1
|
Quintana TA, Brewer MT, Chelladurai JRJ. Transcriptional responses to in vitro macrocyclic lactone exposure in Toxocara canis larvae using RNA-seq. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.20.629602. [PMID: 39763735 PMCID: PMC11702694 DOI: 10.1101/2024.12.20.629602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Toxocara canis, the causative agent of zoonotic toxocariasis in humans, is a parasitic roundworm of canids with a complex lifecycle. While macrocyclic lactones (MLs) are successful at treating adult T. canis infections when used at FDA-approved doses in dogs, they fail to kill somatic third-stage larvae. In this study, we profiled the transcriptome of third-stage larvae derived from larvated eggs and treated in vitro with 10 μM of the MLs - ivermectin and moxidectin with Illumina sequencing. We analyzed transcriptional changes in comparison with untreated control larvae. In ivermectin-treated larvae, we identified 608 differentially expressed genes (DEGs), of which 453 were upregulated and 155 were downregulated. In moxidectin-treated larvae, we identified 1,413 DEGs, of which 902 were upregulated and 511 were downregulated. Notably, many DEGs were involved in critical biological processes and pathways including transcriptional regulation, energy metabolism, neuronal structure and function, physiological processes such as reproduction, excretory/secretory molecule production, host-parasite response mechanisms, and parasite elimination. We also assessed the expression of known ML targets and transporters, including glutamate-gated chloride channels (GluCls), and ATP-binding cassette (ABC) transporters, subfamily B, with a particular focus on P-glycoproteins (P-gps). We present gene names for previously uncharacterized T. canis GluCl genes using phylogenetic analysis of nematode orthologs to provide uniform gene nomenclature. Our study revealed that the expression of Tca-glc-3 and six ABCB genes, particularly four P-gps, were significantly altered in response to ML treatment. Compared to controls, Tca-glc-3, Tca-Pgp-11.2, and Tca-Pgp-13.2 were downregulated in ivermectin-treated larvae, while Tca-abcb1, Tca-abcb7, Tca-Pgp-11.2, and Tca-Pgp-13.2 were downregulated in moxidectin-treated larvae. Conversely, Tca-abcb9.1 and Tca-Pgp-11.3 were upregulated in moxidectin-treated larvae. These findings suggest that MLs broadly impact transcriptional regulation in T. canis larvae.
Collapse
Affiliation(s)
- Theresa A Quintana
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL
| | - Matthew T Brewer
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - Jeba R Jesudoss Chelladurai
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL
| |
Collapse
|
2
|
Sun Y, Yu Q, Li L, Mei Z, Zhou B, Liu S, Pan T, Wu L, Lei Y, Liu L, Drmanac R, Ma K, Liu S. Single-cell RNA profiling links ncRNAs to spatiotemporal gene expression during C. elegans embryogenesis. Sci Rep 2020; 10:18863. [PMID: 33139759 PMCID: PMC7606524 DOI: 10.1038/s41598-020-75801-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/06/2020] [Indexed: 01/04/2023] Open
Abstract
Recent studies show that non-coding RNAs (ncRNAs) can regulate the expression of protein-coding genes and play important roles in mammalian development. Previous studies have revealed that during C. elegans (Caenorhabditis elegans) embryo development, numerous genes in each cell are spatiotemporally regulated, causing the cell to differentiate into distinct cell types and tissues. We ask whether ncRNAs participate in the spatiotemporal regulation of genes in different types of cells and tissues during the embryogenesis of C. elegans. Here, by using marker-free full-length high-depth single-cell RNA sequencing (scRNA-seq) technique, we sequence the whole transcriptomes from 1031 embryonic cells of C. elegans and detect 20,431 protein-coding genes, including 22 cell-type-specific protein-coding markers, and 9843 ncRNAs including 11 cell-type-specific ncRNA markers. We induce a ncRNAs-based clustering strategy as a complementary strategy to the protein-coding gene-based clustering strategy for single-cell classification. We identify 94 ncRNAs that have never been reported to regulate gene expressions, are co-expressed with 1208 protein-coding genes in cell type specific and/or embryo time specific manners. Our findings suggest that these ncRNAs could potentially influence the spatiotemporal expression of the corresponding genes during the embryogenesis of C. elegans.
Collapse
Affiliation(s)
- Yan Sun
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
- BGI-Shenzhen, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen, 518100, China
| | - Qichao Yu
- BGI-Shenzhen, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen, 518100, China
| | - Lei Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Biaofeng Zhou
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
- BGI-Shenzhen, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen, 518100, China
| | - Shang Liu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
- BGI-Shenzhen, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen, 518100, China
| | - Taotao Pan
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
- BGI-Shenzhen, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen, 518100, China
| | - Liang Wu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
- BGI-Shenzhen, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen, 518100, China
| | - Ying Lei
- BGI-Shenzhen, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen, 518100, China
| | - Longqi Liu
- BGI-Shenzhen, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen, 518100, China
| | | | - Kun Ma
- BGI-Shenzhen, Shenzhen, 518083, China.
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen, 518100, China.
| | - Shiping Liu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China.
- BGI-Shenzhen, Shenzhen, 518083, China.
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen, 518100, China.
| |
Collapse
|
4
|
Fakhouri THI, Stevenson J, Chisholm AD, Mango SE. Dynamic chromatin organization during foregut development mediated by the organ selector gene PHA-4/FoxA. PLoS Genet 2010; 6:e1001060. [PMID: 20714352 PMCID: PMC2920861 DOI: 10.1371/journal.pgen.1001060] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 07/12/2010] [Indexed: 01/08/2023] Open
Abstract
Central regulators of cell fate, or selector genes, establish the identity of cells by direct regulation of large cohorts of genes. In Caenorhabditis elegans, foregut (or pharynx) identity relies on the FoxA transcription factor PHA-4, which activates different sets of target genes at various times and in diverse cellular environments. An outstanding question is how PHA-4 distinguishes between target genes for appropriate transcriptional control. We have used the Nuclear Spot Assay and GFP reporters to examine PHA-4 interactions with target promoters in living embryos and with single cell resolution. While PHA-4 was found throughout the digestive tract, binding and activation of pharyngeally expressed promoters was restricted to a subset of pharyngeal cells and excluded from the intestine. An RNAi screen of candidate nuclear factors identified emerin (emr-1) as a negative regulator of PHA-4 binding within the pharynx, but emr-1 did not modulate PHA-4 binding in the intestine. Upon promoter association, PHA-4 induced large-scale chromatin de-compaction, which, we hypothesize, may facilitate promoter access and productive transcription. Our results reveal two tiers of PHA-4 regulation. PHA-4 binding is prohibited in intestinal cells, preventing target gene expression in that organ. PHA-4 binding within the pharynx is limited by the nuclear lamina component EMR-1/emerin. The data suggest that association of PHA-4 with its targets is a regulated step that contributes to promoter selectivity during organ formation. We speculate that global re-organization of chromatin architecture upon PHA-4 binding promotes competence of pharyngeal gene transcription and, by extension, foregut development.
Collapse
Affiliation(s)
- Tala H. I. Fakhouri
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Jeff Stevenson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Andrew D. Chisholm
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Susan E. Mango
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
6
|
Andersen EC, Horvitz HR. Two C. elegans histone methyltransferases repress lin-3 EGF transcription to inhibit vulval development. Development 2007; 134:2991-9. [PMID: 17634190 DOI: 10.1242/dev.009373] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Studies of Schizosaccharomyces pombe and mammalian cells identified a series of histone modifications that result in transcriptional repression. Lysine 9 of histone H3 (H3K9) is deacetylated by the NuRD complex, methylated by a histone methyltransferase (HMT) and then bound by a chromodomain-containing protein, such as heterochromatin protein 1 (HP1), leading to transcriptional repression. A Caenorhabditis elegans NuRD-like complex and HP1 homologs regulate vulval development, but no HMT is known to act in this process. We surveyed all 38 putative HMT genes in C. elegans and identified met-1 and met-2 as negative regulators of vulval cell-fate specification. met-1 is homologous to Saccharomyces cerevisiae Set2, an H3K36 HMT that prevents the ectopic initiation of transcription. met-2 is homologous to human SETDB1, an H3K9 HMT that represses transcription. met-1 and met-2 (1) are each required for the normal trimethylation of both H3K9 and H3K36; (2) act redundantly with each other as well as with the C. elegans HP1 homologs; and (3) repress transcription of the EGF gene lin-3, which encodes the signal that induces vulval development. We propose that as is the case for Set2 in yeast, MET-1 prevents the reinitiation of transcription. Our results suggest that in the inhibition of vulval development, homologs of SETDB1, HP1 and the NuRD complex act with this H3K36 HMT to prevent ectopic transcriptional initiation.
Collapse
Affiliation(s)
- Erik C Andersen
- Howard Hughes Medical Institute, Department of Biology, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | |
Collapse
|
7
|
Grishok A, Sinskey JL, Sharp PA. Transcriptional silencing of a transgene by RNAi in the soma of C. elegans. Genes Dev 2005; 19:683-96. [PMID: 15741313 PMCID: PMC1065722 DOI: 10.1101/gad.1247705] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Accepted: 01/26/2005] [Indexed: 11/24/2022]
Abstract
The silencing of transgene expression at the level of transcription in the soma of Caenorhabditis elegans through an RNAi-dependent pathway has not been previously characterized. Most gene silencing due to RNAi in C. elegans occurs at the post-transcriptional level. We observed transcriptional silencing when worms containing the elt-2::gfp/LacZ transgene were fed RNA produced from the commonly used L4440 vector. The transgene and the vector share plasmid backbone sequences. This transgene silencing depends on multiple RNAi pathway genes, including dcr-1, rde-1, rde-4, and rrf-1. Unlike post-transcriptional gene silencing in worms, elt-2::gfp/LacZ silencing is dependent on the PAZ-PIWI protein Alg-1 and on the HP1 homolog Hpl-2. The latter is a chromatin silencing factor, and expression of the transgene is inhibited at the level of intron-containing precursor mRNA. This inhibition is accompanied by a decrease in the acetylation of histones associated with the transgene. This transcriptional silencing in the soma can be distinguished from transgene silencing in the germline by its inability to be transmitted across generations and its dependence on the rde-1 gene. We therefore define this type of silencing as RNAi-induced Transcriptional Gene Silencing (RNAi-TGS). Additional chromatin-modifying components affecting RNAi-TGS were identified in a candidate RNAi screen.
Collapse
Affiliation(s)
- Alla Grishok
- Center for Cancer Research, McGovern Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|