1
|
Yamauchi K. Evolution of thyroid hormone distributor proteins in fish. Gen Comp Endocrinol 2021; 305:113735. [PMID: 33549607 DOI: 10.1016/j.ygcen.2021.113735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/25/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022]
Abstract
In plasma, thyroid hormone (TH) is bound to several TH distributor proteins (THDPs), constituting a TH delivery/distribution network. Extensive studies of THDPs from tetrapods has proposed an evolutionary scenario concerning structural and functional changes in THDPs, especially for transthyretin (TTR). When assessing, in an evolutionary context, the roles of THDPs as a component constituting part of the vertebrate thyroid system, the data from fish THDPs are critical. In this review the phylogenetic distributions, spatiotemporal expression patterns and binding properties of THDPs in fish are described, and the question of whether the evolutionary hypotheses proposed in tetrapod THDPs can be applied to fish THDPs is assessed. The phylogenetic distributions of THDPs are highly variable among fish groups. Analysis in this review reveals that the evolutionary hypotheses proposed in tetrapod THDPs cannot be applied to fish THDPs, and that the role of plasma lipoproteins as THDPs grows in importance in fish groups. In primitive fish, zinc is an import factor in TH binding to TTR, and high zinc content may facilitate the acquisition of high TH binding activity during the early evolution of TTR. Finally, the possible roles of THDPs in the vertebrate thyroid system are discussed.
Collapse
Affiliation(s)
- Kiyoshi Yamauchi
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan.
| |
Collapse
|
2
|
Andreeva AM, Serebryakova MV, Lamash NE. Oligomeric protein complexes of apolipoproteins stabilize the internal fluid environment of organism in redfins of the Tribolodon genus [Pisces; Cypriniformes, Cyprinidae]. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 22:90-97. [PMID: 28288366 DOI: 10.1016/j.cbd.2017.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/21/2017] [Accepted: 02/24/2017] [Indexed: 01/25/2023]
Abstract
One of the most important functions of plasma proteins in vertebrates is their participation in osmotic homeostasis in the organism. Modern concepts about plasma proteins and their capillary filtration are based on a model of large monomeric proteins that are able to penetrate the interstitial space. At the same time, it was revealed that a considerable amount of oligomeric complexes are present in the low-molecular-weight (LM) protein fraction in the extracellular fluids of fishes. The functions of these complexes are unknown. In the present study, we investigated the LM-fraction proteins in the plasma and interstitial fluid (IF) of redfins of the genus Tribolodon. This fish alternatively spends parts of its life cycle in saline and fresh waters. We identified the protein Wap65, serpins and apolipoproteins in this fraction. By combining the methods of 2D-E under native and denaturing conditions with MALDI, we demonstrated that only apolipoproteins formed complexes. We showed that serum apolipoproteins (АроА-I, Аро-14) were present in the form of homooligomeric complexes that were dissociated with the release of monomeric forms of proteins in the course of capillary filtration to IF. Dissociation of homooligomers is not directly correlated with the change in salinity but is correlated with seasonal dynamics. We found that there was a significant decrease in the total protein concentration in IF relative to plasma. Therefore, we suggested that dissociation of homooligomeric complexes from various apolipoproteins supports the isoosmoticity of extracellular fluids relative to capillary wall stabilization through a fluid medium in fish.
Collapse
Affiliation(s)
- Alla M Andreeva
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, 152742, Nekouzskii raion, Yaroslavl oblast, Russia.
| | - Marina V Serebryakova
- Lomonosov Moscow State University, A. N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Leninskye gory, house 1, building 40, Russia
| | - Nina E Lamash
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, 152742, Nekouzskii raion, Yaroslavl oblast, Russia; A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
3
|
Effects of clofibric acid alone and in combination with 17β-estradiol on mRNA abundance in primary hepatocytes isolated from rainbow trout. Toxicol In Vitro 2014; 28:1106-16. [DOI: 10.1016/j.tiv.2014.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 05/11/2014] [Accepted: 05/14/2014] [Indexed: 12/08/2022]
|
4
|
Wang C, Zhang F, Cao W, Wang J. The identification of apolipoprotein C-I in rare minnow (Gobiocypris rarus) and its expression following cadmium exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 35:419-426. [PMID: 23467118 DOI: 10.1016/j.etap.2013.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/29/2013] [Accepted: 02/02/2013] [Indexed: 06/01/2023]
Abstract
Cadmium (Cd) is a ubiquitous environment contaminant that has been detected in a variety of terrestrial and aquatic organisms. In our study, rare minnow were exposed to 0.4 mg/L Cd(2+) solution, fish tissues including gill, intestine, kidney, liver, muscle, and spleen were collected at 1, 6, 12, 24 and 48 h after exposure. Differential expression sequence tags (ESTs) were screened and an EST similar to Hemibarbus mylodon apolipoprotein C-I (ApoC-I) was identified. The ApoC-I cDNA had been obtained with the sequence of 583 bp, which can code 84 amino acids. The transcription expression patterns of ApoC-I were compared after Cd exposure with the real-time PCR in the above tissues. ApoC-I regulation was prominent in spleen, muscle, gill and liver and moderate in kidney and intestine. This suggests a complex transcriptional regulation of ApoC-I expression following Cd exposure.
Collapse
Affiliation(s)
- Chunling Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, PR China
| | | | | | | |
Collapse
|
5
|
Kondo H, Suga R, Suda S, Nozaki R, Hirono I, Nagasaka R, Kaneko G, Ushio H, Watabe S. EST analysis on adipose tissue of rainbow trout Oncorhynchus mykiss and tissue distribution of adiponectin. Gene 2011; 485:40-5. [DOI: 10.1016/j.gene.2011.05.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 05/21/2011] [Accepted: 05/27/2011] [Indexed: 12/15/2022]
|
6
|
The fibrate drug gemfibrozil disrupts lipoprotein metabolism in rainbow trout. Toxicol Appl Pharmacol 2011; 251:201-8. [DOI: 10.1016/j.taap.2010.12.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 12/16/2010] [Accepted: 12/21/2010] [Indexed: 12/19/2022]
|
7
|
Shen Y, Lookene A, Zhang L, Olivecrona G. Site-directed mutagenesis of apolipoprotein CII to probe the role of its secondary structure for activation of lipoprotein lipase. J Biol Chem 2009; 285:7484-92. [PMID: 20042600 DOI: 10.1074/jbc.m109.022046] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein CII (apoCII) is a necessary activator for lipoprotein lipase (LPL). We had identified four residues (Tyr-63, Ile-66, Asp-69, and Gln-70), presumably contained in an alpha-helix, as a potential binding site for LPL. We have now used structure prediction, mutagenesis, and functional assays to explore the functional role of the secondary structure in this part of apoCII. First, mutants were generated by replacements with proline residues to disturb the helical structure. Activation by mutant G65P was reduced by 30%, whereas mutant S54P retained activation ability. Mutants V71P and L72P should be located outside the LPL-binding site, but V71P was totally inactive, whereas activation by L72P was reduced by 65%. Insertion of alanine after Tyr-63, changing the position of the putative LPL-binding site in relation to the hydrophobic face of the alpha-helix, also severely impeded the activation ability, and a double mutant (Y63A/I66A) was completely inactive. Next, to investigate the importance of conserved hydrophobic residues in the C-terminal end of apoCII, Phe-67, Val-71, Leu-72, and Leu-75 were exchanged for polar residues. Only F67S showed dramatic loss of function. Finally, fragment 39-62, previously claimed to activate LPL, was found to be completely inactive. Our data support the view that the helical structure close to the C-terminal end of apoCII is important for activation of LPL, probably by placing residues 63, 66, 69, and 70 in an optimal steric position. The structural requirements for the hydrophobic face on the back side of this helix and further out toward the C terminus were less stringent.
Collapse
Affiliation(s)
- Yan Shen
- Department of Medical Biosciences, Physiological Chemistry, Umeå University, SE-90 187 Umeå, Sweden
| | | | | | | |
Collapse
|
8
|
Kim KY, Cho YS, Bang IC, Nam YK. Isolation and characterization of the apolipoprotein multigene family in Hemibarbus mylodon (Teleostei: Cypriniformes). Comp Biochem Physiol B Biochem Mol Biol 2009; 152:38-46. [DOI: 10.1016/j.cbpb.2008.09.084] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 09/09/2008] [Accepted: 09/09/2008] [Indexed: 11/15/2022]
|
9
|
Wang Y, Zhou L, Li Z, Gui JF. Molecular cloning and expression characterization of ApoC-I in the orange-spotted grouper. FISH PHYSIOLOGY AND BIOCHEMISTRY 2008; 34:339-348. [PMID: 18958591 DOI: 10.1007/s10695-007-9193-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 11/29/2007] [Indexed: 05/27/2023]
Abstract
Endogenous yolk nutrients are crucial for embryo and larval development in fish, but developmental behavior of the genes that control yolk utilization remains unknown. Apolipoproteins have been shown to play important roles in lipid transport and uptake through the circulation system. In this study, EcApoC-I, the first cloned ApoC-I in teleosts, has been screened from pituitary cDNA library of female orange-spotted grouper (Epinephelus coioides), and the deduced amino acid sequence shows 43.5% identity to one zebrafish (Danio rerio) hypothetical protein similar to ApoC-I, and 21.2%, 21.7%, 22.5%, 20%, and 22.5% identities to Apo C-I of human (Homo sapiens), house mouse (Mus musculus), common tree shrew (Tupaia glis), dog (Canis lupus familiaris) and hamadryas baboon (Papio hamadryas), respectively. Although the sequence identity is low, amphipathic alpha-helices with the potential to bind to lipid were predicted to exist in the EcApoC-I. RT-PCR analysis revealed that it was first transcribed in gastrula embryos and maintained a relatively stable expression level during the following embryogenesis. During embryonic and early larval development, a very high level of EcApoC-I expression was in the yolk syncytial layer, indicating that it plays a significant role in yolk degradation and transfers nutrition to the embryo and early larva. By the day 7 after hatching, EcApoC-I transcripts were observed in brain. In adult, EcApoC-I mRNA was detected abundantly in brain and gonad. In transitional gonads, the EcApoC-I expression is restricted to the germ cells. The data suggested that EcApoC-I might play an important role in brain and gonad morphogenesis and growth.
Collapse
Affiliation(s)
- Y Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Wuhan Center for Developmental Biology, Institute of Hydrobiology, Graduate School of the Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | |
Collapse
|
10
|
Babin PJ, Gibbons GF. The evolution of plasma cholesterol: direct utility or a "spandrel" of hepatic lipid metabolism? Prog Lipid Res 2008; 48:73-91. [PMID: 19049814 DOI: 10.1016/j.plipres.2008.11.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/06/2008] [Accepted: 11/07/2008] [Indexed: 02/07/2023]
Abstract
Fats provide a concentrated source of energy for multicellular organisms. The efficient transport of fats through aqueous biological environments raises issues concerning effective delivery to target tissues. Furthermore, the utilization of fatty acids presents a high risk of cytotoxicity. Improving the efficiency of fat transport while simultaneously minimizing the cytotoxic risk confers distinct selective advantages. In humans, most of the plasma cholesterol is associated with low-density lipoprotein (LDL), a metabolic by-product of very-low-density lipoprotein (VLDL), which originates in the liver. However, the functions of VLDL are not clear. This paper reviews the evidence that LDL arose as a by-product during the natural selection of VLDL. The latter, in turn, evolved as a means of improving the efficiency of diet-derived fatty acid storage and utilization, as well as neutralizing the potential cytotoxicity of fatty acids while conserving their advantages as a concentrated energy source. The evolutionary biology of lipid transport processes has provided a fascinating insight into how and why these VLDL functions emerged during animal evolution. As causes of historical origin must be separated from current utilities, our spandrel-LDL theory proposes that LDL is a spandrel of VLDL selection, which appeared non-adaptively and may later have become crucial for vertebrate fitness.
Collapse
Affiliation(s)
- Patrick J Babin
- Université Bordeaux 1, Génomique et Physiologie des Poissons, UMR NuAGe, 33405 Talence, France
| | | |
Collapse
|
11
|
Gahr SA, Vallejo RL, Weber GM, Shepherd BS, Silverstein JT, Rexroad CE. Effects of short-term growth hormone treatment on liver and muscle transcriptomes in rainbow trout (Oncorhynchus mykiss). Physiol Genomics 2008; 32:380-92. [PMID: 18073272 DOI: 10.1152/physiolgenomics.00142.2007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although studies have established that exogenous growth hormone (GH) treatment stimulates growth in fish, its effects on target tissue gene expression are not well characterized. We assessed the effects of Posilac (Monsanto, St. Louis, MO), a recombinant bovine GH, on tissue transcript levels in rainbow trout selected from two high-growth rate and two low-growth rate families. Transcript abundance was measured in liver and muscle with the Genome Research in Atlantic Salmon Project (GRASP) 16K cDNA microarray. A selection of the genes identified as altered by the microarray and transcripts for insulin-like growth factors, growth hormone receptors (GHRs), and myostatins were measured by real-time PCR in the liver, muscle, brain, kidney, intestine, stomach, gill, and heart. In general, transcripts identified as differentially regulated in the muscle on the microarray showed similar directional changes of expression in the other nonhepatic tissues. A total of 114 and 66 transcripts were identified by microarray as differentially expressed with GH treatment across growth rate for muscle and liver, respectively. The largest proportion of these transcripts represented novel transcripts, followed by immune and metabolism-related genes. We have identified a number of genes related to lipid metabolism, supporting a modulation in lipid metabolism following GH treatment. Most notable among the growth-axis genes measured by real-time PCR were increases in GHR1 and -2 transcripts in liver and muscle. Our results indicate that short-term GH treatment activates the immune system, shifts the metabolic sectors, and modulates growth-regulating genes.
Collapse
Affiliation(s)
- Scott A. Gahr
- National Center for Cool and Cold Water Aquaculture, Agriculture Research Service, United States Department of Agriculture, Kearneysville, West Virginia
| | - Roger L. Vallejo
- National Center for Cool and Cold Water Aquaculture, Agriculture Research Service, United States Department of Agriculture, Kearneysville, West Virginia
| | - Gregory M. Weber
- National Center for Cool and Cold Water Aquaculture, Agriculture Research Service, United States Department of Agriculture, Kearneysville, West Virginia
| | - Brian S. Shepherd
- Great Lakes WATER Institute, Agriculture Research Service, United States Department of Agriculture, Milwaukee, Wisconsin
| | - Jeffrey T. Silverstein
- National Center for Cool and Cold Water Aquaculture, Agriculture Research Service, United States Department of Agriculture, Kearneysville, West Virginia
| | - Caird E. Rexroad
- National Center for Cool and Cold Water Aquaculture, Agriculture Research Service, United States Department of Agriculture, Kearneysville, West Virginia
| |
Collapse
|
12
|
Kleveland EJ, Ruyter B, Vegusdal A, Sundvold H, Berge RK, Gjøen T. Effects of 3-thia fatty acids on expression of some lipid related genes in Atlantic salmon (Salmo salar L.). Comp Biochem Physiol B Biochem Mol Biol 2006; 145:239-48. [PMID: 16971150 DOI: 10.1016/j.cbpb.2006.07.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 05/15/2006] [Accepted: 07/31/2006] [Indexed: 11/16/2022]
Abstract
In this study, the effects of in vivo administration of 3-thia fatty acids (FAs) on lipid metabolism in muscle and liver of Atlantic salmon were investigated. Prior to analysis, the fish were kept in tanks supplied with 5 degrees C seawater for 20 weeks. The fish were fed fish meal and fish oil (FO)-based diets supplemented with either nothing (FO), or 0.3% and 0.6% of the 3-thia FAs dodecylthioacetic acid (DTA) and tetradecylthioacetic acid (TTA) respectively. The fish grew from an initial weight of 110 g to 220 g in the FO group and to approximately 160 g in the 3-thia FA groups. There was a significant higher mortality (66%) in fish fed 0.6% TTA than in fish fed the 0.3% DTA (15%) and FO diets (15%). None of the 3-thia FA diets affected the lipid content of the salmon muscle. The liver index, however, was significantly higher and the total liver fat content lower in the TTA group than in the FO group. Both DTA and TTA were incorporated into the lipid fraction of muscle and liver (0.4% to 0.9%). There were no major differences in the total FA composition of liver and muscle between the dietary groups; except for a small increase of n-3 polyunsaturated FAs (PUFAs) in liver of the DTA group. The mRNA expression of peroxisome proliferator-activated receptor (PPAR) alpha, apolipoprotein AI (ApoAI), apolipoprotein CII (ApoCII) and low-density lipoprotein receptor (LDL-R) was down-regulated in liver of the salmon fed 0.3% DTA. PPARalpha and ApoAI transcripts were also reduced in liver of salmon fed 0.6% TTA. Additionally, the hepatic lipoprotein lipase (LPL) mRNA level was 3.8 fold increased in TTA fish relative to the FO group. In muscle there were no significant changes in gene expression pattern of any of the genes investigated. This is the first report on the effects of 3-thia FAs on gene expression in Atlantic salmon.
Collapse
Affiliation(s)
- Ellen Johanne Kleveland
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, N-0316 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
13
|
Fish (Rainbow Trout) Blood and Its Fractions as Food Ingredients. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2006. [DOI: 10.1300/j030v15n01_03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Zhou L, Wang Y, Yao B, Li CJ, Ji GD, Gui JF. Molecular cloning and expression pattern of 14 kDa apolipoprotein in orange-spotted grouper, Epinephelus coioides. Comp Biochem Physiol B Biochem Mol Biol 2005; 142:432-7. [PMID: 16246612 DOI: 10.1016/j.cbpb.2005.09.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 09/10/2005] [Accepted: 09/12/2005] [Indexed: 12/01/2022]
Abstract
A novel fish-specific apolipoprotein (apo-14 kDa) has been recently cloned from eel and pufferfish. However, its expression pattern has not been elucidated. In this study, EcApo-14 has been screened from hypothalamic cDNA library of male orange-spotted grouper, which shows 62.9%, 51%, 46.9%, 43.2%, and 31.9% identities to Apo-14 of European flounder, pufferfish, Japanese eel, gibel carp, and grass carp, respectively. RT-PCR analysis reveals that this gene is first transcribed in neurula embryos and maintains a relatively stable expression level during the following embryogenesis. EcApo-14 transcripts are at a very high level during embryonic and early larval development in the yolk syncytial layer (YSL), and decrease in YSL and form intense staining in liver at 3 days after hatching. In adult tissues, EcApo-14 is predominantly expressed in liver and brain. The data suggested that EcApo-14 might play an important role in liver and brain morphogenesis and growth.
Collapse
Affiliation(s)
- Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Wuhan Center for Developmental Biology, Institute of Hydrobiology, Chinese Academy of Sciences, China
| | | | | | | | | | | |
Collapse
|
15
|
Kondo H, Morinaga K, Misaki R, Nakaya M, Watabe S. Characterization of the pufferfish Takifugu rubripes apolipoprotein multigene family. Gene 2005; 346:257-66. [PMID: 15716036 DOI: 10.1016/j.gene.2004.11.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Revised: 11/01/2004] [Accepted: 11/17/2004] [Indexed: 11/19/2022]
Abstract
We have characterized the apolipoprotein multigene family of the pufferfish Takifugu rubripes. The pufferfish mainly contains 28-kDa, 27-kDa, and 14-kDa apolipoproteins in its plasma and was designated apo-28 kDa, apo-27 kDa, and apo-14 kDa, respectively. N-terminal amino acid sequencing revealed that pufferfish apo-28 kDa and apo-27 kDa have an identical amino acid sequence except an additional propeptide in the former; and both are homologues of apoA-I from other animals. The sequence of pufferfish apo-14 kDa is homologous to that of eel apo-14 kDa previously reported, both being apparently specific to fish. In silico screening, using the publicly available Fugu genome database confirmed the pufferfish apoA-I and apo-14 kDa genes. The database further contained the genes encoding four types of apoA-IV, one apoC-II and two types of apoE. Thus, pufferfish contains nine genes encoding apolipoprotein multigene family. Two apoA-IV and one apoE genes were tandemly arrayed and located on one scaffold. Thus two sets of these genes formed two gene clusters. The apoC-II and apo-14 kDa genes are also located on a single scaffold. apoA-I and apo-14 kDa gene transcripts were mainly expressed in liver and less abundantly in brain. The transcripts of the former gene were also observed in intestine. In contrast, the transcripts encoding four apoA-IVs, one apoC-II, and two apoEs were mainly expressed in intestine. These structural details of pufferfish apolipoproteins and tissue distribution of their gene transcripts provide a novel evidence for better understanding of evolutionary relationships of apolipoprotein multigene family.
Collapse
Affiliation(s)
- Hidehiro Kondo
- Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
16
|
Shen Y, Lookene A, Nilsson S, Olivecrona G. Functional analyses of human apolipoprotein CII by site-directed mutagenesis: identification of residues important for activation of lipoprotein lipase. J Biol Chem 2002; 277:4334-42. [PMID: 11719505 DOI: 10.1074/jbc.m105421200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein CII (apoCII) activates lipoprotein lipase (LPL). Seven residues, located on one face of a model alpha-helix spanning residues 59-75, are fully conserved in apoCII from ten different animal species. We have mutated these residues one by one. Substitution of Ala(59) by glycine, or Thr(62) and Gly(65) by alanine did not change the activation, indicating that these residues are outside the LPL-binding site. Replacement of Tyr(63), Ile(66), Asp(69), or Gln(70) by alanine lowered the affinity for LPL and the catalytic activity of the LPL-apoCII complex. For each residue several additional replacements were made. Most mutants retained some activating ability, but replacement of Tyr(63) by phenylalanine or tryptophan and Gln(70) by glutamate caused almost complete loss of activity. All mutants bound to liposomes with similar affinity as wild-type apoCII, and they also bound with similar affinity to LPL in the absence of hydrolyzable lipids. However, the inactive mutants did not compete with wild-type apoCII in the activation assay. Therefore, we conclude that the productive apoCII-LPL interaction may be dependent on substrate molecules. In summary, our data demonstrate that residues 63, 66, 69, and 70 are of special importance for the function of apoCII, but no single amino acid residue is absolutely crucial.
Collapse
Affiliation(s)
- Yan Shen
- Department of Medical Biosciences, Umeå University, Umeå SE-90 187, Sweden
| | | | | | | |
Collapse
|