1
|
Development of EST-Molecular Markers from RNA Sequencing for Genetic Management and Identification of Growth Traits in Potato Grouper ( Epinephelus tukula). BIOLOGY 2021; 10:biology10010036. [PMID: 33430356 PMCID: PMC7825770 DOI: 10.3390/biology10010036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/25/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary The potato grouper is a novel aquaculture species in Taiwan. Due to the lack of genetic information concerning this species, we have developed molecular markers based on transcriptome sequencing and further characterized their association with gene diversity and growth traits of this species. Ultimately, these markers could be utilized as accurate and efficient tools for genetic management and marker-assisted selection of potato grouper with distinct growth traits. Abstract The accuracy and efficiency of marker-assisted selection (MAS) has been proven for economically critical aquaculture species. The potato grouper (Epinephelus tukula), a novel cultured grouper species in Taiwan, shows large potential in aquaculture because of its fast growth rate among other groupers. Because of the lack of genetic information for the potato grouper, the first transcriptome and expressed sequence tag (EST)-derived simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers were developed. Initially, the transcriptome was obtained from seven cDNA libraries by using the Illumina platform. De novo transcriptome of the potato grouper yielded 51.34 Gb and 111,490 unigenes. The EST-derived SSR and SNP markers were applied in genetic management, in parentage analysis, and to discover the functional markers of economic traits. The F1 juveniles were identified as siblings from one pair of parents (80 broodstocks). Fast- and slow-growth individuals were analyzed using functional molecular markers and through their association with growth performance. The results revealed that two SNPs were correlated with growth traits. The transcriptome database obtained in this study and its derived SSR and SNP markers may be applied not only for MAS but also to maintain functional gene diversity in the novel cultured grouper.
Collapse
|
2
|
Kong HJ, Kim J, Kim JW, Kim HC, Noh JK, Kim YO, Kim WJ, Yeo SY, Park JY. The Regulatory Region of Muscle-Specific Alpha Actin 1 Drives Fluorescent Protein Expression in Olive Flounder Paralichthys olivaceus. Dev Reprod 2019; 23:55-61. [PMID: 31049472 PMCID: PMC6487322 DOI: 10.12717/dr.2019.23.1.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/26/2019] [Accepted: 03/09/2019] [Indexed: 12/03/2022]
Abstract
To develop a promoter capable of driving transgene expression in non-model fish,
we identified and characterized the muscle-specific alpha-actin gene in olive
flounder, Paralichthys olivaceus (PoACTC1).
The regulatory region of PoACTC1 includes putative regulatory
elements such as a TATA box, two MyoD binding sites, three CArG boxes, and a
CCAAT box. Microinjection experiments demonstrated that the regulatory region of
PoACTC1, covering from -2,126 bp to +751 bp, just prior to
the start codon, drove the expression of red fluorescent protein in developing
zebrafish embryos and hatching olive flounder. These results suggest that the
regulatory region of PoACTC1 may be useful in developing a
promoter for biotechnological applications such as transgene expression in olive
flounder.
Collapse
Affiliation(s)
- Hee Jeong Kong
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Korea
| | - Julan Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Korea
| | - Ju-Won Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Korea
| | - Hyun-Chul Kim
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje 53334, Korea
| | - Jae Koo Noh
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Korea
| | - Young-Ok Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Korea
| | - Woo-Jin Kim
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje 53334, Korea
| | - Sang-Yeob Yeo
- Division of Applied Chemistry and Biotechnology, Hanbat National University, Daejeon 34158, Korea
| | - Jung Youn Park
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Korea
| |
Collapse
|
3
|
Yuan Z, Zhou T, Bao L, Liu S, Shi H, Yang Y, Gao D, Dunham R, Waldbieser G, Liu Z. The annotation of repetitive elements in the genome of channel catfish (Ictalurus punctatus). PLoS One 2018; 13:e0197371. [PMID: 29763462 PMCID: PMC5953449 DOI: 10.1371/journal.pone.0197371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 05/01/2018] [Indexed: 11/18/2022] Open
Abstract
Channel catfish (Ictalurus punctatus) is a highly adaptive species and has been used as a research model for comparative immunology, physiology, and toxicology among ectothermic vertebrates. It is also economically important for aquaculture. As such, its reference genome was generated and annotated with protein coding genes. However, the repetitive elements in the catfish genome are less well understood. In this study, over 417.8 Megabase (MB) of repetitive elements were identified and characterized in the channel catfish genome. Among them, the DNA/TcMar-Tc1 transposons are the most abundant type, making up ~20% of the total repetitive elements, followed by the microsatellites (14%). The prevalence of repetitive elements, especially the mobile elements, may have provided a driving force for the evolution of the catfish genome. A number of catfish-specific repetitive elements were identified including the previously reported Xba elements whose divergence rate was relatively low, slower than that in untranslated regions of genes but faster than the protein coding sequences, suggesting its evolutionary restrictions.
Collapse
Affiliation(s)
- Zihao Yuan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Tao Zhou
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Lisui Bao
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Shikai Liu
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Huitong Shi
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Yujia Yang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Dongya Gao
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Rex Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Geoff Waldbieser
- USDA-ARS Warmwater Aquaculture Research Unit, Stoneville, Mississippi, United States of America
| | - Zhanjiang Liu
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
- * E-mail:
| |
Collapse
|
4
|
Jiang Y, Ninwichian P, Liu S, Zhang J, Kucuktas H, Sun F, Kaltenboeck L, Sun L, Bao L, Liu Z. Generation of physical map contig-specific sequences useful for whole genome sequence scaffolding. PLoS One 2013; 8:e78872. [PMID: 24205335 PMCID: PMC3811975 DOI: 10.1371/journal.pone.0078872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 09/16/2013] [Indexed: 11/29/2022] Open
Abstract
Along with the rapid advances of the nextgen sequencing technologies, more and more species are added to the list of organisms whose whole genomes are sequenced. However, the assembled draft genome of many organisms consists of numerous small contigs, due to the short length of the reads generated by nextgen sequencing platforms. In order to improve the assembly and bring the genome contigs together, more genome resources are needed. In this study, we developed a strategy to generate a valuable genome resource, physical map contig-specific sequences, which are randomly distributed genome sequences in each physical contig. Two-dimensional tagging method was used to create specific tags for 1,824 physical contigs, in which the cost was dramatically reduced. A total of 94,111,841 100-bp reads and 315,277 assembled contigs are identified containing physical map contig-specific tags. The physical map contig-specific sequences along with the currently available BAC end sequences were then used to anchor the catfish draft genome contigs. A total of 156,457 genome contigs (~79% of whole genome sequencing assembly) were anchored and grouped into 1,824 pools, in which 16,680 unique genes were annotated. The physical map contig-specific sequences are valuable resources to link physical map, genetic linkage map and draft whole genome sequences, consequently have the capability to improve the whole genome sequences assembly and scaffolding, and improve the genome-wide comparative analysis as well. The strategy developed in this study could also be adopted in other species whose whole genome assembly is still facing a challenge.
Collapse
Affiliation(s)
- Yanliang Jiang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama, United States of America
| | - Parichart Ninwichian
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama, United States of America
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama, United States of America
| | - Jiaren Zhang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama, United States of America
| | - Huseyin Kucuktas
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama, United States of America
| | - Fanyue Sun
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama, United States of America
| | - Ludmilla Kaltenboeck
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama, United States of America
| | - Luyang Sun
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama, United States of America
| | - Lisui Bao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama, United States of America
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama, United States of America
- * E-mail:
| |
Collapse
|
5
|
Kuroda M, Kato Y, Yamazaki J, Kai Y, Mizukoshi T, Miyano H, Eto Y. Determination and quantification of γ-glutamyl-valyl-glycine in commercial fish sauces. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:7291-7296. [PMID: 22747195 DOI: 10.1021/jf3012932] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
It was recently reported that kokumi substances such as glutathione are perceived through the calcium-sensing receptor (CaSR). In addition, screening by the CaSR assay and sensory evaluation revealed that γ-glutamyl-valyl-glycine (γ-Glu-Val-Gly) was a potent kokumi peptide. In this study, the quantities of γ-Glu-Val-Gly in various commercial fish sauces originating from Vietnam (Nuoc Mum), Thailand (Nampra), China (Yu-lu), Korea, Japan (Shottsuru and Ikanago-shoyu), and Italy (Garum) were investigated using a LC/MS/MS method followed by derivatization with 6-aminoquinoyl-N-hydroxysuccinimidyl-carbamate (AQC). The analyses revealed γ-Glu-Val-Gly at concentrations ranging from 0.04 to 1.26 mg/dL, indicating that γ-Glu-Val-Gly is widely distributed among various commercial fish sauces.
Collapse
Affiliation(s)
- Motonaka Kuroda
- Institute of Food Research & Technologies, Ajinomoto Co., Inc., Kawasaki, Kanagawa 210-8681, Japan.
| | | | | | | | | | | | | |
Collapse
|
6
|
Jiang Y, Lu J, Peatman E, Kucuktas H, Liu S, Wang S, Sun F, Liu Z. A pilot study for channel catfish whole genome sequencing and de novo assembly. BMC Genomics 2011; 12:629. [PMID: 22192763 PMCID: PMC3266365 DOI: 10.1186/1471-2164-12-629] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 12/22/2011] [Indexed: 12/11/2022] Open
Abstract
Background Recent advances in next-generation sequencing technologies have drastically increased throughput and significantly reduced sequencing costs. However, the average read lengths in next-generation sequencing technologies are short as compared with that of traditional Sanger sequencing. The short sequence reads pose great challenges for de novo sequence assembly. As a pilot project for whole genome sequencing of the catfish genome, here we attempt to determine the proper sequence coverage, the proper software for assembly, and various parameters used for the assembly of a BAC physical map contig spanning approximately a million of base pairs. Results A combination of low sequence coverage of 454 and Illumina sequencing appeared to provide effective assembly as reflected by a high N50 value. Using 454 sequencing alone, a sequencing depth of 18 X was sufficient to obtain the good quality assembly, whereas a 70 X Illumina appeared to be sufficient for a good quality assembly. Additional sequencing coverage after 18 X of 454 or after 70 X of Illumina sequencing does not provide significant improvement of the assembly. Considering the cost of sequencing, a 2 X 454 sequencing, when coupled to 70 X Illumina sequencing, provided an assembly of reasonably good quality. With several software tested, Newbler with a seed length of 16 and ABySS with a K-value of 60 appear to be appropriate for the assembly of 454 reads alone and Illumina paired-end reads alone, respectively. Using both 454 and Illumina paired-end reads, a hybrid assembly strategy using Newbler for initial 454 sequence assembly, Velvet for initial Illumina sequence assembly, followed by a second step assembly using MIRA provided the best assembly of the physical map contig, resulting in 193 contigs with a N50 value of 13,123 bp. Conclusions A hybrid sequencing strategy using low sequencing depth of 454 and high sequencing depth of Illumina provided the good quality assembly with high N50 value and relatively low cost. A combination of Newbler, Velvet, and MIRA can be used to assemble the 454 sequence reads and the Illumina reads effectively. The assembled sequence can serve as a resource for comparative genome analysis. Additional long reads using the third generation sequencing platforms are needed to sequence through repetitive genome regions that should further enhance the sequence assembly.
Collapse
Affiliation(s)
- Yanliang Jiang
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures, Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, 203 Swingle Hall, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Liu Z. A review of catfish genomics: progress and perspectives. Comp Funct Genomics 2011; 4:259-65. [PMID: 18629126 PMCID: PMC2447413 DOI: 10.1002/cfg.265] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2003] [Revised: 01/31/2003] [Accepted: 01/31/2003] [Indexed: 01/18/2023] Open
Abstract
Catfish is one of the lower teleosts whose genome research is important for
evolutionary genomics. As the major aquaculture species in the USA, its genome
research also has practical and economical implications. Much progress has been
made in recent years, including the development of large numbers of molecular
markers, the construction of framework genetic linkage maps, the identification of
putative markers involved in performance traits, and the development of genomic
resources. Repetitive elements have been identified and characterized in the catfish
genome that should facilitate physical analysis of the catfish genome. A large
number of genes or full-length cDNAs have been analysed using genomic approaches,
providing information on gene structure, gene evolution and gene expression in
relation to functions. Catfish genome research has come to a stage when physical
mapping through BAC contig construction is greatly demanded, in order to develop
regional markers for QTL analysis and for large-scale comparative mapping. The
current effort in large-scale EST analysis and type I marker mapping should
further enhance research efficiency through comparative mapping. Candidate gene
identification is being accelerated through the use of cDNA microarrays.
Collapse
Affiliation(s)
- Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, 203 Swingle Hall Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences Aquatic Genomics Unit Auburn University Auburn AL 36849 USA
| |
Collapse
|
8
|
Liu Z. Development of genomic resources in support of sequencing, assembly, and annotation of the catfish genome. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2010; 6:11-7. [PMID: 20430707 DOI: 10.1016/j.cbd.2010.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 03/15/2010] [Accepted: 03/16/2010] [Indexed: 12/11/2022]
Abstract
Major progress has been made in catfish genomics including construction of high-density genetic linkage maps, BAC-based physical maps, and integration of genetic linkage and physical maps. Large numbers of ESTs have been generated from both channel catfish and blue catfish. Microarray platforms have been developed for the analysis of genome expression. Genome repeat structures are studied, laying grounds for whole genome sequencing. USDA recently approved funding of the whole genome sequencing project of catfish using the next generation sequencing technologies. Generation of the whole genome sequence is a historical landmark of catfish research as it opens the real first step of the long march toward genetic enhancement. The research community needs to be focused on aquaculture performance and production traits, take advantage of the unprecedented genome information and technology, and make real progress toward genetic improvements of aquaculture brood stocks.
Collapse
Affiliation(s)
- Zhanjiang Liu
- Department of Fisheries and Allied Aquacultures, Auburn University, AL 36849, USA.
| |
Collapse
|
9
|
Wasko AP, Severino FE, Presti FT, Poletto AB, Martins C. Partial molecular characterization of the Nile tilapia (Oreochromis niloticus) alpha-cardiac muscle actin gene and its relationship to actin isoforms of other fish species. Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000600010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
10
|
Nandi S, Peatman E, Xu P, Wang S, Li P, Liu Z. Repeat structure of the catfish genome: a genomic and transcriptomic assessment of Tc1-like transposon elements in channel catfish (Ictalurus punctatus). Genetica 2006; 131:81-90. [PMID: 17091335 DOI: 10.1007/s10709-006-9115-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Accepted: 10/02/2006] [Indexed: 10/23/2022]
Abstract
We have assessed the distribution and diversity of members of the Tc1/mariner superfamily of transposable elements in the channel catfish (Ictalurus punctatus) genome as well as evaluating the extent of transcription of Tc1 transposases in the species. Through use of PCR amplification and sequencing, assessment of random BAC end sequences (BES) equivalent to 1.2% genome coverage, and screening of over 45,000 catfish ESTs, a significant proportion of Tc1-like elements and their associated transcripts were captured. Up to 4.2% of the catfish genome in base pairs appears to be composed of Tc1-like transposon-related sequences and a significant fraction of the catfish cellular mRNA, approximately 0.6%, was transcribed from transposon-related sequences in both sense and antisense orientations. Based on results of repeat-masking, as much as 10% of BAC end sequences from catfish, which is a random survey of the genome, contain some remnant of Tc1 elements, suggesting that these elements are present in the catfish genome as numerous, small remnants of the transposons. Phylogenetic analysis allowed comparison of catfish Tc1 transposase types with those found in other vertebrate and invertebrate species. In spite of the existence of many types of Tc1-like sequences that are not yet able to be placed in clades with strong statistical support, it is clear that multiple families of Tc1-like elements exist in channel catfish.
Collapse
Affiliation(s)
- Samiran Nandi
- Department of Fisheries and Allied Aquacultures, The Fish Molecular Genetics and Biotechnology Laboratory, Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | | | |
Collapse
|
11
|
Bao B, Peatman E, Xu P, Li P, Zeng H, He C, Liu Z. The catfish liver-expressed antimicrobial peptide 2 (LEAP-2) gene is expressed in a wide range of tissues and developmentally regulated. Mol Immunol 2006; 43:367-77. [PMID: 16310050 DOI: 10.1016/j.molimm.2005.02.014] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Accepted: 02/15/2005] [Indexed: 11/19/2022]
Abstract
Antimicrobial peptides (AMPs) are important components of the host's innate immune response against microbial invasion. The cysteine-rich AMPs such as defensin and hepcidin have been extensively studied, but the recently identified cysteine-rich liver-expressed antimicrobial peptide 2 (LEAP-2) has been characterized from only a few organisms. Here we cloned and sequenced the LEAP-2 cDNAs from both Channel catfish and Blue catfish. The LEAP-2 gene from Channel catfish was also sequenced and characterized. Channel catfish LEAP-2 gene consists of two introns and three exons that encode a peptide of 94 amino acids with a 28 amino acid signal peptide and a mature peptide of 41 amino acids. The amino acid sequences and gene organization were conserved between catfish and other organisms. The Channel catfish LEAP-2 gene is expressed in a wide range of tissues except brain and stomach. Its expression is developmentally regulated with no detection of mature mRNA in early stages of development. It appears that the catfish LEAP-2 gene is regulated at the level of splicing; it is constitutively transcribed, but remains unspliced until 6 days after hatching. The expression of LEAP-2 was induced in a tissue-specific manner. Its expression was upregulated in the spleen, but not in the liver and head kidney, after challenge with Edwardsiella ictaluri, the causative agent of enteric septicemia of catfish (ESC).
Collapse
Affiliation(s)
- Baolong Bao
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, 203 Swingle Hall, Auburn, AL 36849, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Ohshima K, Okada N. SINEs and LINEs: symbionts of eukaryotic genomes with a common tail. Cytogenet Genome Res 2005; 110:475-90. [PMID: 16093701 DOI: 10.1159/000084981] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Accepted: 04/27/2004] [Indexed: 01/26/2023] Open
Abstract
Many SINEs and LINEs have been characterized to date, and examples of the SINE and LINE pair that have the same 3' end sequence have also increased. We report the phylogenetic relationships of nearly all known LINEs from which SINEs are derived, including a new example of a SINE/LINE pair identified in the salmon genome. We also use several biological examples to discuss the impact and significance of SINEs and LINEs in the evolution of vertebrate genomes.
Collapse
Affiliation(s)
- K Ohshima
- School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan.
| | | |
Collapse
|
13
|
Quiniou SMA, Wolters WR, Waldbieser GC. Localization of Xba repetitive elements to channel catfish (Ictalurus punctatus) centromeres via fluorescence in situ hybridization. Anim Genet 2005; 36:353-4. [PMID: 16026349 DOI: 10.1111/j.1365-2052.2005.01304.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- S M A Quiniou
- USDA, ARS, Catfish Genetics Research Unit, Stoneville, MS 38776, USA
| | | | | |
Collapse
|
14
|
Bao B, Peatman E, Li P, He C, Liu Z. Catfish hepcidin gene is expressed in a wide range of tissues and exhibits tissue-specific upregulation after bacterial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2005; 29:939-50. [PMID: 15935472 DOI: 10.1016/j.dci.2005.03.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 03/15/2005] [Accepted: 03/15/2005] [Indexed: 05/02/2023]
Abstract
Antimicrobial peptides (AMPs) are important components of the host innate immune response against microbial invasion. The cysteine-rich AMPs such as defensin and hepcidin have been extensively studied from various organisms, but their role in disease defense in catfish is unknown. As a first step, we sequenced a hepcidin cDNA from both channel catfish and blue catfish, and characterized the channel catfish hepcidin gene. The channel catfish hepcidin gene consists of two introns and three exons that encode a peptide of 96 amino acids. The amino acid sequences and gene organization were conserved between catfish and other organisms. In contrast to its almost exclusive expression in the liver in humans, the channel catfish hepcidin gene was expressed in a wide range of tissues except brain. Its expression was detected early during embryonic and larval development, and induced after bacterial infection with Edwardsiella ictaluri, the causative agent of enteric septicemia of catfish (ESC) in a tissue-specific manner. The upregulation was observed in the spleen and head kidney, but not in the liver. The expression of hepcidin was upregulated 1--3 days after challenge, but returned to normal levels at 7 days after challenge. The expression profile of the catfish hepcidin gene during the course of bacterial infection mirrors those of inflammatory proteins such as chemokines, suggesting an important role for hepcidin during inflammatory responses.
Collapse
Affiliation(s)
- Baolong Bao
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | |
Collapse
|
15
|
Pouliot R, Azhari R, Qanadilo HF, Mahmood TA, Triantafyllou MS, Langer R. Tissue engineering of fish skin: behavior of fish cells on poly(ethylene glycol terephthalate)/poly(butylene terephthalate) copolymers in relation to the composition of the polymer substrate as an initial step in constructing a robotic/living tissue hybrid. ACTA ACUST UNITED AC 2004; 10:7-21. [PMID: 15009926 DOI: 10.1089/107632704322791655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This study presents the development of a biosynthetic fish skin to be used on aquatic robots that can emulate fish. Smoothness of the external surface is desired in improving high propulsive efficiency and maneuvering agility of autonomous underwater vehicles such as the RoboTuna (Triantafyllou, M., and Triantafyllou, G. Sci. Am. 272, 64, 1995). An initial step was to determine the seeding density and select a polymer for the scaffolds. The attachment and proliferation of chinook salmon embryo (CHSE-214) and brown bullhead (BB) cells were studied on different compositions of a poly(ethylene glycol terephthalate) (PEGT) and poly(butylene terephthalate) (PBT) copolymer (Polyactive). Polymer films were used, cast of three different compositions of PEGT/PBT (weight ratios of 55/45, 60/40, and 70/30) and two different molecular masses of PEGT (300 and 1000 Da). When a 55 wt% and a 300-Da molecular mass form of PEGT was used, maximum attachment and proliferation of CHSE-214 and BB cells were achieved. Histological studies and immunostaining indicate the presence of collagen and cytokeratins in the extracellular matrix formed after 14 days of culture. Porous scaffolds of PEGT/PBT copolymers were also used for three-dimensional tissue engineering of fish skin, using BB cells. Overall, our results indicate that fish cells can attach, proliferate, and express fish skin components on dense and porous Polyactive scaffolds.
Collapse
Affiliation(s)
- Roxane Pouliot
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | | | | | | | | | | |
Collapse
|
16
|
Yang YS, Guccione S, Bednarski MD. Comparing genomic and histologic correlations to radiographic changes in tumors: a murine SCC VII model study. Acad Radiol 2004; 10:1165-75. [PMID: 14587635 DOI: 10.1016/s1076-6332(03)00327-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
RATIONALE AND OBJECTIVES To investigate the correlation between the temporal changes in T1- and T2-weighted contrast-enhanced magnetic resonance imaging (MRI), histologic evaluation, and genomic analysis using oligonucleotide microarrays in a murine squamous cell carcinoma tumor models. MATERIALS AND METHODS The squamous cell carcinoma (SCC VII) cell line was used to initiate subcutaneous tumors in mice. This mouse model has been used as a model for human head and neck carcinomas. Animals were imaged using contrast enhanced MRI (CE-MRI). Different stages of tumor growth were defined based on changes in the T1- and T2-weighted MRI patterns. The contrast enhancing (CE) and nonenhancing (NE) regions of the tumors were marked and biopsied for oligonucleotide microarray and histologic analysis. Tumors with no differential contrast enhancement were used as controls. RESULTS Distinct temporal stages of tumor progression can be defined using both T1- and T2-weighted CE-MRI and microarray analysis. The early stage tumors show a homogeneous contrast enhancement pattern in the T1- and T2-weighted images with no significant differential gene expression from the center and periphery of the tumor. The more advanced tumors that show discrete regions of contrast enhancement in the post-contrast T1-weighted MRIs and tissues from the CE and NE regions show distinctly differential gene expression profiles. Histologic analysis (hematoxylin-eosin stain) showed that the samples obtained from the periphery and center of the early stage tumors and the CE and NE regions from these more advanced tumors were similar. The gene expression profiles of late-stage tumors that showed changes in T2-weighted MRI signal intensity were consistent with tissue degradation in the NE region, which also showed characteristic signs of tissue necrosis in histologic analysis. CONCLUSION These results show that temporal changes in T1- and T2-weighted CE-MRI are related to distinct gene expression profiles, and histologic analysis may not be sufficient to detect these detailed changes. As tumors progress, discrete regions of post-contrast T1 enhancement are identified; these regions have distinct gene expression patterns despite similar histologic features. In late-stage tumors, regions of T2 signal changes are observed which correspond with tissue necrosis.
Collapse
Affiliation(s)
- Yi-Shan Yang
- Lucas MRS Research Center, Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | |
Collapse
|
17
|
Liu Z, Karsi A, Li P, Cao D, Dunham R. An AFLP-Based Genetic Linkage Map of Channel Catfish (Ictalurus punctatus) Constructed by Using an Interspecific Hybrid Resource Family. Genetics 2003; 165:687-94. [PMID: 14573480 PMCID: PMC1462775 DOI: 10.1093/genetics/165.2.687] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Catfish is the major aquaculture species in the United States. The hybrid catfish produced by crossing channel catfish females with blue catfish males exhibit a number of desirable production traits, but their mass production has been difficult. To introduce desirable genes from blue catfish into channel catfish through introgression, a genetic linkage map is helpful. In this project, a genetic linkage map was constructed using amplified fragment length polymorphism (AFLP). A total of 607 AFLP markers were analyzed using 65 primer combinations and an interspecific backcross resource family. A total of 418 AFLP markers were assigned to 44 linkage groups. Among the remaining 189 markers, 101 were not used because of significant segregation distortion, 29 were unlinked, and 59 were eliminated because they span very large distances. The 418 AFLP markers covered 1593 cM Kosambi. The AFLP markers showed a high level of clustering that appears to be related to certain primer combinations. This linkage map will serve as the basis for mapping a greater number of markers to provide a map with high enough resolution for it to be useful for selective breeding programs using introgression.
Collapse
Affiliation(s)
- Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures Program of Cell and Molecular Biosciences, Auburn University, Auburn, Alabama 36849, USA.
| | | | | | | | | |
Collapse
|
18
|
Kocabas AM, Kucuktas H, Dunham RA, Liu Z. Molecular characterization and differential expression of the myostatin gene in channel catfish (Ictalurus punctatus). BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1575:99-107. [PMID: 12020824 DOI: 10.1016/s0167-4781(02)00289-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Myostatin is a recently discovered gene that inhibits muscle growth. In the present study, we characterized the myostatin locus and its expression in channel catfish (Ictalurus punctatus). The genomic DNA and cDNA encoding the channel catfish myostatin were cloned and sequenced. The myostatin gene has three exons encoding a protein of 389 amino acids. Comparison of the genomic sequences with those of the cDNA revealed that the myostatin cDNA was 1673 base pair (bp) long with a 5'-untranslated region (UTR) and 3'-UTR of 180 and 323 bp, respectively. The deduced amino acid sequences of the catfish myostatin is highly conserved with those of other organisms. The myostatin locus is highly polymorphic in channel catfish because of the presence of several microsatellites and single nucleotide polymorphic sites. The myostatin gene was expressed in various tissues and developmental stages at differential levels, suggesting complex regulation of this gene and perhaps roles for myostatin in addition to those originally suggested.
Collapse
Affiliation(s)
- Arif M Kocabas
- Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Auburn University, 201 Swingle Hall, Auburn, AL 36849, USA
| | | | | | | |
Collapse
|
19
|
Ogiwara I, Miya M, Ohshima K, Okada N. V-SINEs: a new superfamily of vertebrate SINEs that are widespread in vertebrate genomes and retain a strongly conserved segment within each repetitive unit. Genome Res 2002; 12:316-24. [PMID: 11827951 PMCID: PMC155270 DOI: 10.1101/gr.212302] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have identified a new superfamily of vertebrate short interspersed repetitive elements (SINEs), designated V-SINEs, that are widespread in fishes and frogs. Each V-SINE includes a central conserved domain preceded by a 5'-end tRNA-related region and followed by a potentially recombinogenic (TG)(n) tract, with a 3' tail derived from the 3' untranslated region (UTR) of the corresponding partner long interspersed repetitive element (LINE) that encodes a functional reverse transcriptase. The central domain is strongly conserved and is even found in SINEs in the lamprey genome, suggesting that V-SINEs might be approximately 550 Myr old or older in view of the timing of divergence of the lamprey lineage from the bony fish lineage. The central conserved domain might have been subject to some form of positive selection. Although the contemporary 3' tails of V-SINEs differ from one another, it is possible that the original 3' tail might have been replaced, via recombination, by the 3' tails of more active partner LINEs, thereby retaining retropositional activity and the ability to survive for long periods on the evolutionary time scale. It seems plausible that V-SINEs may have some function(s) that have been maintained by the coevolution of SINEs and LINEs during the evolution of vertebrates.
Collapse
Affiliation(s)
- Ikuo Ogiwara
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|
20
|
Waldbieser GC, Bosworth BG, Nonneman DJ, Wolters WR. A microsatellite-based genetic linkage map for channel catfish, Ictalurus punctatus. Genetics 2001; 158:727-34. [PMID: 11404336 PMCID: PMC1461682 DOI: 10.1093/genetics/158.2.727] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Microsatellite loci were identified in channel catfish gene sequences or random clones from a small insert genomic DNA library. Outbred populations of channel catfish contained an average of eight alleles per locus and an average heterozygosity of 0.70. A genetic linkage map of the channel catfish genome (N = 29) was constructed from two reference families. A total of 293 microsatellite loci were polymorphic in one or both families, with an average of 171 informative meioses per locus. Nineteen type I loci, 243 type II loci, and one EST were placed in 32 multipoint linkage groups covering 1958 cM. Nine more type II loci were contained in three two-point linkage groups covering 24.5 cM. Twenty-two type II loci remained unlinked. Multipoint linkage groups ranged in size from 11.9 to 110.5 cM with an average intermarker distance of 8.7 cM. Seven microsatellite loci were closely linked with the sex-determining locus. The microsatellite loci and genetic linkage map will increase the efficiency of selective breeding programs for channel catfish.
Collapse
Affiliation(s)
- G C Waldbieser
- U.S. Department of Agriculture-Agricultural Research Service, Catfish Genetics Research Unit, Stoneville, Mississippi 38776, USA.
| | | | | | | |
Collapse
|