1
|
Qiu Y, Li Z, Köhler C. Ancestral duplication of MADS-box genes in land plants empowered the functional divergence between sporophytes and gametophytes. THE NEW PHYTOLOGIST 2024; 244:358-363. [PMID: 39149858 DOI: 10.1111/nph.20065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024]
Affiliation(s)
- Yichun Qiu
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| | - Claudia Köhler
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala, 75007, Sweden
| |
Collapse
|
2
|
Abstract
BACKGROUND The LEAFY (LFY) transcription factors are present in algae and across land plants. The available expression and functional data of these genes in embryophytes suggest that LFY genes control a plethora of processes including the first zygotic cell division in bryophytes, shoot cell divisions of the gametophyte and sporophyte in ferns, cone differentiation in gymnosperms and floral meristem identity in flowering plants. However, their putative plesiomorphic role in plant reproductive transition in vascular plants remains untested. RESULTS We perform Maximum Likelihood (ML) phylogenetic analyses for the LFY gene lineage in embryophytes with expanded sampling in lycophytes and ferns. We recover the previously identified seed plant duplication that results in LEAFY and NEEDLY paralogs. In addition, we recover multiple species-specific duplications in ferns and lycophytes and large-scale duplications possibly correlated with the occurrence of whole genome duplication (WGD) events in Equisetales and Salviniales. To test putative roles in diverse ferns and lycophytes we perform LFY expression analyses in Adiantum raddianum, Equisetum giganteum and Selaginella moellendorffii. Our results show that LFY genes are active in vegetative and reproductive tissues, with higher expression in early fertile developmental stages and during sporangia differentiation. CONCLUSIONS Our data point to previously unrecognized roles of LFY genes in sporangia differentiation in lycophytes and ferns and suggests that functions linked to reproductive structure development are not exclusive to seed plant LFY homologs.
Collapse
|
3
|
Ambrose BA, Smalls TL, Zumajo-Cardona C. All type II classic MADS-box genes in the lycophyte Selaginella moellendorffii are broadly yet discretely expressed in vegetative and reproductive tissues. Evol Dev 2021; 23:215-230. [PMID: 33666357 DOI: 10.1111/ede.12375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/13/2021] [Accepted: 01/30/2021] [Indexed: 11/29/2022]
Abstract
The MADS-box genes constitute a large transcription factor family that appear to have evolved by duplication and diversification of function. Two types of MADS-box genes are distinguished throughout eukaryotes, types I and II. Type II classic MADS-box genes, also known as MIKC-type, are key developmental regulators in flowering plants and are particularly well-studied for their role in floral organ specification. However, very little is known about the role that these genes might play outside of the flowering plants. We investigated the evolution of type II classic MADS-box genes across land plants by performing a maximum likelihood analysis with a particular focus on lycophytes. Here, we present the expression patterns of all three type II classic MADS-box homologs throughout plant development in the lycophyte Selaginella moellendorffii: SmMADS1, SmMADS3, and SmMADS6. We used scanning electron microscopy and histological analyses to define stages of sporangia development in S. moellendorffii. We performed phylogenetic analyses of this gene lineage across land plants and found that lycophyte sequences appeared before the multiple duplication events that gave rise to the major MADS-box gene lineages in seed plants. Our expression analyses by in situ hybridization show that all type II classic MADS-box genes in S. moellendorffii have broad but distinct patterns of expression in vegetative and reproductive tissues, where SmMADS1 and SmMADS6 only differ during late sporangia development. The broad expression during S. moellendorffii development suggests that MADS-box genes have undergone neofunctionalization and subfunctionalization after duplication events in seed plants.
Collapse
Affiliation(s)
| | | | - Cecilia Zumajo-Cardona
- New York Botanical Garden, Bronx, Bronx, New York, USA.,The Graduate Center, City University of New York, New York, New York, USA
| |
Collapse
|
4
|
Dijkhuizen LW, Tabatabaei BES, Brouwer P, Rijken N, Buijs VA, Güngör E, Schluepmann H. Far-Red Light-Induced Azolla filiculoides Symbiosis Sexual Reproduction: Responsive Transcripts of Symbiont Nostoc azollae Encode Transporters Whilst Those of the Fern Relate to the Angiosperm Floral Transition. FRONTIERS IN PLANT SCIENCE 2021; 12:693039. [PMID: 34456937 PMCID: PMC8386757 DOI: 10.3389/fpls.2021.693039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/22/2021] [Indexed: 05/02/2023]
Abstract
Water ferns of the genus Azolla and the filamentous cyanobacteria Nostoc azollae constitute a model symbiosis that enabled the colonization of the water surface with traits highly desirable for the development of more sustainable crops: their floating mats capture CO2 and fix N2 at high rates using light energy. Their mode of sexual reproduction is heterosporous. The regulation of the transition from the vegetative phase to the spore forming phase in ferns is largely unknown, yet a prerequisite for Azolla domestication, and of particular interest as ferns represent the sister lineage of seed plants. Sporocarps induced with far red light could be crossed so as to verify species attribution of strains from the Netherlands but not of the strain from the Anzali lagoon in Iran; the latter strain was assigned to a novel species cluster from South America. Red-dominated light suppresses the formation of dissemination stages in both gametophyte- and sporophyte-dominated lineages of plants, the response likely is a convergent ecological strategy to open fields. FR-responsive transcripts included those from MIKCC homologues of CMADS1 and miR319-controlled GAMYB transcription factors in the fern, transporters in N. azollae, and ycf2 in chloroplasts. Loci of conserved microRNA (miRNA) in the fern lineage included miR172, yet FR only induced miR529 and miR535, and reduced miR319 and miR159. Phylogenomic analyses of MIKCC TFs suggested that the control of flowering and flower organ specification may have originated from the diploid to haploid phase transition in the homosporous common ancestor of ferns and seed plants.
Collapse
Affiliation(s)
- Laura W. Dijkhuizen
- Laboratory of Molecular Plant Physiology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | | | - Paul Brouwer
- Laboratory of Molecular Plant Physiology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Niels Rijken
- Laboratory of Molecular Plant Physiology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Valerie A. Buijs
- Laboratory of Molecular Plant Physiology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Erbil Güngör
- Laboratory of Molecular Plant Physiology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Henriette Schluepmann
- Laboratory of Molecular Plant Physiology, Department of Biology, Utrecht University, Utrecht, Netherlands
- *Correspondence: Henriette Schluepmann
| |
Collapse
|
5
|
Spencer V, Nemec Venza Z, Harrison CJ. What can lycophytes teach us about plant evolution and development? Modern perspectives on an ancient lineage. Evol Dev 2020; 23:174-196. [PMID: 32906211 DOI: 10.1111/ede.12350] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023]
Abstract
All Evo-Devo studies rely on representative sampling across the tree of interest to elucidate evolutionary trajectories through time. In land plants, genetic resources are well established in model species representing lineages including bryophytes (mosses, liverworts, and hornworts), monilophytes (ferns and allies), and seed plants (gymnosperms and flowering plants), but few resources are available for lycophytes (club mosses, spike mosses, and quillworts). Living lycophytes are a sister group to the euphyllophytes (the fern and seed plant clade), and have retained several ancestral morphological traits despite divergence from a common ancestor of vascular plants around 420 million years ago. This sister relationship offers a unique opportunity to study the conservation of traits such as sporophyte branching, vasculature, and indeterminacy, as well as the convergent evolution of traits such as leaves and roots which have evolved independently in each vascular plant lineage. To elucidate the evolution of vascular development and leaf formation, molecular studies using RNA Seq, quantitative reverse transcription polymerase chain reaction, in situ hybridisation and phylogenetics have revealed the diversification and expression patterns of KNOX, ARP, HD-ZIP, KANADI, and WOX gene families in lycophytes. However, the molecular basis of further trait evolution is not known. Here we describe morphological traits of living lycophytes and their extinct relatives, consider the molecular underpinnings of trait evolution and discuss future research required in lycophytes to understand the key evolutionary innovations enabling the growth and development of all vascular plants.
Collapse
Affiliation(s)
- Victoria Spencer
- School of Biological Sciences, The University of Bristol, Bristol, UK
| | - Zoe Nemec Venza
- School of Biological Sciences, The University of Bristol, Bristol, UK
| | | |
Collapse
|
6
|
Thangavel G, Nayar S. A Survey of MIKC Type MADS-Box Genes in Non-seed Plants: Algae, Bryophytes, Lycophytes and Ferns. FRONTIERS IN PLANT SCIENCE 2018; 9:510. [PMID: 29720991 PMCID: PMC5915566 DOI: 10.3389/fpls.2018.00510] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/03/2018] [Indexed: 05/22/2023]
Abstract
MADS box transcription factors have been studied extensively in flowering plants but remain less studied in non-seed plants. MADS box is one such example of a gene which is prevalent across many classes of plants ranging from chlorophyta to embryophyta as well as fungi and animals. MADS box transcription factors are of two types, Type I and Type II. Type II transcription factors (TF) that consist of a MADS domain, I region, K domain, and C terminal domain are discussed in this review. The Type II/ MIKC class is widespread across charophytes and all major lineages of land plants but unknown in green and red algae. These transcription factors have been implicated in floral development in seed plants and thus the question arises, "What is their role in non-seed plants?" From the studies reviewed here it can be gathered that unlike seed plants, MIKCC genes in non-seed plants have roles in both gametophytic and sporophytic generations and contribute to the development of both vegetative and reproductive structures. On the other hand as previously observed in seed plants, MIKC* genes of non-seed plants have a conserved role during gametophyte development. With respect to evolution of MIKC genes in non-seed plants, the number of common ancestors is probably very few at each branch. The expansion of this gene family in seed plants and increased plant complexity seem to be correlated. As gradually the genomes of non-seed plants are becoming available it is worthwhile to gather the existing information about MADS box genes in non-seed plants. This review highlights various MIKC MADS box genes discovered so far in non-seed plants, their possible roles and an insight into their evolution.
Collapse
|
7
|
Huang Q, Li W, Fan R, Chang Y. New MADS-box gene in fern: cloning and expression analysis of DfMADS1 from Dryopteris fragrans. PLoS One 2014; 9:e86349. [PMID: 24466046 PMCID: PMC3899247 DOI: 10.1371/journal.pone.0086349] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 12/06/2013] [Indexed: 11/18/2022] Open
Abstract
MADS genes encode a family of transcription factors, some of which control the identities of floral organs in flowering plants. Most of the MADS-box genes in fern have been cloned and analyzed in model plants, such as Ceratopteris richardii and Ceratopteris pteridoides. In this study, a new MADS-box gene, DfMADS1(GU385475), was cloned from Dryopteris fragrans (L.) Schott to better understand the role of MADS genes in the evolution of floral organs. The full-length DfMADS1 cDNA was 973 bp in length with a 75bp 5′-UTR and a 169bp 3′-UTR. The DfMADS1 protein was predicted to contain a typical MIKC-type domain structure consisting of a MADS domain, a short I region, a K domain, and a C-terminal region. The DfMADS1 protein showed high homology with MADS box proteins from other ferns. Phylogenetic analysis revealed that DfMADS1 belongs to the CRM1-like subfamily. RT-PCR analysis indicated that DfMADS1 is expressed in both the gametophytes and the sporophytes of D. fragrans.
Collapse
Affiliation(s)
- Qingyang Huang
- Laboratory of Plant Research, College of Life sciences, Northeast Agricultural University, Harbin, Heilongjiang Province, P. R. China
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Science, Harbin, Heilongjiang Province, P. R. China
| | - Wenhua Li
- Laboratory of Plant Research, College of Life sciences, Northeast Agricultural University, Harbin, Heilongjiang Province, P. R. China
| | - Ruifeng Fan
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, P. R. China
| | - Ying Chang
- Laboratory of Plant Research, College of Life sciences, Northeast Agricultural University, Harbin, Heilongjiang Province, P. R. China
- * E-mail:
| |
Collapse
|
8
|
Barker EI, Ashton NW. A parsimonious model of lineage-specific expansion of MADS-box genes in Physcomitrella patens. PLANT CELL REPORTS 2013; 32:1161-77. [PMID: 23525745 DOI: 10.1007/s00299-013-1411-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/01/2013] [Indexed: 05/24/2023]
Abstract
The MADS-box gene family expanded in the lineage leading to the moss, Physcomitrella patens , mainly as a result of polyploidisations and/or large-scale segmental duplication events and to a lesser extent by tandem duplications. Plant MADS-box genes comprise a large family best known for the roles of type II MIKC (C) genes in floral organogenesis, but also including type II MIKC* genes, some of which have been implicated in male gametophytic development, and type I genes, a few of which are involved in ontogeny of female gametophytes, seeds and embryos. Genome-wide analyses of the MADS-box family in angiosperms have revealed numeric predominance of type I and MIKC (C) genes and cross-species phylogenetic clustering of the Mα, Mβ and Mγ subtypes of type I genes and of 12 major subgroups of MIKC (C) genes. The genome sequence of Physcomitrella patens has facilitated investigation of its full complement of 26 MADS-box genes, including 6 MIKC (C) genes, 11 MIKC* genes, seven type I genes and two pseudogenes. A much higher degree of similarity in sequence and architecture within the MIKC (C) and MIKC* gene subtypes exists in Physcomitrella than in Arabidopsis. Furthermore, MADS-box and K-box sequence is highly conserved between the MIKC (C) and MIKC* subgroups in Physcomitrella. Nine MIKC* genes and two MIKC (C) genes are located in pairs or triplets on individual DNA scaffolds. Phylogenetic gene clustering, gene architectures and gene linkages (directly determined from examination of the genome sequence) underpin a parsimonious model of two tandem duplications and three segmental duplication events, which can account for lineage-specific expansion of the MADS-box gene family in Physcomitrella from 4 members to 26. Two of these segmental duplication events may be indicative of polyploidisations, one of which has been postulated previously.
Collapse
Affiliation(s)
- E I Barker
- Department of Biology, University of Regina, Regina, SK, S4S 0A2, Canada
| | | |
Collapse
|
9
|
Hileman LC, Sundstrom JF, Litt A, Chen M, Shumba T, Irish VF. Molecular and phylogenetic analyses of the MADS-box gene family in tomato. Mol Biol Evol 2006; 23:2245-58. [PMID: 16926244 DOI: 10.1093/molbev/msl095] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MIKCc-type MADS-box genes encode key transcriptional regulators of a variety of developmental processes in Arabidopsis thaliana. However, there has been relatively little effort to systematically carry out comparative genomic or functional analyses of these genes across flowering plants. Here we describe a strategy to identify members of the MIKCc-type MADS-box gene family from any angiosperm species of interest. Using this approach, we have identified 24 MIKCc-type MADS-box genes in tomato, including 17 that have not previously been characterized. Using these sequences, we have performed phylogenetic analyses that indicate that there have been a number of gene duplication and loss events in tomato relative to Arabidopsis. We also describe the expression domains of these genes and compare these results with their cognates in Arabidopsis. These analyses demonstrate the utility of this approach for characterizing a large number of MIKCc-type MADS-box genes from any flowering plant species of interest and provide a framework for evolutionary comparisons of this important gene family across angiosperms.
Collapse
Affiliation(s)
- Lena C Hileman
- Department of Molecular, Cellular and Developmental Biology, Yale University, USA
| | | | | | | | | | | |
Collapse
|
10
|
Kramer EM, Jaramillo MA, Di Stilio VS. Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms. Genetics 2004; 166:1011-23. [PMID: 15020484 PMCID: PMC1470751 DOI: 10.1534/genetics.166.2.1011] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Members of the AGAMOUS (AG) subfamily of MIKC-type MADS-box genes appear to control the development of reproductive organs in both gymnosperms and angiosperms. To understand the evolution of this subfamily in the flowering plants, we have identified 26 new AG-like genes from 15 diverse angiosperm species. Phylogenetic analyses of these genes within a large data set of AG-like sequences show that ancient gene duplications were critical in shaping the evolution of the subfamily. Before the radiation of extant angiosperms, one event produced the ovule-specific D lineage and the well-characterized C lineage, whose members typically promote stamen and carpel identity as well as floral meristem determinacy. Subsequent duplications in the C lineage resulted in independent instances of paralog subfunctionalization and maintained functional redundancy. Most notably, the functional homologs AG from Arabidopsis and PLENA (PLE) from Antirrhinum are shown to be representatives of separate paralogous lineages rather than simple genetic orthologs. The multiple subfunctionalization events that have occurred in this subfamily highlight the potential for gene duplication to lead to dissociation among genetic modules, thereby allowing an increase in morphological diversity.
Collapse
Affiliation(s)
- Elena M Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
11
|
Nam J, Kim J, Lee S, An G, Ma H, Nei M. Type I MADS-box genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms. Proc Natl Acad Sci U S A 2004; 101:1910-5. [PMID: 14764899 PMCID: PMC357026 DOI: 10.1073/pnas.0308430100] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant MADS-box genes form a large gene family for transcription factors and are involved in various aspects of developmental processes, including flower development. They are known to be subject to birth-and-death evolution, but the detailed features of this mode of evolution remain unclear. To have a deeper insight into the evolutionary pattern of this gene family, we enumerated all available functional and nonfunctional (pseudogene) MADS-box genes from the Arabidopsis and rice genomes. Plant MADS-box genes can be classified into types I and II genes on the basis of phylogenetic analysis. Conducting extensive homology search and phylogenetic analysis, we found 64 presumed functional and 37 nonfunctional type I genes and 43 presumed functional and 4 nonfunctional type II genes in Arabidopsis. We also found 24 presumed functional and 6 nonfunctional type I genes and 47 presumed functional and 1 nonfunctional type II genes in rice. Our phylogenetic analysis indicated there were at least about four to eight type I genes and approximately 15-20 type II genes in the most recent common ancestor of Arabidopsis and rice. It has also been suggested that type I genes have experienced a higher rate of birth-and-death evolution than type II genes in angiosperms. Furthermore, the higher rate of birth-and-death evolution in type I genes appeared partly due to a higher frequency of segmental gene duplication and weaker purifying selection in type I than in type II genes.
Collapse
Affiliation(s)
- Jongmin Nam
- Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
12
|
Kramer EM, Jaramillo MA, Di Stilio VS. Patterns of Gene Duplication and Functional Evolution During the Diversification of the AGAMOUS Subfamily of MADS Box Genes in Angiosperms. Genetics 2004. [DOI: 10.1093/genetics/166.2.1011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Members of the AGAMOUS (AG) subfamily of MIKC-type MADS-box genes appear to control the development of reproductive organs in both gymnosperms and angiosperms. To understand the evolution of this subfamily in the flowering plants, we have identified 26 new AG -like genes from 15 diverse angiosperm species. Phylogenetic analyses of these genes within a large data set of AG-like sequences show that ancient gene duplications were critical in shaping the evolution of the subfamily. Before the radiation of extant angiosperms, one event produced the ovule-specific D lineage and the well-characterized C lineage, whose members typically promote stamen and carpel identity as well as floral meristem determinacy. Subsequent duplications in the C lineage resulted in independent instances of paralog subfunctionalization and maintained functional redundancy. Most notably, the functional homologs AG from Arabidopsis and PLENA (PLE) from Antirrhinum are shown to be representatives of separate paralogous lineages rather than simple genetic orthologs. The multiple subfunctionalization events that have occurred in this subfamily highlight the potential for gene duplication to lead to dissociation among genetic modules, thereby allowing an increase in morphological diversity.
Collapse
Affiliation(s)
- Elena M Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| | - M Alejandra Jaramillo
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| | | |
Collapse
|
13
|
|
14
|
Tanabe Y, Uchida M, Hasebe M, Ito M. Characterization of the Selaginella remotifolia MADS-box gene. JOURNAL OF PLANT RESEARCH 2003; 116:71-75. [PMID: 12605302 DOI: 10.1007/s10265-002-0071-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2002] [Accepted: 10/31/2002] [Indexed: 05/24/2023]
Abstract
Recent progress in plant molecular genetics has revealed that floral organ development is regulated by several homeotic selector genes, most of which belong to the MADS-box gene family. Here we report on SrMADS1,a MIKC(c)-type MADS-box gene from Selaginella, a spikemoss belonging to the lycophytes. SrMADS1 phylogenetically forms a monophyletic clade with genes of the LAMB2 group, which are MIKC(c) genes of the clubmoss Lycopodium, and is expressed in whole sporophytic tissues except roots and rhizophores. Our results and the previous report on Lycopodium MIKC(c) genes suggest that the ancestral MIKC(c )gene of primitive dichotomous plants in the early Devonian was involved in the development of basic sporophytic tissues such as shoot, stem, and sporangium.
Collapse
Affiliation(s)
- Yoichi Tanabe
- Graduate School of Science and Technology, Chiba University, Chiba 263-8522, Japan.
| | | | | | | |
Collapse
|
15
|
Johansen B, Pedersen LB, Skipper M, Frederiksen S. MADS-box gene evolution-structure and transcription patterns. Mol Phylogenet Evol 2002; 23:458-80. [PMID: 12099799 DOI: 10.1016/s1055-7903(02)00032-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study presents a phylogenetic analysis of 198 MADS-box genes based on 420 parsimony-informative characters. The analysis includes only MIKC genes; therefore several genes from gymnosperms and pteridophytes are excluded. The strict consensus tree identifies all major monophyletic groups known from earlier analyses, and all major monophyletic groups are further supported by a common gene structure in exons 1-6 and by conserved C-terminal motifs. Transcription patterns are mapped on the tree to obtain an overview of MIKC gene transcription. Genes that are transcribed only in vegetative organs are located in the basal part of the tree, whereas genes involved in flower development have evolved later. As the universality of the ABC model has recently been questioned, special account is paid to the expression of A-, B-, and C-class genes. Mapping of transcription patterns on the phylogeny shows all three classes of MADS-box genes to be transcribed in the stamens and carpels. Thus the analysis does not support the ABC model as formulated at present.
Collapse
Affiliation(s)
- Bo Johansen
- Botanical Institute, University of Copenhagen, Gothersgade 140, Denmark.
| | | | | | | |
Collapse
|
16
|
Henschel K, Kofuji R, Hasebe M, Saedler H, Münster T, Theissen G. Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. Mol Biol Evol 2002; 19:801-14. [PMID: 12032236 DOI: 10.1093/oxfordjournals.molbev.a004137] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Characterization of seven MADS-box genes, termed PPM1-PPM4 and PpMADS1-PpMADS3, from the moss model species Physcomitrella patens is reported. Phylogeny reconstructions and comparison of exon-intron structures revealed that the genes described here represent two different classes of homologous, yet distinct, MIKC-type MADS-box genes, termed MIKC(c)-type genes-"(c)" stands for "classic"-(PPM1, PPM2, PpMADS1) and MIKC(*)-type genes (PPM3, PPM4, PpMADS2, PpMADS3). The two gene classes deviate from each other in a characteristic way, especially in a sequence stretch termed intervening region. MIKC(c)-type genes are abundantly present in all land plants which have been investigated in this respect, and give rise to well-known gene types such as floral meristem and organ identity genes. In contrast, LAMB1 from the clubmoss Lycopodium annotinum was identified as the only other MIKC(*)-type gene published so far. Our findings strongly suggest that the most recent common ancestor of mosses and vascular plants contained at least one MIKC(c)-type and one MIKC(*)-type gene. Our studies thus reveal an ancient duplication of an MIKC-type gene that occurred before the separation of the lineages that led to extant mosses and vascular plants more than about 450 MYA. The identification of bona fide K-domains in both MIKC(*)-type and MIKC(c)-type proteins suggests that the K-domain is more ancient than is suggested by a recent alternative hypothesis. MIKC(*)-type genes may have escaped identification in ferns and seed plants so far. It seems more likely, however, that they represent a class of genes which has been lost in the lineage which led to extant ferns and seed plants. The high number of P. patens MADS-box genes and the presence of a K-box in the coding region and of some potential binding sites for MADS-domain proteins and other transcription factors in the putative promoter regions of these genes suggest that MADS-box genes in mosses are involved in complex gene regulatory networks similar to those in flowering plants.
Collapse
Affiliation(s)
- Katrin Henschel
- Department of Molecular Plant Genetics, Max Planck Institute for Breeding Research, Cologne, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Svensson ME, Engström P. Closely related MADS-box genes in club moss (Lycopodium) show broad expression patterns and are structurally similar to, but phylogenetically distinct from, typical seed plant MADS-box genes. THE NEW PHYTOLOGIST 2002; 154:439-450. [PMID: 33873439 DOI: 10.1046/j.1469-8137.2002.00392.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
• The relation between the duplication history of the MADS-box gene family of transcription factors and the evolution of plant development is investigated here. The lycopsids, for example the club mosses, constitute the sister group of all other vascular plants, and are therefore interesting from this perspective. • PCR-based methods were used to isolate MADS-box genes from the club moss, Lycopodium annotinum. • In contrast to the previously isolated L. annotinum MADS-box gene LAMB1 (which also contains a so-called K-box), the new L. annotinum genes LAMB2, LAMB4, LAMB6 are structurally similar to most MADS-K-box genes. These genes, and two L. annotinum MADS-box genes, not encoding K-domains, LAMB3 and LAMB5, form a clade distinct from LAMB1. LAMB1 is expressed exclusively in the strobilus unlike LAMB2, LAMB4, LAMB5 and LAMB6, which are expressed in a broad range of organs. • The results imply that the diversification of organ identity MADS-box genes occurred after the split of the lycopsids from the other vascular plants, and that lycopsids have a MADS-box gene family of a type primitive for land plants.
Collapse
Affiliation(s)
- Mats E Svensson
- Evolutionary Biology Centre, Department of Physiological Botany, Uppsala University, Uppsala, Sweden
| | - Peter Engström
- Evolutionary Biology Centre, Department of Physiological Botany, Uppsala University, Villavägen 6, S-752 36 Uppsala, Sweden; Current address: Institut für Spezielle Zoologie und Evolutionsbiolog mit Phyletischem Museum, D-07743 Jena, Germany
| |
Collapse
|
18
|
Riechmann JL. Transcriptional regulation: a genomic overview. THE ARABIDOPSIS BOOK 2002; 1:e0085. [PMID: 22303220 PMCID: PMC3243377 DOI: 10.1199/tab.0085] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The availability of the Arabidopsis thaliana genome sequence allows a comprehensive analysis of transcriptional regulation in plants using novel genomic approaches and methodologies. Such a genomic view of transcription first necessitates the compilation of lists of elements. Transcription factors are the most numerous of the different types of proteins involved in transcription in eukaryotes, and the Arabidopsis genome codes for more than 1,500 of them, or approximately 6% of its total number of genes. A genome-wide comparison of transcription factors across the three eukaryotic kingdoms reveals the evolutionary generation of diversity in the components of the regulatory machinery of transcription. However, as illustrated by Arabidopsis, transcription in plants follows similar basic principles and logic to those in animals and fungi. A global view and understanding of transcription at a cellular and organismal level requires the characterization of the Arabidopsis transcriptome and promoterome, as well as of the interactome, the localizome, and the phenome of the proteins involved in transcription.
Collapse
Affiliation(s)
- José Luis Riechmann
- Mendel Biotechnology, 21375 Cabot Blvd., Hayward, CA 94545, USA
- California Institute of Technology, Division of Biology 156-29, Pasadena, CA 91125
| |
Collapse
|
19
|
Shepard KA, Purugganan MD. The genetics of plant morphological evolution. CURRENT OPINION IN PLANT BIOLOGY 2002; 5:49-55. [PMID: 11788308 DOI: 10.1016/s1369-5266(01)00227-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Considerable progress has been made in identifying genes that are involved in the evolution of plant morphologies. Elements of the ABC model of flower development are conserved throughout angiosperms, and homologous MADS-box genes function in gymnosperm reproduction. Candidate gene and mapping analyses of floral symmetry, sex determination, inflorescence architecture, and compound leaves provide intriguing glimpses into the evolution of morphological adaptations.
Collapse
Affiliation(s)
- Kristen A Shepard
- Department of Genetics, Box 7614, 3513 Gardner Hall, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | | |
Collapse
|
20
|
Abstract
The function of MADS-box genes in flower and fruit development has been uncovered at a rapid pace over the past decade. Evolutionary biologists can now analyse the expression pattern of MADS-box genes during the development of different plant species, and study the homology of body parts and the evolution of body plans. These studies have shown that floral development is conserved among divergent species, and indicate that the basic mechanism of floral patterning might have evolved in an ancient flowering plant.
Collapse
Affiliation(s)
- M Ng
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, California 92093-0116, USA
| | | |
Collapse
|