1
|
Malcı K, Li IS, Kisseroudis N, Ellis T. Modulating Microbial Materials - Engineering Bacterial Cellulose with Synthetic Biology. ACS Synth Biol 2024; 13:3857-3875. [PMID: 39509658 DOI: 10.1021/acssynbio.4c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The fusion of synthetic biology and materials science offers exciting opportunities to produce sustainable materials that can perform programmed biological functions such as sensing and responding or enhance material properties through biological means. Bacterial cellulose (BC) is a unique material for this challenge due to its high-performance material properties and ease of production from culturable microbes. Research in the past decade has focused on expanding the benefits and applications of BC through many approaches. Here, we explore how the current landscape of BC-based biomaterials is being shaped by progress in synthetic biology. As well as discussing how it can aid production of more BC and BC with tailored material properties, we place special emphasis on the potential of using BC for engineered living materials (ELMs); materials of a biological nature designed to carry out specific tasks. We also explore the role of 3D bioprinting being used for BC-based ELMs and highlight specific opportunities that this can bring. As synthetic biology continues to advance, it will drive further innovation in BC-based materials and ELMs, enabling many new applications that can help address problems in the modern world, in both biomedicine and many other application fields.
Collapse
Affiliation(s)
- Koray Malcı
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
| | - Ivy S Li
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
| | - Natasha Kisseroudis
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Tom Ellis
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
2
|
Lasagni F, Cassanelli S, Gullo M. How carbon sources drive cellulose synthesis in two Komagataeibacter xylinus strains. Sci Rep 2024; 14:20494. [PMID: 39227724 PMCID: PMC11371920 DOI: 10.1038/s41598-024-71648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024] Open
Abstract
Bacterial cellulose synthesis from defined media and waste products has attracted increasing interest in the circular economy context for sustainable productions. In this study, a glucose dehydrogenase-deficient Δgdh K2G30 strain of Komagataeibacter xylinus was obtained from the parental wild type through homologous recombination. Both strains were grown in defined substrates and cheese whey as an agri-food waste to assess the effect of gene silencing on bacterial cellulose synthesis and carbon source metabolism. Wild type K2G30 boasted higher bacterial cellulose yields when grown in ethanol-based medium and cheese whey, although showing an overall higher D-gluconic acid synthesis. Conversely, the mutant Δgdh strain preferred D-fructose, D-mannitol, and glycerol to boost bacterial cellulose production, while displaying higher substrate consumption rates and a lower D-gluconic acid synthesis. This study provides an in-depth investigation of two K. xylinus strains, unravelling their suitability for scale-up BC production.
Collapse
Affiliation(s)
- Federico Lasagni
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Stefano Cassanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy.
| | - Maria Gullo
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy.
| |
Collapse
|
3
|
Núñez D, Oyarzún P, González S, Martínez I. Toward biomanufacturing of next-generation bacterial nanocellulose (BNC)-based materials with tailored properties: A review on genetic engineering approaches. Biotechnol Adv 2024; 74:108390. [PMID: 38823654 DOI: 10.1016/j.biotechadv.2024.108390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/01/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Bacterial nanocellulose (BNC) is a biopolymer that is drawing significant attention for a wide range of applications thanks to its unique structure and excellent properties, such as high purity, mechanical strength, high water holding capacity and biocompatibility. Nevertheless, the biomanufacturing of BNC is hindered due to its low yield, the instability of microbial strains and cost limitations that prevent it from being mass-produced on a large scale. Various approaches have been developed to address these problems by genetically modifying strains and to produce BNC-based biomaterials with added value. These works are summarized and discussed in the present article, which include the overexpression and knockout of genes related and not related with the nanocellulose biosynthetic operon, the application of synthetic biology approaches and CRISPR/Cas techniques to modulate BNC biosynthesis. Further discussion is provided on functionalized BNC-based biomaterials with tailored properties that are incorporated in-vivo during its biosynthesis using genetically modified strains either in single or co-culture systems (in-vivo manufacturing). This novel strategy holds potential to open the road toward cost-effective production processes and to find novel applications in a variety of technology and industrial fields.
Collapse
Affiliation(s)
- Dariela Núñez
- Departamento de Química Ambiental, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile; Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile.
| | - Patricio Oyarzún
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile
| | - Sebastián González
- Laboratorio de Biotecnología y Materiales Avanzados, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Alonso de Ribera 2850, Concepción, Chile
| | - Irene Martínez
- Centre for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago, Chile; Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, Santiago, Chile.
| |
Collapse
|
4
|
Kolesovs S, Neiberts K, Semjonovs P, Beluns S, Platnieks O, Gaidukovs S. Evaluation of hydrolyzed cheese whey medium for enhanced bacterial cellulose production by Komagataeibacter rhaeticus MSCL 1463. Biotechnol J 2024; 19:e2300529. [PMID: 38896375 DOI: 10.1002/biot.202300529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 06/21/2024]
Abstract
Industrial production of bacterial cellulose (BC) remains challenging due to significant production costs, including the choice of appropriate growth media. This research focuses on optimization of cheese whey (CW) based media for enhanced production of BC. Two modifications were made for CW medium for BC production with Komagataeibacter rhaeticus MSCL 1463. BC production in a medium of enzymatically hydrolyzed CW (final concentration of monosaccharides: glucose 0.13 g L-1, galactose 1.24 g L-1) was significantly enhanced, achieving a yield of 4.95 ± 0.25 g L-1, which markedly surpasses the yields obtained with the standard Hestrin-Schramm (HS) medium containing 20 g L-1 glucose and acid-hydrolyzed CW (final concentration of monosaccharides: glucose 1.15 g L-1, galactose 2.01 g L-1), which yielded 3.29 ± 0.12 g L-1 and 1.01 ± 0.14 g L-1, respectively. We explored the synergistic effects of combining CW with various agricultural by-products (corn steep liquor (CSL), apple juice, and sugar beet molasses). Notably, the supplementation with 15% corn steep liquor significantly enhanced BC productivity, achieving 6.97 ± 0.17 g L-1. A comprehensive analysis of the BC's physical and mechanical properties indicated significant alterations in fiber diameter (62-167 nm), crystallinity index (71.1-85.9%), and specific strength (35-82 MPa × cm3 g-1), as well as changes in the density (1.1-1.4 g cm-3). Hydrolyzed CW medium supplemented by CSL could be used for effective production of BC.
Collapse
Affiliation(s)
- Sergejs Kolesovs
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, Riga, Latvia
| | - Kristaps Neiberts
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, Riga, Latvia
| | - Pavels Semjonovs
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, Riga, Latvia
| | - Sergejs Beluns
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
| | - Oskars Platnieks
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
| | - Sergejs Gaidukovs
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
| |
Collapse
|
5
|
Potočnik V, Gorgieva S, Trček J. From Nature to Lab: Sustainable Bacterial Cellulose Production and Modification with Synthetic Biology. Polymers (Basel) 2023; 15:3466. [PMID: 37631523 PMCID: PMC10459212 DOI: 10.3390/polym15163466] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Bacterial cellulose (BC) is a macromolecule with versatile applications in medicine, pharmacy, biotechnology, cosmetology, food and food packaging, ecology, and electronics. Although many bacteria synthesize BC, the most efficient BC producers are certain species of the genera Komagataeibacter and Novacetimonas. These are also food-grade bacteria, simplifying their utilization at industrial facilities. The basic principles of BC synthesis are known from studies of Komagataeibacter xylinus, which became a model species for studying BC at genetic and molecular levels. Cellulose can also be of plant origin, but BC surpasses its purity. Moreover, the laboratory production of BC enables in situ modification into functionalized material with incorporated molecules during its synthesis. The possibility of growing Komagataeibacter and Novacetimonas species on various organic substrates and agricultural and food waste compounds also follows the green and sustainable economy principles. Further intervention into BC synthesis was enabled by genetic engineering tools, subsequently directing it into the field of synthetic biology. This review paper presents the development of the fascinating field of BC synthesis at the molecular level, seeking sustainable ways for its production and its applications towards genetic modifications of bacterial strains for producing novel types of living biomaterials using the flexible metabolic machinery of bacteria.
Collapse
Affiliation(s)
- Vid Potočnik
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia;
| | - Selestina Gorgieva
- Faculty of Mechanical Engineering, Institute of Engineering Materials and Design, University of Maribor, 2000 Maribor, Slovenia;
| | - Janja Trček
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia;
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
6
|
Wünsche J, Schmid J. Acetobacteraceae as exopolysaccharide producers: Current state of knowledge and further perspectives. Front Bioeng Biotechnol 2023; 11:1166618. [PMID: 37064223 PMCID: PMC10097950 DOI: 10.3389/fbioe.2023.1166618] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
Exopolysaccharides formation against harmful biotic and abiotic environmental influences is common among bacteria. By using renewable resources as a substrate, exopolysaccharides represent a sustainable alternative to fossil-based polymers as rheological modifiers in food, cosmetics, and pharmaceutical applications. The family of Acetobacteraceae, traditionally associated with fermented food products, has demonstrated their ability to produce a wide range of structural and functional different polymers with interesting physicochemical properties. Several strains are well known for their production of homopolysaccharides of high industrial importance, such as levan and bacterial cellulose. Moreover, some Acetobacteraceae are able to form acetan-like heteropolysaccharides with a high structural resemblance to xanthan. This mini review summarizes the current knowledge and recent trends in both homo- and heteropolysaccharide production by Acetobacteraceae.
Collapse
|
7
|
Martirani-VonAbercron SM, Pacheco-Sánchez D. Bacterial cellulose: A highly versatile nanomaterial. Microb Biotechnol 2023; 16:1174-1178. [PMID: 36892420 DOI: 10.1111/1751-7915.14243] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/10/2023] Open
Affiliation(s)
- Sophie-Marie Martirani-VonAbercron
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Daniel Pacheco-Sánchez
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
8
|
Kolesovs S, Ruklisha M, Semjonovs P. Synthesis of bacterial cellulose by Komagataeibacter rhaeticus MSCL 1463 on whey. 3 Biotech 2023; 13:105. [PMID: 36875957 PMCID: PMC9975128 DOI: 10.1007/s13205-023-03528-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Production costs of bacterial cellulose (BC) can be reduced using alternative fermentation media, e. g., various agricultural by-products including whey. This study focuses on whey as an alternative growth medium for BC production by Komagataeibacter rhaeticus MSCL 1463. It was shown that the highest BC production on whey was 1.95 ± 0.15 g/L, which is approximately 40-50% lower that BC production on standard HS media with glucose. It was also confirmed that K. rhaeticus MSCL 1463 can utilise both lactose and galactose as the sole C source in the modified HS medium. Different whey pre-treatment methods showed that the highest BC synthesis with K. rhaeticus MSCL 1463 was achieved in undiluted whey after standard pre-treatment procedure. Moreover, BC yield from substrate on whey was significantly higher (34.33 ± 1.21%) compared to the HS medium (16.56 ± 0.64%), which shows that whey can be used as a potential fermentation medium for BC production.
Collapse
Affiliation(s)
- Sergejs Kolesovs
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, Ojara Vaciesa Street 4, Riga, 1004 Latvia
| | - Maija Ruklisha
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, Ojara Vaciesa Street 4, Riga, 1004 Latvia
| | - Pavels Semjonovs
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, Ojara Vaciesa Street 4, Riga, 1004 Latvia
| |
Collapse
|
9
|
Rocha ARFDS, Venturim BC, Ellwanger ERA, Pagnan CS, Silveira WBD, Martin JGP. Bacterial cellulose: Strategies for its production in the context of bioeconomy. J Basic Microbiol 2023; 63:257-275. [PMID: 36336640 DOI: 10.1002/jobm.202200280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/14/2022] [Accepted: 10/22/2022] [Indexed: 11/09/2022]
Abstract
Bacterial cellulose has advantages over plant-derived cellulose, which make its use for industrial applications easier and more profitable. Its intrinsic properties have been stimulating the global biopolymer market, with strong growth expectations in the coming years. Several bacterial species are capable of producing bacterial cellulose under different culture conditions; in this context, strategies aimed at metabolic engineering and several possibilities of carbon sources have provided opportunities for the bacterial cellulose's biotechnological exploration. In this article, an overview of biosynthesis pathways in different carbon sources for the main producing microorganisms, metabolic flux under different growth conditions, and their influence on the structural and functional characteristics of bacterial cellulose is provided. In addition, the main industrial applications and ways to reduce costs and optimize its production using alternative sources are discussed, contributing to new insights on the exploitation of this biomaterial in the context of the bioeconomy.
Collapse
Affiliation(s)
- André R F da Silva Rocha
- Microbiology of Fermented Products Laboratory (FERMICRO), Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Bárbara Côgo Venturim
- Microbiology of Fermented Products Laboratory (FERMICRO), Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Elena R A Ellwanger
- Graduate Program in Design (PPGD), Universidade do Estado de Minas Gerais (UEMG), Belo Horizonte, Brazil
| | - Caroline S Pagnan
- Graduate Program in Design (PPGD), Universidade do Estado de Minas Gerais (UEMG), Belo Horizonte, Brazil
| | - Wendel B da Silveira
- Physiology of Microorganisms Laboratory (LabFis), Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - José Guilherme P Martin
- Microbiology of Fermented Products Laboratory (FERMICRO), Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
10
|
Płoska J, Garbowska M, Pluta A, Stasiak-Różańska L. Bacterial cellulose - innovative biopolymer and possibilities of its applications in dairy industry. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
Bacterial cellulose production, functionalization, and development of hybrid materials using synthetic biology. Polym J 2022. [DOI: 10.1038/s41428-021-00606-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
R R, Philip E, Thomas D, Madhavan A, Sindhu R, Binod P, Varjani S, Awasthi MK, Pandey A. Bacterial nanocellulose: engineering, production, and applications. Bioengineered 2021; 12:11463-11483. [PMID: 34818969 PMCID: PMC8810168 DOI: 10.1080/21655979.2021.2009753] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 11/28/2022] Open
Abstract
Bacterial nanocellulose (BNC) has been emerging as a biomaterial of considerable significance in a number of industrial sectors because of its remarkable physico-chemical and biological characteristics. High capital expenses, manufacturing costs, and a paucity of some well-scalable methods, all of which lead to low BNC output in commercial scale, are major barriers that must be addressed. Advances in production methods, including bioreactor technologies, static intermittent, and semi-continuous fed batch technologies, and innovative outlay substrates, may be able to overcome the challenges to BNC production at the industrial scale. The novelty of this review is that it highlights genetic modification possibilities in BNC production to overcome existing impediments and open up viable routes for large-scale production, suitable for real-world applications. This review focuses on various production routes of BNC, its properties, and applications, especially the major advancement in food, personal care, biomedical and electronic industries.
Collapse
Affiliation(s)
- Reshmy R
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, India
| | - Eapen Philip
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, India
| | - Deepa Thomas
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, India
| | - Aravind Madhavan
- Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, India
| | - Sunita Varjani
- Paryavaran Bhavan, Gujarat Pollution Control Board, Gandhinagar, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, China
| | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow, India
- Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research, Lucknow, India
| |
Collapse
|
13
|
A Comprehensive Bioprocessing Approach to Foster Cheese Whey Valorization: On-Site β-Galactosidase Secretion for Lactose Hydrolysis and Sequential Bacterial Cellulose Production. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cheese whey (CW) constitutes a dairy industry by-product, with considerable polluting impact, related mostly with lactose. Numerous bioprocessing approaches have been suggested for lactose utilization, however, full exploitation is hindered by strain specificity for lactose consumption, entailing a confined range of end-products. Thus, we developed a CW valorization process generating high added-value products (crude enzymes, nutrient supplements, biopolymers). First, the ability of Aspergillus awamori to secrete β-galactosidase was studied under several conditions during solid-state fermentation (SSF). Maximum enzyme activity (148 U/g) was obtained at 70% initial moisture content after three days. Crude enzymatic extracts were further implemented to hydrolyze CW lactose, assessing the effect of hydrolysis time, temperature and initial enzymatic activity. Complete lactose hydrolysis was obtained after 36 h, using 15 U/mL initial enzymatic activity. Subsequently, submerged fermentations were performed with the produced hydrolysates as onset feedstocks to produce bacterial cellulose (5.6–7 g/L). Our findings indicate a novel approach to valorize CW via the production of crude enzymes and lactose hydrolysis, aiming to unfold the output potential of intermediate product formation and end-product applications. Likewise, this study generated a bio-based material to be further introduced in novel food formulations, elaborating and conforming with the basic pillars of circular economy.
Collapse
|
14
|
Buldum G, Mantalaris A. Systematic Understanding of Recent Developments in Bacterial Cellulose Biosynthesis at Genetic, Bioprocess and Product Levels. Int J Mol Sci 2021; 22:ijms22137192. [PMID: 34281246 PMCID: PMC8268586 DOI: 10.3390/ijms22137192] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Engineering biological processes has become a standard approach to produce various commercially valuable chemicals, therapeutics, and biomaterials. Among these products, bacterial cellulose represents major advances to biomedical and healthcare applications. In comparison to properties of plant cellulose, bacterial cellulose (BC) shows distinctive characteristics such as a high purity, high water retention, and biocompatibility. However, low product yield and extensive cultivation times have been the main challenges in the large-scale production of BC. For decades, studies focused on optimization of cellulose production through modification of culturing strategies and conditions. With an increasing demand for BC, researchers are now exploring to improve BC production and functionality at different categories: genetic, bioprocess, and product levels as well as model driven approaches targeting each of these categories. This comprehensive review discusses the progress in BC platforms categorizing the most recent advancements under different research focuses and provides systematic understanding of the progress in BC biosynthesis. The aim of this review is to present the potential of ‘modern genetic engineering tools’ and ‘model-driven approaches’ on improving the yield of BC, altering the properties, and adding new functionality. We also provide insights for the future perspectives and potential approaches to promote BC use in biomedical applications.
Collapse
Affiliation(s)
- Gizem Buldum
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK;
| | - Athanasios Mantalaris
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Correspondence:
| |
Collapse
|
15
|
Blanco FG, Hernández N, Rivero-Buceta V, Maestro B, Sanz JM, Mato A, Hernández-Arriaga AM, Prieto MA. From Residues to Added-Value Bacterial Biopolymers as Nanomaterials for Biomedical Applications. NANOMATERIALS 2021; 11:nano11061492. [PMID: 34200068 PMCID: PMC8228158 DOI: 10.3390/nano11061492] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022]
Abstract
Bacterial biopolymers are naturally occurring materials comprising a wide range of molecules with diverse chemical structures that can be produced from renewable sources following the principles of the circular economy. Over the last decades, they have gained substantial interest in the biomedical field as drug nanocarriers, implantable material coatings, and tissue-regeneration scaffolds or membranes due to their inherent biocompatibility, biodegradability into nonhazardous disintegration products, and their mechanical properties, which are similar to those of human tissues. The present review focuses upon three technologically advanced bacterial biopolymers, namely, bacterial cellulose (BC), polyhydroxyalkanoates (PHA), and γ-polyglutamic acid (PGA), as models of different carbon-backbone structures (polysaccharides, polyesters, and polyamides) produced by bacteria that are suitable for biomedical applications in nanoscale systems. This selection models evidence of the wide versatility of microorganisms to generate biopolymers by diverse metabolic strategies. We highlight the suitability for applied sustainable bioprocesses for the production of BC, PHA, and PGA based on renewable carbon sources and the singularity of each process driven by bacterial machinery. The inherent properties of each polymer can be fine-tuned by means of chemical and biotechnological approaches, such as metabolic engineering and peptide functionalization, to further expand their structural diversity and their applicability as nanomaterials in biomedicine.
Collapse
Affiliation(s)
- Francisco G. Blanco
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Natalia Hernández
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Virginia Rivero-Buceta
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Beatriz Maestro
- Host-Parasite Interplay in Pneumococcal Infection Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain; (B.M.); (J.M.S.)
| | - Jesús M. Sanz
- Host-Parasite Interplay in Pneumococcal Infection Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain; (B.M.); (J.M.S.)
| | - Aránzazu Mato
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Ana M. Hernández-Arriaga
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - M. Auxiliadora Prieto
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
16
|
Fricke PM, Klemm A, Bott M, Polen T. On the way toward regulatable expression systems in acetic acid bacteria: target gene expression and use cases. Appl Microbiol Biotechnol 2021; 105:3423-3456. [PMID: 33856535 PMCID: PMC8102297 DOI: 10.1007/s00253-021-11269-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/24/2021] [Accepted: 04/04/2021] [Indexed: 01/06/2023]
Abstract
Acetic acid bacteria (AAB) are valuable biocatalysts for which there is growing interest in understanding their basics including physiology and biochemistry. This is accompanied by growing demands for metabolic engineering of AAB to take advantage of their properties and to improve their biomanufacturing efficiencies. Controlled expression of target genes is key to fundamental and applied microbiological research. In order to get an overview of expression systems and their applications in AAB, we carried out a comprehensive literature search using the Web of Science Core Collection database. The Acetobacteraceae family currently comprises 49 genera. We found overall 6097 publications related to one or more AAB genera since 1973, when the first successful recombinant DNA experiments in Escherichia coli have been published. The use of plasmids in AAB began in 1985 and till today was reported for only nine out of the 49 AAB genera currently described. We found at least five major expression plasmid lineages and a multitude of further expression plasmids, almost all enabling only constitutive target gene expression. Only recently, two regulatable expression systems became available for AAB, an N-acyl homoserine lactone (AHL)-inducible system for Komagataeibacter rhaeticus and an L-arabinose-inducible system for Gluconobacter oxydans. Thus, after 35 years of constitutive target gene expression in AAB, we now have the first regulatable expression systems for AAB in hand and further regulatable expression systems for AAB can be expected. KEY POINTS: • Literature search revealed developments and usage of expression systems in AAB. • Only recently 2 regulatable plasmid systems became available for only 2 AAB genera. • Further regulatable expression systems for AAB are in sight.
Collapse
Affiliation(s)
- Philipp Moritz Fricke
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Angelika Klemm
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Tino Polen
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
17
|
Singh A, Walker KT, Ledesma-Amaro R, Ellis T. Engineering Bacterial Cellulose by Synthetic Biology. Int J Mol Sci 2020; 21:E9185. [PMID: 33276459 PMCID: PMC7730232 DOI: 10.3390/ijms21239185] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 02/06/2023] Open
Abstract
Synthetic biology is an advanced form of genetic manipulation that applies the principles of modularity and engineering design to reprogram cells by changing their DNA. Over the last decade, synthetic biology has begun to be applied to bacteria that naturally produce biomaterials, in order to boost material production, change material properties and to add new functionalities to the resulting material. Recent work has used synthetic biology to engineer several Komagataeibacter strains; bacteria that naturally secrete large amounts of the versatile and promising material bacterial cellulose (BC). In this review, we summarize how genetic engineering, metabolic engineering and now synthetic biology have been used in Komagataeibacter strains to alter BC, improve its production and begin to add new functionalities into this easy-to-grow material. As well as describing the milestone advances, we also look forward to what will come next from engineering bacterial cellulose by synthetic biology.
Collapse
Affiliation(s)
- Amritpal Singh
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK; (A.S.); (K.T.W.); (R.L.-A.)
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Kenneth T. Walker
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK; (A.S.); (K.T.W.); (R.L.-A.)
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Rodrigo Ledesma-Amaro
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK; (A.S.); (K.T.W.); (R.L.-A.)
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Tom Ellis
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK; (A.S.); (K.T.W.); (R.L.-A.)
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
18
|
Ludwicka K, Kaczmarek M, Białkowska A. Bacterial Nanocellulose-A Biobased Polymer for Active and Intelligent Food Packaging Applications: Recent Advances and Developments. Polymers (Basel) 2020; 12:E2209. [PMID: 32993082 PMCID: PMC7601427 DOI: 10.3390/polym12102209] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022] Open
Abstract
The aim of this review is to provide an overview of recent findings related to bacterial cellulose application in bio-packaging industry. This constantly growing sector fulfils a major role by the maintenance of product safety and quality, protection against environmental impacts that affect the shelf life. Conventional petroleum-based plastic packaging are still rarely recyclable and have a number of harmful environmental effects. Herein, we discuss the most recent studies on potential good alternative to plastic packaging-bacterial nanocellulose (BNC), known as an ecological, safe, biodegradable, and chemically pure biopolymer. The limitations of this bio-based packaging material, including relatively poor mechanical properties or lack of antimicrobial and antioxidant activity, can be successfully overcome by its modification with a wide variety of bioactive and reinforcing compounds. BNC active and intelligent food packaging offer a new and innovative approach to extend the shelf life and maintain, improve, or monitor product quality and safety. Incorporation of different agents BNC matrices allows to obtain e.g., antioxidant-releasing films, moisture absorbers, antimicrobial membranes or pH, freshness and damage indicators, humidity, and other biosensors. However, further development and implementation of this kind of bio-packaging will highly depend on the final performance and cost-effectiveness for the industry and consumers.
Collapse
Affiliation(s)
- Karolina Ludwicka
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, B. Stefanowskiego 4/10, 90-924 Lodz, Poland; (M.K.); (A.B.)
| | | | | |
Collapse
|
19
|
Kolesovs S, Semjonovs P. Production of bacterial cellulose from whey-current state and prospects. Appl Microbiol Biotechnol 2020; 104:7723-7730. [PMID: 32761463 DOI: 10.1007/s00253-020-10803-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Abstract
Bacterial cellulose (BC) is a biopolymer with a wide range of potential applications starting from the food industry and biomedicine to electronics and cosmetics. Despite that, BC industrial production to date still is associated with certain difficulties. One of them is the high cost of growth media, which can reach up to 30% of production costs. To decrease production costs, use of industrial and agricultural by-products, including whey, as alternative growth media has been reported. Whey, as the main high-volume by-product of dairy industry, which is known for its low valorisation opportunities and negative environmental impact, can nevertheless be considered as an alternative growth medium for BC production. To date, several studies aimed at evaluating BC production on whey and lactose substrates have been reported, but they are still insufficient. Reviews of them showed that, in general, BC production on untreated whey- and lactose-containing media was lower than that on the standard medium. However, some wild and recombinant strains have been reported to produce BC on whey as good as the standard medium. Enzymatic and acidic pre-treatment of whey significantly enhanced BC yield. Changes in the microstructure of BC obtained from whey were also recognised, which should be considered regarding the impact on physical properties of the desired BC product. This mini-review indicates that currently whey can be recognised as quite a problematic alternative growth substrate for industrial BC production; however, further extensive studies may improve the prospects in both the search for a cheap alternative growth substrate for industrial BC production and valorisation of whey. KEY POINTS: • Whey is a by-product in which valorisation is still challenging. • Whey can be used for bacterial cellulose (BC) production. • BC yield and properties vary upon cultivation conditions and producer strains.
Collapse
Affiliation(s)
- Sergejs Kolesovs
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, Ojara Vaciesa street 4, Riga, LV-1004, Latvia
| | - Pavels Semjonovs
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, Ojara Vaciesa street 4, Riga, LV-1004, Latvia.
| |
Collapse
|
20
|
Zikmanis P, Kolesovs S, Semjonovs P. Production of biodegradable microbial polymers from whey. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00326-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
21
|
Towards control of cellulose biosynthesis by Komagataeibacter using systems-level and strain engineering strategies: current progress and perspectives. Appl Microbiol Biotechnol 2020; 104:6565-6585. [PMID: 32529377 PMCID: PMC7347698 DOI: 10.1007/s00253-020-10671-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/29/2022]
Abstract
The strains of the Komagataeibacter genus have been shown to be the most efficient bacterial nanocellulose producers. Although exploited for many decades, the studies of these species focused mainly on the optimisation of cellulose synthesis process through modification of culturing conditions in the industrially relevant settings. Molecular physiology of Komagataeibacter was poorly understood and only a few studies explored genetic engineering as a strategy for strain improvement. Only since recently the systemic information of the Komagataeibacter species has been accumulating in the form of omics datasets representing sequenced genomes, transcriptomes, proteomes and metabolomes. Genetic analyses of the mutants generated in the untargeted strain modification studies have drawn attention to other important proteins, beyond those of the core catalytic machinery of the cellulose synthase complex. Recently, modern molecular and synthetic biology tools have been developed which showed the potential for improving targeted strain engineering. Taking the advantage of the gathered knowledge should allow for better understanding of the genotype–phenotype relationship which is necessary for robust modelling of metabolism as well as selection and testing of new molecular engineering targets. In this review, we discuss the current progress in the area of Komagataeibacter systems biology and its impact on the research aimed at scaled-up cellulose synthesis as well as BNC functionalisation.Key points • The accumulated omics datasets advanced the systemic understanding of Komagataeibacter physiology at the molecular level. • Untargeted and targeted strain modification approaches have been applied to improve nanocellulose yield and properties. • The development of modern molecular and synthetic biology tools presents a potential for enhancing targeted strain engineering. • The accumulating omic information should improve modelling of Komagataeibacter’s metabolism as well as selection and testing of new molecular engineering targets. |
Collapse
|
22
|
da Silva FAGS, Oliveira JV, Felgueiras C, Dourado F, Gama M, Alves MM. Study and valorisation of wastewaters generated in the production of bacterial nanocellulose. Biodegradation 2020; 31:47-56. [PMID: 32193751 DOI: 10.1007/s10532-020-09893-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/05/2020] [Indexed: 11/30/2022]
Abstract
Two culture media were tested for the production of bacterial nanocellulose (BNC) under static culture fermentation, one containing molasses (Mol-HS), the other molasses and corn steep liquor (Mol-CSL), as a source of carbon and nitrogen, respectively. These are low-cost nutrients widely available, which provide very good BNC productivities. However, the use of these substrates generates wastewaters with high organic loads. Anaerobic digestion is one of the most promising treatments for industrial wastewaters with high organic loads since, beyond removal of the organic matter, it generates energy, in form of biogas. The wastewaters from BNC fermentation were thus evaluated for their biochemical methane potential through anaerobic digestion. For this, two wastewaters streams were collected: (i) the culture medium obtained after fermentation (WaF) and (ii) the WaF combined with BNC washing wastewaters (WaW). These two effluents-WaF and WaW-were characterized regarding their chemical oxygen demand, total nitrogen, total and volatile solids, to assess their suitability for anaerobic digestion. The biochemical methane potential of WaF and WaW from Mol-CSL wastewaters was (387 ± 14 L kg-1 VS) and (354 ± 4 L kg-1 VS), corresponding to a methanization percentage of (86.9 ± 3.1) % and (79.5 ± 0.9) %, respectively. After treatment, the chemical oxygen demand of WaF and WaW was reduced by (89.2 ± 0.4) and (88.7 ± 1.5), respectively. An exploratory test using an Upflow Anaerobic Sludge Blanket reactor for WaW treatment was also performed. The reactor was operated with a organic loading rate of [(6.5 ± 0.1) g L-1 d-1] and hydraulic retention time of 3.33 days, allowing a chemical oxygen demand removal of 58% of WaW. Results here obtained demonstrate, for the first time, the high potential of AD for the valorisation of the BNC fermentation wastewaters.
Collapse
Affiliation(s)
| | - João V Oliveira
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Catarina Felgueiras
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Fernando Dourado
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Miguel Gama
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - M Madalena Alves
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
23
|
Raiszadeh-Jahromi Y, Rezazadeh-Bari M, Almasi H, Amiri S. Optimization of bacterial cellulose production by Komagataeibacter xylinus PTCC 1734 in a low-cost medium using optimal combined design. Journal of Food Science and Technology 2020; 57:2524-2533. [PMID: 32549603 DOI: 10.1007/s13197-020-04289-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/22/2020] [Accepted: 01/29/2020] [Indexed: 11/28/2022]
Abstract
This study was aimed to optimize the production of bacterial cellulose (BC) by Komagataeibacter xylinus PTCC 1734 using mixture of date syrup and cheese whey as carbon sources as well as ascorbic acid as a supplementary agent and to characterize the properties of produced BC. The results showed the highest BC production on the 10th day. The 50:50 ratio of date syrup and cheese whey lead to the highest BC production. Three samples were selected in optimal cultivation conditions until the 10th day, with different ascorbic acid concentrations (0, 0.1 and 0.4%). SEM results showed no difference in the morphology of BC product in the optimal samples, where the average diameter of cellulose nanofibers produced was in the range of nanometer. The FTIR test results showed no difference in the chemical structure of cellulose product in different ascorbic acid concentrations. According to XRD and TGA analyses, the highest degree of BC crystallinity and thermal resistance was obtained at maximum ascorbic acid concentration (0.04%). Consequently, the 50:50 ratio of date syrup and cheese whey and 10th day of fermentation time were selected as the best conditions for BC production. Though ascorbic acid reduced production efficiency, it improved the physical properties of the BC product.
Collapse
Affiliation(s)
| | - Mahmoud Rezazadeh-Bari
- Department of Food Science and Technology, Factually of Agriculture, Urmia University, Urmia, Iran
| | - Hadi Almasi
- Department of Food Science and Technology, Factually of Agriculture, Urmia University, Urmia, Iran
| | - Saber Amiri
- Department of Food Science and Technology, Factually of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
24
|
Lappa IK, Papadaki A, Kachrimanidou V, Terpou A, Koulougliotis D, Eriotou E, Kopsahelis N. Cheese Whey Processing: Integrated Biorefinery Concepts and Emerging Food Applications. Foods 2019; 8:E347. [PMID: 31443236 PMCID: PMC6723228 DOI: 10.3390/foods8080347] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/07/2019] [Accepted: 08/10/2019] [Indexed: 12/27/2022] Open
Abstract
Cheese whey constitutes one of the most polluting by-products of the food industry, due to its high organic load. Thus, in order to mitigate the environmental concerns, a large number of valorization approaches have been reported; mainly targeting the recovery of whey proteins and whey lactose from cheese whey for further exploitation as renewable resources. Most studies are predominantly focused on the separate implementation, either of whey protein or lactose, to configure processes that will formulate value-added products. Likewise, approaches for cheese whey valorization, so far, do not exploit the full potential of cheese whey, particularly with respect to food applications. Nonetheless, within the concept of integrated biorefinery design and the transition to circular economy, it is imperative to develop consolidated bioprocesses that will foster a holistic exploitation of cheese whey. Therefore, the aim of this article is to elaborate on the recent advances regarding the conversion of whey to high value-added products, focusing on food applications. Moreover, novel integrated biorefining concepts are proposed, to inaugurate the complete exploitation of cheese whey to formulate novel products with diversified end applications. Within the context of circular economy, it is envisaged that high value-added products will be reintroduced in the food supply chain, thereby enhancing sustainability and creating "zero waste" processes.
Collapse
Affiliation(s)
- Iliada K Lappa
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece
| | - Aikaterini Papadaki
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece
| | - Vasiliki Kachrimanidou
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece.
- Department of Food and Nutritional Sciences, University of Reading, Berkshire RG6 6AP, UK.
| | - Antonia Terpou
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece
| | | | - Effimia Eriotou
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece.
| |
Collapse
|
25
|
Jacek P, Ryngajłło M, Bielecki S. Structural changes of bacterial nanocellulose pellicles induced by genetic modification of Komagataeibacter hansenii ATCC 23769. Appl Microbiol Biotechnol 2019; 103:5339-5353. [PMID: 31037382 PMCID: PMC6570709 DOI: 10.1007/s00253-019-09846-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/08/2023]
Abstract
Bacterial nanocellulose (BNC) synthesized by Komagataeibacter hansenii is a polymer that recently gained an attention of tissue engineers, since its features make it a suitable material for scaffolds production. Nevertheless, it is still necessary to modify BNC to improve its properties in order to make it more suitable for biomedical use. One approach to address this issue is to genetically engineer K. hansenii cells towards synthesis of BNC with modified features. One of possible ways to achieve that is to influence the bacterial movement or cell morphology. In this paper, we described for the first time, K. hansenii ATCC 23769 motA+ and motB+ overexpression mutants, which displayed elongated cell phenotype, increased motility, and productivity. Moreover, the mutant cells produced thicker ribbons of cellulose arranged in looser network when compared to the wild-type strain. In this paper, we present a novel development in obtaining BNC membranes with improved properties using genetic engineering tools.
Collapse
Affiliation(s)
- Paulina Jacek
- Institute of Technical Biochemistry, Lodz University of Technology, B. Stefanowskiego 4/10, 90-924 Lodz, Poland
| | - Małgorzata Ryngajłło
- Institute of Technical Biochemistry, Lodz University of Technology, B. Stefanowskiego 4/10, 90-924 Lodz, Poland
| | - Stanisław Bielecki
- Institute of Technical Biochemistry, Lodz University of Technology, B. Stefanowskiego 4/10, 90-924 Lodz, Poland
| |
Collapse
|
26
|
Jacek P, Dourado F, Gama M, Bielecki S. Molecular aspects of bacterial nanocellulose biosynthesis. Microb Biotechnol 2019; 12:633-649. [PMID: 30883026 PMCID: PMC6559022 DOI: 10.1111/1751-7915.13386] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/03/2019] [Accepted: 02/08/2019] [Indexed: 11/27/2022] Open
Abstract
Bacterial nanocellulose (BNC) produced by aerobic bacteria is a biopolymer with sophisticated technical properties. Although the potential for economically relevant applications is huge, the cost of BNC still limits its application to a few biomedical devices and the edible product Nata de Coco, made available by traditional fermentation methods in Asian countries. Thus, a wider economic relevance of BNC is still dependent on breakthrough developments on the production technology. On the other hand, the development of modified strains able to overproduce BNC with new properties - e.g. porosity, density of fibres crosslinking, mechanical properties, etc. - will certainly allow to overcome investment and cost production issues and enlarge the scope of BNC applications. This review discusses current knowledge about the molecular basis of BNC biosynthesis, its regulations and, finally, presents a perspective on the genetic modification of BNC producers made possible by the new tools available for genetic engineering.
Collapse
Affiliation(s)
- Paulina Jacek
- Institute of Technical BiochemistryLodz University of Technology4/10 Stefanowskiego Str90‐924LodzPoland
| | - Fernando Dourado
- Centre of Biological EngineeringUniversity of MinhoCampus de Gualtar4710‐057BragaPortugal
| | - Miguel Gama
- Centre of Biological EngineeringUniversity of MinhoCampus de Gualtar4710‐057BragaPortugal
| | - Stanisław Bielecki
- Institute of Technical BiochemistryLodz University of Technology4/10 Stefanowskiego Str90‐924LodzPoland
| |
Collapse
|
27
|
Salari M, Sowti Khiabani M, Rezaei Mokarram R, Ghanbarzadeh B, Samadi Kafil H. Preparation and characterization of cellulose nanocrystals from bacterial cellulose produced in sugar beet molasses and cheese whey media. Int J Biol Macromol 2019; 122:280-288. [DOI: 10.1016/j.ijbiomac.2018.10.136] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/13/2018] [Accepted: 10/17/2018] [Indexed: 12/21/2022]
|
28
|
Tsouko E, Kourmentza C, Ladakis D, Kopsahelis N, Mandala I, Papanikolaou S, Paloukis F, Alves V, Koutinas A. Bacterial Cellulose Production from Industrial Waste and by-Product Streams. Int J Mol Sci 2015; 16:14832-49. [PMID: 26140376 PMCID: PMC4519874 DOI: 10.3390/ijms160714832] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/08/2015] [Accepted: 06/11/2015] [Indexed: 11/16/2022] Open
Abstract
The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen) 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L) and commercial sucrose (4.9 g/L) were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L) were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102-138 g · water/g · dry bacterial cellulose, viscosities of 4.7-9.3 dL/g, degree of polymerization of 1889.1-2672.8, stress at break of 72.3-139.5 MPa and Young's modulus of 0.97-1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients.
Collapse
Affiliation(s)
- Erminda Tsouko
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece.
| | - Constantina Kourmentza
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, New University of Lisbon, Caparica 2829-516, Portugal.
| | - Dimitrios Ladakis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece.
| | - Nikolaos Kopsahelis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece.
| | - Ioanna Mandala
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece.
| | - Seraphim Papanikolaou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece.
| | - Fotis Paloukis
- Foundation of Research and Technology-Hellas, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Patras 26504, Greece.
| | - Vitor Alves
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa 1349-017, Portugal.
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece.
| |
Collapse
|
29
|
Campos JM, Montenegro Stamford TL, Sarubbo LA, de Luna JM, Rufino RD, Banat IM. Microbial biosurfactants as additives for food industries. Biotechnol Prog 2013; 29:1097-108. [DOI: 10.1002/btpr.1796] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 08/06/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Jenyffer Medeiros Campos
- Dept. de Nutrição; Universidade Federal de Pernambuco, Programa de Pós-graduação em Nutrição, Av. Prof. Moraes Rego, 1235, Cidade Universitária; Recife CEP: 50670-901 PE Brazil
| | - Tânia Lúcia Montenegro Stamford
- Dept. de Nutrição; Universidade Federal de Pernambuco, Programa de Pós-graduação em Nutrição, Av. Prof. Moraes Rego, 1235, Cidade Universitária; Recife CEP: 50670-901 PE Brazil
| | - Leonie Asfora Sarubbo
- Centro de Ciências e Tecnologia, Universidade Católica de Pernambuco, Rua do Príncipe, 526; Boa Vista, Recife CEP: 50050-900 PE Brazil
| | - Juliana Moura de Luna
- Centro de Ciências e Tecnologia, Universidade Católica de Pernambuco, Rua do Príncipe, 526; Boa Vista, Recife CEP: 50050-900 PE Brazil
| | - Raquel Diniz Rufino
- Centro de Ciências e Tecnologia, Universidade Católica de Pernambuco, Rua do Príncipe, 526; Boa Vista, Recife CEP: 50050-900 PE Brazil
| | - Ibrahim M. Banat
- School of Biomedical Sciences; Faculty of Life and Health Sciences; University of Ulster; BT52 1SA Northern Ireland U.K
| |
Collapse
|
30
|
Carreira P, Mendes JAS, Trovatti E, Serafim LS, Freire CSR, Silvestre AJD, Neto CP. Utilization of residues from agro-forest industries in the production of high value bacterial cellulose. BIORESOURCE TECHNOLOGY 2011; 102:7354-60. [PMID: 21601445 DOI: 10.1016/j.biortech.2011.04.081] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 05/04/2023]
Abstract
Bacterial cellulose (BC), a very peculiar form of cellulose, is gaining considerable importance due to its unique properties. In this study, several residues, from agro-forestry industries, namely grape skins aqueous extract, cheese whey, crude glycerol and sulfite pulping liquor were evaluated as economic carbon and nutrient sources for the production of BC. The most relevant BC amounts attained with the residues from the wine and pulp industries were 0.6 and 0.3 g/L, respectively, followed by biodiesel crude residue and cheese whey with productions of about, 0.1 g/L after 96 h of incubation. Preliminary results on the addition of other nutrient sources (yeast extract, nitrogen and phosphate) to the residues-based culture media indicated that, in general, these BC productions could be increased by ~200% and ~100% for the crude glycerol and grape skins, respectively, after the addition organic or inorganic nitrogen.
Collapse
Affiliation(s)
- Pedro Carreira
- Department of Chemistry, University of Aveiro, CICECO, Campus de Santiago, Portugal
| | | | | | | | | | | | | |
Collapse
|
31
|
Yilmaz F, Ergene A, Yalçin E, Tan S. Production and characterization of biosurfactants produced by microorganisms isolated from milk factory wastewaters. ENVIRONMENTAL TECHNOLOGY 2009; 30:1397-1404. [PMID: 20088204 DOI: 10.1080/09593330903164528] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Biosurfactants or surface-active compounds are produced by microorganisms. These molecules reduce the surface tension of both aqueous solutions and hydrocarbon mixtures. In this study, the isolation and identification of biosurfactant-producing microorganisms were assessed. The characterization of biosurfactant produced by microorganisms isolated from milk factory wastewaters was investigated. For this purpose, five different microorganisms were isolated and identified. In order to determine the biosurfactant production, the 'drop-collapse' method was applied and it was determined that only three species, Yarrowia lipolytica MFW5 (yeast), Micrococcus luteus MFW1 (cocci) and Burkholderia cepacia MFW2 (bacillus), were able to produce biosurfactant. Biosurfactants produced by Yarrowia lipolytica, Micrococcus luteus and Burkholderia cepacia were coded as BS-I, BS-II and BS-III, respectively. After the initial biosurfactant production and characterization studies were completed, isolates of these three species were incubated with whey wastewaters at 35 degrees C for 10 days for biosurfactant production. At the end of the incubation period, the biosurfactants were extracted and further characterized with biochemical analysis, FTIR spectra, haemolysis test, emulsification test and determination of the surface tension.
Collapse
Affiliation(s)
- F Yilmaz
- Department of Biology, Kirikkale University, Kirikkale, Turkey
| | | | | | | |
Collapse
|
32
|
Setyawati MI, Chien LJ, Lee CK. Self-immobilized recombinant Acetobacter xylinum for biotransformation. Biochem Eng J 2009. [DOI: 10.1016/j.bej.2008.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Chien LJ, Chen HT, Yang PF, Lee CK. Enhancement of Cellulose Pellicle Production by Constitutively ExpressingVitreoscillaHemoglobin inAcetobacter xylinum. Biotechnol Prog 2006. [DOI: 10.1002/bp060157g] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|