact to activate gene expression.
Collapse
Affiliation(s)
- Daniel J Sayut
- Department of Chemical Engineering, University of Massachusetts Amherst, 01002, USA
| | | | | |
Collapse
|
14
|
Abstract
Vibrio fischeri quorum sensing involves the LuxI and LuxR proteins. The LuxI protein generates the quorum-sensing signal N-3-oxohexanoyl-l-homoserine lactone (3OC6-HSL), and LuxR is a signal-responsive transcriptional regulator which activates the luminescence (lux) genes and 17 other V. fischeri genes. For activation of the lux genes, LuxR binds to a 20-base-pair inverted repeat, the lux box, which is centered 42.5 base pairs upstream of the transcriptional start of the lux operon. Similar lux box-like elements have been identified in only a few of the LuxR-activated V. fischeri promoters. To better understand the DNA sequence elements required for LuxR binding and to identify binding sites in LuxR-regulated promoters other than the lux operon promoter, we have systematically mutagenized the lux box and evaluated the activity of many mutants. By doing so, we have identified nucleotides that are critical for promoter activity. Interestingly, certain lux box mutations allow a 3OC6-HSL-independent LuxR activation of the lux operon promoter. We have used the results of the mutational analysis to create a consensus lux box, and we have used this consensus sequence to identify LuxR binding sites in 3OC6-HSL-activated genes for which lux boxes could not be identified previously.
Collapse
|
15
|
White CE, Winans SC. The quorum-sensing transcription factor TraR decodes its DNA binding site by direct contacts with DNA bases and by detection of DNA flexibility. Mol Microbiol 2007; 64:245-56. [PMID: 17376086 DOI: 10.1111/j.1365-2958.2007.05647.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
TraR of Agrobacterium tumefaciens is a member of the LuxR family of transcriptional regulators, and binds to specific DNA sequences (tra boxes) at target promoters of the tumour-inducing (Ti) plasmid. Each tra box has a pronounced dyad symmetry, and each subunit of a TraR dimer binds to one half of a tra box via a helix-turn-helix (HTH) DNA binding motif. Structural analysis has suggested that TraR makes extensive sequence-specific contacts with tra box DNA. In this study, we tested these predictions using synthetic self-complementary oligonucleotides containing variant tra box sequences. Some predictions made from structural analysis were confirmed, while others were shown to be incorrect. Unexpectedly, these experiments also showed that six nucleotides at the centre of the tra box that make no direct contact with TraR are nevertheless critical for high-affinity binding and probably act by facilitating a previously described DNA bend. Variant tra boxes were also tested for transcription activity in vivo. Most transcription assays reflected in vitro binding assays. However, alterations of the outermost nucleotides had little effect on TraR binding but blocked transcription, probably by altering an overlapping -35 promoter motif.
Collapse
Affiliation(s)
- Catharine E White
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
16
|
Qin N, Callahan SM, Dunlap PV, Stevens AM. Analysis of LuxR regulon gene expression during quorum sensing in Vibrio fischeri. J Bacteriol 2007; 189:4127-34. [PMID: 17400743 PMCID: PMC1913387 DOI: 10.1128/jb.01779-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulation of the lux operon (luxICDABEG) of Vibrio fischeri has been intensively studied as a model for quorum sensing in proteobacteria. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis previously identified several non-Lux proteins in V. fischeri MJ-100 whose expression was dependent on LuxR and 3-oxo-hexanoyl-l-homoserine lactone (3-oxo-C6-HSL). To determine if the LuxR-dependent regulation of the genes encoding these proteins was due to direct transcriptional control by LuxR and 3-oxo-C6-HSL or instead was due to indirect control via an unidentified regulatory element, promoters of interest were cloned into a lacZ reporter and tested for their LuxR and 3-oxo-C6-HSL dependence in recombinant Escherichia coli. The promoters for qsrP, acfA, and ribB were found to be directly activated via LuxR-3-oxo-C6-HSL. The sites of transcription initiation were established via primer extension analysis. Based on this information and the position of the lux box-binding site near position -40, all three promoters appear to have a class II-type promoter structure. In order to more fully characterize the LuxR regulon in V. fischeri MJ-100, real-time reverse transcription-PCR was used to study the temporal expression of qsrP, acfA, and ribB during the exponential and stationary phases of growth, and electrophoretic mobility shift assays were used to compare the binding affinities of LuxR to the promoters under investigation. Taken together, the results demonstrate that regulation of the production of QsrP, RibB, and AcfA is controlled directly by LuxR at the level of transcription, thereby establishing that there is a LuxR regulon in V. fischeri MJ-100 whose genes are coordinately expressed during mid-exponential growth.
Collapse
Affiliation(s)
- Nan Qin
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
17
|
Kedzierska B, Szambowska A, Herman-Antosiewicz A, Lee DJ, Busby SJ, Wegrzyn G, Thomas MS. The C-terminal domain of the Escherichia coli RNA polymerase alpha subunit plays a role in the CI-dependent activation of the bacteriophage lambda pM promoter. Nucleic Acids Res 2007; 35:2311-20. [PMID: 17389649 PMCID: PMC1874639 DOI: 10.1093/nar/gkm123] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 02/14/2007] [Accepted: 02/14/2007] [Indexed: 11/26/2022] Open
Abstract
The bacteriophage lambda p(M) promoter is required for maintenance of the lambda prophage in Escherichia coli, as it facilitates transcription of the cI gene, encoding the lambda repressor (CI). CI levels are maintained through a transcriptional feedback mechanism whereby CI can serve as an activator or a repressor of p(M). CI activates p(M) through cooperative binding to the O(R)1 and O(R)2 sites within the O(R) operator, with the O(R)2-bound CI dimer making contact with domain 4 of the RNA polymerase sigma subunit (sigma(4)). Here we demonstrate that the 261 and 287 determinants of the C-terminal domain of the RNA polymerase alpha subunit (alphaCTD), as well as the DNA-binding determinant, are important for CI-dependent activation of p(M). We also show that the location of alphaCTD at the p(M) promoter changes in the presence of CI. Thus, in the absence of CI, one alphaCTD is located on the DNA at position -44 relative to the transcription start site, whereas in the presence of CI, alphaCTD is located at position -54, between the CI-binding sites at O(R)1 and O(R)2. These results suggest that contacts between CI and both alphaCTD and sigma are required for efficient CI-dependent activation of p(M).
Collapse
Affiliation(s)
- Barbara Kedzierska
- Department of Molecular Biology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK and School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Anna Szambowska
- Department of Molecular Biology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK and School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Anna Herman-Antosiewicz
- Department of Molecular Biology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK and School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - David J. Lee
- Department of Molecular Biology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK and School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Stephen J.W. Busby
- Department of Molecular Biology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK and School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Grzegorz Wegrzyn
- Department of Molecular Biology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK and School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Mark S. Thomas
- Department of Molecular Biology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK and School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
18
|
Nasser W, Reverchon S. New insights into the regulatory mechanisms of the LuxR family of quorum sensing regulators. Anal Bioanal Chem 2006; 387:381-90. [PMID: 16953322 DOI: 10.1007/s00216-006-0702-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 07/17/2006] [Accepted: 07/20/2006] [Indexed: 12/24/2022]
Abstract
Bacteria use small signal molecules, referred to as autoinducers, in order to monitor their population density and coordinate gene expression in a process named quorum sensing. In Gram-negative bacteria, acylated homoserine lactones are the most common autoinducer used for cell-to-cell communication. Increasing evidence that many different functions are controlled by acylated homoserine lactone quorum sensing has stimulated intensive investigations into the physiology, molecular biology and biochemistry that underlie this process. Here we review our current understanding of the molecular mechanisms used by the transcriptional regulators responsive to acylated homoserine lactone autoinducers to control gene expression and the structural modifications induced by acylated homoserine lactones binding specifically on these regulators.
Collapse
Affiliation(s)
- William Nasser
- Unité de Microbiologie et Génétique, UMR CNRS-INSA-Université Lyon 1 5122, Domaine Scientifique de la Doua, 10 rue R. Dubois, bât A. Lwoff, 69622, Villeurbanne Cedex, France.
| | | |
Collapse
|
19
|
Castang S, Reverchon S, Gouet P, Nasser W. Direct evidence for the modulation of the activity of the Erwinia chrysanthemi quorum-sensing regulator ExpR by acylhomoserine lactone pheromone. J Biol Chem 2006; 281:29972-87. [PMID: 16831870 DOI: 10.1074/jbc.m601666200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Erwinia chrysanthemi production of pectic enzymes is controlled by a complex network involving several regulators. Among them is ExpR, the quorum-sensing regulatory protein. ExpR is a member of the LuxR family of transcriptional regulators, the activity of which is modulated by the binding of diffusible N-acylhomoserine lactone pheromones to the N-terminal receptor site of the proteins. Previous in vitro DNA-ExpR binding studies suggested that ExpR might activate pectic enzyme production and repress its cognate gene expression. This report presents genetic evidence that ExpR represses its own gene expression in the absence of pheromone and that the addition of pheromone promotes concentration-dependent de-repression. In vitro experiments show that (i) ExpR binds target DNA in the absence of pheromone and that the pheromone dissociates ExpR-DNA complexes, (ii) ExpR binds target DNA in a non-cooperative fashion, and (iii) two molecules of pheromone are bound per molecule of ExpR dimer. In the absence of N-(3-oxo-hexanoyl)-homoserine lactone, ExpR prevents RNA polymerase access to the expR promoter, thereby directly repressing transcription initiation. The presence of pheromone renders the expR promoter accessible to RNA polymerase and results in the de-repression of transcription initiation. Overall we have established that there is a direct modulation of the repressive activity of a LuxR family regulator by a pheromone. Furthermore, site-directed mutagenesis experiments strongly suggest that the ExpR residues Leu-19, Tyr-31, and Ser-125 are involved in the transduction of conformational changes induced by ligand binding, and this provides new insights into the structure-function relationship of this bacterial regulator family.
Collapse
Affiliation(s)
- Sandra Castang
- Unité de Microbiologie et Génétique, Unité Mixte de Recherche CNRS-Université Lyon 1-Institut National des Sciences Appliquées de Lyon 5122, Domaine Scientifique de la Doua, bâtiment André Lwoff 10 rue Raphaël Dubois, 69622 Villeurbanne Cedex, France
| | | | | | | |
Collapse
|
20
|
Barnard AM, Salmond GP. Quorum Sensing: The Complexities of Chemical Communication between Bacteria. ACTA ACUST UNITED AC 2006. [DOI: 10.1159/000089986] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Abstract
RcsC, RcsB, and RcsA were first identified as a sensor kinase, a response regulator, and an auxiliary regulatory protein, respectively, regulating the genes of capsular polysaccharide synthesis. Recent advances have demonstrated that these proteins are part of a complex phosphorelay, in which phosphate travels from the histidine kinase domain in RcsC to a response regulator domain in the same protein; from there to a phosphotransfer protein, RcsD; and from there to RcsB. In addition to capsule synthesis, which requires the unstable regulatory protein RcsA, RcsB also stimulates transcription of a small RNA, RprA; the cell division gene ftsZ; and genes encoding membrane and periplasmic proteins, including the osmotically inducible genes osmB and osmC. The Rcs system appears to play an important role in the later stages of biofilm development; induction of Rcs signaling by surfaces is consistent with this role.
Collapse
Affiliation(s)
- Nadim Majdalani
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
22
|
White CE, Winans SC. Identification of amino acid residues of the Agrobacterium tumefaciens quorum-sensing regulator TraR that are critical for positive control of transcription. Mol Microbiol 2005; 55:1473-86. [PMID: 15720554 DOI: 10.1111/j.1365-2958.2004.04482.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The LuxR-type quorum-sensing transcription factor TraR regulates replication and conjugal transfer of the tumour-inducing (Ti) plasmid in the plant pathogen Agrobacterium tumefaciens. TraR is a two-domain protein with an N-terminal domain that binds to the quorum-sensing signal N-3-oxooctanoyl- l-homoserine lactone (OOHL) and a C-terminal domain that binds to specific DNA sequences called tra boxes. TraR-OOHL complexes form homodimers that activate transcription of at least seven promoters on the Ti plasmid. At five promoters, a tra box overlaps the binding site of core RNA polymerase (class II promoters), while in the other two promoters, this site is located farther upstream (class I promoters). In this study, we performed saturating point mutagenesis of the surface residues of the TraR C-terminal domain. Each mutant was tested for proteolytic stability and transcription activity in vivo, and for DNA binding activity in vitro. Mutants of TraR with single substitutions at positions W184, V187, K189, E193Q, V197 and D217 have wild-type levels of accumulation and DNA binding, but are defective in transcription of both types of promoters. These residues constitute a patch on the surface of the DNA-binding domain. We propose that this patch is an activating region that recruits RNA polymerase to TraR-dependent promoters through direct contact. As residues of this patch are critical for activation at both a class I and a class II promoter, we predict that these residues may contact the C-terminal domain of the RNA polymerase alpha-subunit.
Collapse
Affiliation(s)
- Catharine E White
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
23
|
Qin Y, Luo ZQ, Farrand SK. Domains formed within the N-terminal region of the quorum-sensing activator TraR are required for transcriptional activation and direct interaction with RpoA from agrobacterium. J Biol Chem 2004; 279:40844-51. [PMID: 15237104 DOI: 10.1074/jbc.m405299200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TraR, a quorum-sensing activator, induces transcription from its binding site, the tra-box, located upstream of Ti plasmid target promoters. TraR activated expression of a lacZ reporter in Escherichia coli only when RpoAAt from Agrobacterium tumefaciens was co-expressed. As assessed by gel retardation assays RpoAAt, but not RpoAEc, formed a ternary complex with TraR and a tra-box probe in vitro. TraR formed similar ternary complexes with alphaCTDAt but not with NTDAt, the C- and N-terminal segments of RpoAAt. As measured by surface plasmon resonance refractometry, TraR interacted directly with RpoAAt with an affinity about five times greater than that observed for its interaction with RpoAEc. The activator interacted with alphaCTDAt with kinetics and affinities similar to those of the full-sized -subunit. Positive control (PC) mutations at Asp-10 and Gly-123 of TraR did not affect DNA binding but greatly decreased the TraR-RpoAAt interaction. These two residues combine to form two patches on the activator, one of which may be involved in interaction with RpoA. When co-expressed, mutants of TraR with substitutions at Asp-10 complementing mutants with substitutions at Gly-123 for gene activation in an allele-specific manner. Co-expression studies with TraR and its PC mutants, and also with complementary PC alleles of TraR, coupled with three-dimensional structure are consistent with a hypothesis that both Asp-10/Gly-123 patches are required for activator function.
Collapse
Affiliation(s)
- Yinping Qin
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|