1
|
Kim YJ, Kim H, Kim SH, Rha E, Choi SL, Yeom SJ, Kim HS, Lee SG. Improved metagenome screening efficiency by random insertion of T7 promoters. J Biotechnol 2016; 230:47-53. [PMID: 27239964 DOI: 10.1016/j.jbiotec.2016.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/04/2016] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
Abstract
Metagenomes constitute a major source for the identification of novel enzymes for industrial applications. However, current functional screening methods are hindered by the limited transcription efficiency of foreign metagenomic genes. To overcome this constraint, we introduced the 'Enforced Transcription' technique, which involves the random insertion of the bi-directional T7 promoter into a metagenomic fosmid library. Then the effect of enforced transcription was quantitatively assessed by screening for metagenomic lipolytic genes encoding enzymes whose catalytic activity forms halos on tributyrin agar plates. The metagenomic library containing the enforced transcription system yielded a significantly increased number of screening hits with lipolytic activity compared to the library without random T7 promoter insertions. Additional sequence analysis revealed that the hits from the enforced transcription library had greater genetic diversity than those from the original metagenome library. Enhancing heterologous expression using the T7 promoter should enable the identification of greater numbers of diverse novel biocatalysts from the metagenome than possible using conventional metagenome screening approaches.
Collapse
Affiliation(s)
- Yu Jung Kim
- Department of BiologicalSciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea; Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, South Korea
| | - Haseong Kim
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, South Korea
| | - Seo Hyeon Kim
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, South Korea
| | - Eugene Rha
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, South Korea
| | - Su-Lim Choi
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, South Korea
| | - Soo-Jin Yeom
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, South Korea
| | - Hak-Sung Kim
- Department of BiologicalSciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Seung-Goo Lee
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, South Korea; Biosystems & Bioengineering, University of Science & Technology (UST), Daejeon 34113, South Korea.
| |
Collapse
|
2
|
Selection of Salmonella enterica serovar Typhi genes involved during interaction with human macrophages by screening of a transposon mutant library. PLoS One 2012; 7:e36643. [PMID: 22574205 PMCID: PMC3344905 DOI: 10.1371/journal.pone.0036643] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 04/04/2012] [Indexed: 12/21/2022] Open
Abstract
The human-adapted Salmonella enterica serovar Typhi (S. Typhi) causes a systemic infection known as typhoid fever. This disease relies on the ability of the bacterium to survive within macrophages. In order to identify genes involved during interaction with macrophages, a pool of approximately 105 transposon mutants of S. Typhi was subjected to three serial passages of 24 hours through human macrophages. Mutants recovered from infected macrophages (output) were compared to the initial pool (input) and those significantly underrepresented resulted in the identification of 130 genes encoding for cell membrane components, fimbriae, flagella, regulatory processes, pathogenesis, and many genes of unknown function. Defined deletions in 28 genes or gene clusters were created and mutants were evaluated in competitive and individual infection assays for uptake and intracellular survival during interaction with human macrophages. Overall, 26 mutants had defects in the competitive assay and 14 mutants had defects in the individual assay. Twelve mutants had defects in both assays, including acrA, exbDB, flhCD, fliC, gppA, mlc, pgtE, typA, waaQGP, SPI-4, STY1867-68, and STY2346. The complementation of several mutants by expression of plasmid-borne wild-type genes or gene clusters reversed defects, confirming that the phenotypic impairments within macrophages were gene-specific. In this study, 35 novel phenotypes of either uptake or intracellular survival in macrophages were associated with Salmonella genes. Moreover, these results reveal several genes encoding molecular mechanisms not previously known to be involved in systemic infection by human-adapted typhoidal Salmonella that will need to be elucidated.
Collapse
|
3
|
Liu X, Rodermel SR, Yu F. A var2 leaf variegation suppressor locus, SUPPRESSOR OF VARIEGATION3, encodes a putative chloroplast translation elongation factor that is important for chloroplast development in the cold. BMC PLANT BIOLOGY 2010; 10:287. [PMID: 21187014 PMCID: PMC3022910 DOI: 10.1186/1471-2229-10-287] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 12/28/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND The Arabidopsis var2 mutant displays a unique green and white/yellow leaf variegation phenotype and lacks VAR2, a chloroplast FtsH metalloprotease. We are characterizing second-site var2 genetic suppressors as means to better understand VAR2 function and to study the regulation of chloroplast biogenesis. RESULTS In this report, we show that the suppression of var2 variegation in suppressor line TAG-11 is due to the disruption of the SUPPRESSOR OF VARIEGATION3 (SVR3) gene, encoding a putative TypA-like translation elongation factor. SVR3 is targeted to the chloroplast and svr3 single mutants have uniformly pale green leaves at 22°C. Consistent with this phenotype, most chloroplast proteins and rRNA species in svr3 have close to normal accumulation profiles, with the notable exception of the Photosystem II reaction center D1 protein, which is present at greatly reduced levels. When svr3 is challenged with chilling temperature (8°C), it develops a pronounced chlorosis that is accompanied by abnormal chloroplast rRNA processing and chloroplast protein accumulation. Double mutant analysis indicates a possible synergistic interaction between svr3 and svr7, which is defective in a chloroplast pentatricopeptide repeat (PPR) protein. CONCLUSIONS Our findings, on one hand, reinforce the strong genetic link between VAR2 and chloroplast translation, and on the other hand, point to a critical role of SVR3, and possibly some aspects of chloroplast translation, in the response of plants to chilling stress.
Collapse
Affiliation(s)
- Xiayan Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Steve R Rodermel
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Fei Yu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
4
|
Micklinghoff JC, Schmidt M, Geffers R, Tegge W, Bange FC. Analysis of expression and regulatory functions of the ribosome-binding protein TypA in Mycobacterium tuberculosis under stress conditions. Arch Microbiol 2010; 192:499-504. [PMID: 20437167 DOI: 10.1007/s00203-010-0571-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/10/2010] [Accepted: 03/25/2010] [Indexed: 11/29/2022]
Abstract
In many bacterial species, the translational GTPase TypA acts as a global stress- and virulence regulator and also mediates resistance to the antimicrobial peptide BPI. On the chromosome of M. tuberculosis, typA is located next to narGHJI, which plays a role in adaptation of the pathogen to various environmental conditions. Here, we show that Mycobacterium tuberculosis is sensitive to P2, a derivative of BPI. Using a typA mutant of M. tuberculosis, we found this phenotype to be independent of TypA. We further tested typA expression in M. tuberculosis under defined stress conditions, such as oxygen- and nutrient depletion, low pH, heat shock, antibiotic stress and the presence of P2, and found that typA expression remains unaffected by any of these conditions. Analysis of growth and whole-genome expression revealed similar growth kinetics and gene expression profiles of the wild type and the mutant under normal growth conditions as well as under stress conditions. Our results suggest that in contrast to the findings in other bacteria, TypA does not act as a global stress- and virulence regulator in M. tuberculosis.
Collapse
Affiliation(s)
- Julia C Micklinghoff
- Department of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | |
Collapse
|
5
|
Translation factor LepA contributes to tellurite resistance in Escherichia coli but plays no apparent role in the fidelity of protein synthesis. Biochimie 2009; 92:157-63. [PMID: 19925844 DOI: 10.1016/j.biochi.2009.11.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 11/11/2009] [Indexed: 11/23/2022]
Abstract
LepA is a translational GTPase highly conserved in bacterial lineages. While it has been shown that LepA can catalyze reverse ribosomal translocation in vitro, the role of LepA in the cell remains unclear. Here, we show that deletion of the lepA gene (DeltalepA) in Escherichia coli causes hypersensitivity to potassium tellurite and penicillin G, but has no appreciable effect on growth under many other conditions. DeltalepA does not increase miscoding or frameshifting errors under normal or stress conditions, indicating that LepA does not contribute to the fidelity of translation. Overexpression of LepA interferes with tmRNA-mediated peptide tagging and A-site mRNA cleavage, suggesting that LepA is a bona fide translation factor that can act on stalled ribosomes with a vacant A site in vivo. Together these results lead us to hypothesize that LepA is involved in co-translational folding of proteins that are otherwise vulnerable to tellurite oxidation.
Collapse
|
6
|
Salmonella enterica serovar Typhimurium BipA exhibits two distinct ribosome binding modes. J Bacteriol 2008; 190:5944-52. [PMID: 18621905 DOI: 10.1128/jb.00763-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BipA is a highly conserved prokaryotic GTPase that functions to influence numerous cellular processes in bacteria. In Escherichia coli and Salmonella enterica serovar Typhimurium, BipA has been implicated in controlling bacterial motility, modulating attachment and effacement processes, and upregulating the expression of virulence genes and is also responsible for avoidance of host defense mechanisms. In addition, BipA is thought to be involved in bacterial stress responses, such as those associated with virulence, temperature, and symbiosis. Thus, BipA is necessary for securing bacterial survival and successful invasion of the host. Steady-state kinetic analysis and pelleting assays were used to assess the GTPase and ribosome-binding properties of S. enterica BipA. Under normal bacterial growth, BipA associates with the ribosome in the GTP-bound state. However, using sucrose density gradients, we demonstrate that the association of BipA and the ribosome is altered under stress conditions in bacteria similar to those experienced during virulence. The data show that this differential binding is brought about by the presence of ppGpp, an alarmone that signals the onset of stress-related events in bacteria.
Collapse
|
7
|
Suzuki S, Aono T, Lee KB, Suzuki T, Liu CT, Miwa H, Wakao S, Iki T, Oyaizu H. Rhizobial factors required for stem nodule maturation and maintenance in Sesbania rostrata-Azorhizobium caulinodans ORS571 symbiosis. Appl Environ Microbiol 2007; 73:6650-9. [PMID: 17720818 PMCID: PMC2075074 DOI: 10.1128/aem.01514-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular and physiological mechanisms behind the maturation and maintenance of N(2)-fixing nodules during development of symbiosis between rhizobia and legumes still remain unclear, although the early events of symbiosis are relatively well understood. Azorhizobium caulinodans ORS571 is a microsymbiont of the tropical legume Sesbania rostrata, forming N(2)-fixing nodules not only on the roots but also on the stems. In this study, 10,080 transposon-inserted mutants of A. caulinodans ORS571 were individually inoculated onto the stems of S. rostrata, and those mutants that induced ineffective stem nodules, as displayed by halted development at various stages, were selected. From repeated observations on stem nodulation, 108 Tn5 mutants were selected and categorized into seven nodulation types based on size and N(2) fixation activity. Tn5 insertions of some mutants were found in the well-known nodulation, nitrogen fixation, and symbiosis-related genes, such as nod, nif, and fix, respectively, lipopolysaccharide synthesis-related genes, C(4) metabolism-related genes, and so on. However, other genes have not been reported to have roles in legume-rhizobium symbiosis. The list of newly identified symbiosis-related genes will present clues to aid in understanding the maturation and maintenance mechanisms of nodules.
Collapse
Affiliation(s)
- Shino Suzuki
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Leggewie C, Henning H, Schmeisser C, Streit WR, Jaeger KE. A novel transposon for functional expression of DNA libraries. J Biotechnol 2006; 123:281-7. [PMID: 16414138 DOI: 10.1016/j.jbiotec.2005.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 11/29/2005] [Accepted: 12/01/2005] [Indexed: 10/25/2022]
Abstract
Environmental DNA libraries are important sources for novel biocatalyst genes but activity screening for relevant enzymes is often inefficient. Therefore, we have constructed the transposon MuExpress which randomly integrates in vitro into existing bacterial artificial chromosome (BAC) or cosmid libraries and permits the inducible expression of its flanking regions in both directions. Furthermore, this transposon allows the bidirectional sequencing of the respective clones starting from unique primer binding sites.
Collapse
Affiliation(s)
- Christian Leggewie
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Duesseldorf, Forschungszentrum Juelich, D-52426 Juelich, Germany
| | | | | | | | | |
Collapse
|
9
|
Owens RM, Pritchard G, Skipp P, Hodey M, Connell SR, Nierhaus KH, O'Connor CD. A dedicated translation factor controls the synthesis of the global regulator Fis. EMBO J 2004; 23:3375-85. [PMID: 15297874 PMCID: PMC514516 DOI: 10.1038/sj.emboj.7600343] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Accepted: 07/05/2004] [Indexed: 11/09/2022] Open
Abstract
BipA is a highly conserved protein with global regulatory properties in Escherichia coli. We show here that it functions as a translation factor that is required specifically for the expression of the transcriptional modulator Fis. BipA binds to ribosomes at a site that coincides with that of elongation factor G and has a GTPase activity that is sensitive to high GDP:GTP ratios and stimulated by 70S ribosomes programmed with mRNA and aminoacylated tRNAs. The growth rate-dependent induction of BipA allows the efficient expression of Fis, thereby modulating a range of downstream processes, including DNA metabolism and type III secretion. We propose a model in which BipA destabilizes unusually strong interactions between the 5' untranslated region of fis mRNA and the ribosome. Since BipA spans phylogenetic domains, transcript-selective translational control for the 'fast-track' expression of specific mRNAs may have wider significance.
Collapse
Affiliation(s)
- Róisín M Owens
- School of Biological Sciences, University of Southampton, Southampton, UK
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | - Gareth Pritchard
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Paul Skipp
- School of Biological Sciences, University of Southampton, Southampton, UK
- Centre for Proteomic Research, University of Southampton, Southampton, UK
| | - Michelle Hodey
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Sean R Connell
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | | | - C David O'Connor
- School of Biological Sciences, University of Southampton, Southampton, UK
- Centre for Proteomic Research, University of Southampton, Southampton, UK
| |
Collapse
|
10
|
Abstract
Transposons are mobile genetic elements that can relocate from one genomic location to another. As well as modulating gene expression and contributing to genome plasticity and evolution, transposons are remarkably diverse molecular tools for both whole-genome and single-gene studies in bacteria, yeast, and other microorganisms. Efficient but simple in vitro transposition reactions now allow the mutational analysis of previously recalcitrant microorganisms. Transposon-based signature-tagged mutagenesis and genetic footprinting strategies have pinpointed essential genes and genes that are crucial for the infectivity of a variety of human and other pathogens. Individual proteins and protein complexes can be dissected by transposon-mediated scanning linker mutagenesis. These and other transposon-based approaches have reaffirmed the usefulness of these elements as simple yet highly effective mutagens for both functional genomic and proteomic studies of microorganisms.
Collapse
Affiliation(s)
- Finbarr Hayes
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, PO Box 88, Manchester M60 1QD, England.
| |
Collapse
|
11
|
Grant AJ, Farris M, Alefounder P, Williams PH, Woodward MJ, O'Connor CD. Co-ordination of pathogenicity island expression by the BipA GTPase in enteropathogenic Escherichia coli (EPEC). Mol Microbiol 2003; 48:507-21. [PMID: 12675808 DOI: 10.1046/j.1365-2958.2003.t01-1-03447.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BipA is a novel member of the ribosome binding GTPase superfamily and is widely distributed in bacteria and plants. We report here that it regulates -multiple cell surface- and virulence-associated -components in the enteropathogenic Escherichia coli (EPEC) strain E2348/69. The regulated components include bacterial flagella, the espC pathogenicity island and a type III secretion system specified by the locus of enterocyte effacement (LEE). BipA positively regulated the espC and LEE gene clusters through transcriptional control of the LEE-encoded regulator, Ler. Additionally, it affected the pattern of proteolysis of intimin, a key LEE-encoded adhesin specified by the LEE. BipA control of the LEE operated independently of the previously characterized regulators Per, integration host factor and H-NS. In contrast, it negatively regulated the flagella-mediated motility of EPEC and in a Ler-independent manner. Our results indicate that the BipA GTPase functions high up in diverse regulatory cascades to co-ordinate the expression of key pathogenicity islands and other virulence-associated factors in E. coli.
Collapse
Affiliation(s)
- Andrew J Grant
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | | | | | | | | | | |
Collapse
|