1
|
Rutkiewicz M, Nogues I, Witek W, Angelaccio S, Contestabile R, Ruszkowski M. Insights into the substrate specificity, structure, and dynamics of plant histidinol-phosphate aminotransferase (HISN6). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:759-773. [PMID: 36842242 DOI: 10.1016/j.plaphy.2023.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Histidinol-phosphate aminotransferase is the sixth protein (hence HISN6) in the histidine biosynthetic pathway in plants. HISN6 is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the reversible conversion of imidazole acetol phosphate into L-histidinol phosphate (HOLP). Here, we show that plant HISN6 enzymes are closely related to the orthologs from Chloroflexota. The studied example, HISN6 from Medicago truncatula (MtHISN6), exhibits a surprisingly high affinity for HOLP, which is much higher than reported for bacterial homologs. Moreover, unlike the latter, MtHISN6 does not transaminate phenylalanine. High-resolution crystal structures of MtHISN6 in the open and closed states, as well as the complex with HOLP and the apo structure without PLP, bring new insights into the enzyme dynamics, pointing at a particular role of a string-like fragment that oscillates near the active site and participates in the HOLP binding. When MtHISN6 is compared to bacterial orthologs with known structures, significant differences arise in or near the string region. The high affinity of MtHISN6 appears linked to the particularly tight active site cavity. Finally, a virtual screening against a library of over 1.3 mln compounds revealed three sites in the MtHISN6 structure with the potential to bind small molecules. Such compounds could be developed into herbicides inhibiting plant HISN6 enzymes absent in animals, which makes them a potential target for weed control agents.
Collapse
Affiliation(s)
- Maria Rutkiewicz
- Department of Structural Biology of Eukaryotes, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Isabel Nogues
- Research Institute on Terrestrial Ecosystems, National Research Council, Monterotondo Scalo, Rome, Italy
| | - Wojciech Witek
- Department of Structural Biology of Eukaryotes, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Sebastiana Angelaccio
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Rome, Italy
| | - Roberto Contestabile
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Rome, Italy
| | - Milosz Ruszkowski
- Department of Structural Biology of Eukaryotes, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
| |
Collapse
|
2
|
Meshram RJ, Goundge MB, Kolte BS, Gacche RN. An in silico approach in identification of drug targets in Leishmania: A subtractive genomic and metabolic simulation analysis. Parasitol Int 2018; 69:59-70. [PMID: 30503238 DOI: 10.1016/j.parint.2018.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/17/2018] [Accepted: 11/28/2018] [Indexed: 12/26/2022]
Abstract
Leishmaniasis is one of the major health issue in developing countries. The current therapeutic regimen for this disease is less effective with lot of adverse effects thereby warranting an urgent need to develop not only new and selective drug candidates but also identification of effective drug targets. Here we present subtractive genomics procedure for identification of putative drug targets in Leishmania. Comprehensive druggability analysis has been carried out in the current work for identified metabolic pathways and drug targets. We also demonstrate effective metabolic simulation methodology to pinpoint putative drug targets in threonine biosynthesis pathway. Metabolic simulation data from the current study indicate that decreasing flux through homoserine kinase reaction can be considered as a good therapeutic opportunity. The data from current study is expected to show new avenue for designing experimental strategies in search of anti-leishmanial agents.
Collapse
Affiliation(s)
- Rohan J Meshram
- Bioinformatics Centre, Savitribai Phule Pune University, Pune 411007, India.
| | - Mayuri B Goundge
- Bioinformatics Centre, Savitribai Phule Pune University, Pune 411007, India
| | - Baban S Kolte
- Bioinformatics Centre, Savitribai Phule Pune University, Pune 411007, India; Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Rajesh N Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| |
Collapse
|
3
|
The Uptake and Metabolism of Amino Acids, and Their Unique Role in the Biology of Pathogenic Trypanosomatids. Pathogens 2018; 7:pathogens7020036. [PMID: 29614775 PMCID: PMC6027508 DOI: 10.3390/pathogens7020036] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 01/24/2023] Open
Abstract
Trypanosoma brucei, as well as Trypanosoma cruzi and more than 20 species of the genus Leishmania, form a group of flagellated protists that threaten human health. These organisms are transmitted by insects that, together with mammals, are their natural hosts. This implies that during their life cycles each of them faces environments with different physical, chemical, biochemical, and biological characteristics. In this work we review how amino acids are obtained from such environments, how they are metabolized, and how they and some of their intermediate metabolites are used as a survival toolbox to cope with the different conditions in which these parasites should establish the infections in the insects and mammalian hosts.
Collapse
|
4
|
Sharma M, Shaikh N, Yadav S, Singh S, Garg P. A systematic reconstruction and constraint-based analysis of Leishmania donovani metabolic network: identification of potential antileishmanial drug targets. MOLECULAR BIOSYSTEMS 2018; 13:955-969. [PMID: 28367572 DOI: 10.1039/c6mb00823b] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Visceral leishmaniasis, a lethal parasitic disease, is caused by the protozoan parasite Leishmania donovani. The absence of an effective vaccine, drug toxicity and parasite resistance necessitates the identification of novel drug targets. Reconstruction of genome-scale metabolic models and their simulation has been established as an important tool for systems-level understanding of a microorganism's metabolism. In this work, amalgamating the tools and techniques of computational systems biology with rigorous manual curation, a constraint-based metabolic model for Leishmania donovani BPK282A1 has been developed. New functional annotations for 18 formerly hypothetical or erroneously annotated genes (encountered during iterative refinement of the model) have been proposed. Further, to formulate an accurate biomass objective function, experimental determination of previously uncharacterized biomass constituents was performed. The developed model is a highly compartmentalized metabolic model, comprising 1159 reactions, 1135 metabolites and 604 genes. The model exhibited around 76% accuracy for the prediction of experimental phenotypes of gene knockout studies and drug inhibition assays. Employing in silico gene knockout studies, we identified 28 essential genes with negligible sequence identity to the human proteins. Moreover, by dissecting the functional interdependencies of metabolic pathways, 70 synthetic lethal pairs were identified. Finally, in order to delineate stage-specific metabolism, gene-expression data of the amastigote stage residing in human macrophages were integrated into the model. By comparing the flux distribution, we illustrated the stage-specific differences in metabolism and environmental conditions that are in good agreement with the experimental findings. The developed model can serve as a highly enriched knowledgebase of legacy data and an important tool for generating experimentally verifiable hypotheses.
Collapse
Affiliation(s)
- Mahesh Sharma
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Punjab-160062, India.
| | | | | | | | | |
Collapse
|
5
|
Wen J, Nowicki C, Blankenfeldt W. Structural basis for the relaxed substrate selectivity of Leishmania mexicana broad specificity aminotransferase. Mol Biochem Parasitol 2015; 202:34-7. [PMID: 26456583 DOI: 10.1016/j.molbiopara.2015.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 11/29/2022]
Abstract
Leishmania species are early branching eukaryotic parasites that cause difficult-to-treat tissue-damaging diseases known as leishmaniases. As a hallmark of their parasitic lifestyle, Leishmaniae express a number of aminotransferases that are involved in important cellular processes and exhibit broader substrate specificity than their mammalian host's counterparts. Here, we have determined the crystal structure of the broad specificity aminotransferase from Leishmania mexicana (LmexBSAT) at 1.91Å resolution. LmexBSAT is a homodimer and belongs to the α-branch of family-I aminotransferases. Despite the fact that the protein was crystallized in the absence of substrates and has lost the pyridoxal-5'-phosphate (PLP) cofactor during crystallization, the structure resembles the closed, ligand-bound form of related enzymes such as chicken cytosolic aspartate aminotransferase. Its broader substrate specificity seems to be rooted in increased flexibility of a substrate-binding arginine (R291) and the interactions of this residue with the N-terminus of the second chain of the dimer.
Collapse
Affiliation(s)
- Jiang Wen
- Technische Universität Dortmund, Fakultät Chemie, Otto-Hahn-Str. 6, 44227 Dortmund, Germany; Physical Biochemistry, Max Planck Institute for Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Cristina Nowicki
- IQUIFIB (CONICET-Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires), Junín 956, 1113 Buenos Aires, Argentina.
| | - Wulf Blankenfeldt
- Physical Biochemistry, Max Planck Institute for Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany.
| |
Collapse
|
6
|
Functional characterization of stage-specific aminotransferases from trypanosomatids. Mol Biochem Parasitol 2009; 166:172-82. [DOI: 10.1016/j.molbiopara.2009.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 03/20/2009] [Accepted: 04/02/2009] [Indexed: 11/19/2022]
|
7
|
Marciano D, Llorente C, Maugeri DA, de la Fuente C, Opperdoes F, Cazzulo JJ, Nowicki C. Biochemical characterization of stage-specific isoforms of aspartate aminotransferases from Trypanosoma cruzi and Trypanosoma brucei. Mol Biochem Parasitol 2008; 161:12-20. [DOI: 10.1016/j.molbiopara.2008.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 05/20/2008] [Accepted: 05/21/2008] [Indexed: 12/01/2022]
|
8
|
Nowicki C, Cazzulo JJ. Aromatic amino acid catabolism in trypanosomatids. Comp Biochem Physiol A Mol Integr Physiol 2007; 151:381-390. [PMID: 17433885 DOI: 10.1016/j.cbpa.2007.03.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 03/07/2007] [Accepted: 03/08/2007] [Indexed: 11/25/2022]
Abstract
Trypanosomatids cause important human diseases, like sleeping sickness, Chagas disease, and the leishmaniases. Unlike in the mammalian host, the metabolism of aromatic amino acids is a very simple pathway in these parasites. Trypanosoma brucei and Trypanosoma cruzi transaminate the three aromatic amino acids, the resulting 2-oxo acids being reduced to the corresponding lactate derivatives and excreted. In T. cruzi, two enzymes are involved in this process: a tyrosine aminotransferase (TAT), which despite a high sequence similarity with the mammalian enzyme, has a different substrate specificity; and an aromatic L-2-hydroxyacid dehydrogenase (AHADH), which belongs to the subfamily of the cytosolic malate dehydrogenases (MDHs), yet has no MDH activity. In T. cruzi AHADH the substitution of Ala102 for Arg enables AHADH to reduce oxaloacetate. In the members of the 2-hydroxyacid dehydrogenases family, the residue at this position is known to be responsible for substrate specificity. T. cruzi does not possess a cytosolic MDH but contains a mitochondrial and a glycosomal MDH; by contrast T. brucei and Leishmania spp. possess a cytosolic MDH in addition to glycosomal and mitochondrial isozymes. Although Leishmania mexicana also transaminates aromatic amino acids through a broad specificity aminotransferase, the latter presents low sequence similarity with TATs, and this parasite does not seem to have an enzyme equivalent to T. cruzi AHADH. Therefore, these closely related primitive eukaryotes have developed aromatic amino acid catabolism systems using different enzymes and probably for different metabolic purposes.
Collapse
Affiliation(s)
- Cristina Nowicki
- IQUIFIB/Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, CP1113, Argentina.
| | - Juan J Cazzulo
- IIB-INTECH, Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín-CONICET, Av. Gral. Paz y Albarellos, INTI, edificio 24, 1650 San Martín, Buenos Aires, Argentina
| |
Collapse
|
9
|
Mittal MK, Misra S, Owais M, Goyal N. Expression, purification, and characterization of Leishmania donovani trypanothione reductase in Escherichia coli. Protein Expr Purif 2005; 40:279-86. [PMID: 15766869 DOI: 10.1016/j.pep.2004.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2004] [Revised: 12/08/2004] [Indexed: 11/22/2022]
Abstract
Trypanothione reductase (TR) is an NADPH-dependent flavoprotein oxidoreductase central to thiol metabolism in all the trypanosomatids including Leishmania. The unique presence of this enzyme in trypanosomatids and absence in mammalian host make this enzyme an attractive target for the development of the antileishmanials. Complete open reading frame encoding trypanothione reductase from Leishmania donovani (Dd8 strain, causative agent of Indian visceral leishmaniasis) was cloned, sequenced, and expressed in Escherichia coli strain BL21 (DE3) as glutathione S-transferase fusion protein. The conditions were developed for overexpression of fusion protein in soluble form and purification of the recombinant protein to homogeneity. The recombinant LdTR was 54.68 kDa in size, dimeric in nature, and reduces oxidized trypanothione to reduced form. The kinetic parameters for trypanothione disulfide are K(m), 50 microM; k(cat), 18,181 min(-1); and k(cat)/K(m), 6.06x10(6) M(-1) s(-1). The yield of recombinant LdTR was approximately 16 mg/L bacterial culture and accounted for 6% of the total soluble proteins. The expressed protein was inhibited by known TR inhibitors as well as by SbIII, the known antileishmanial compound. This is the first report of large-scale production of any leishmanial TR in E. coli.
Collapse
Affiliation(s)
- Mukul K Mittal
- Division of Biochemistry, Central Drug Research Institute, Lucknow, India
| | | | | | | |
Collapse
|