1
|
Gallo A, Penna YM, Russo M, Rosapane M, Tosti E, Russo GL. An organic extract from ascidian Ciona robusta induces cytotoxic autophagy in human malignant cell lines. Front Chem 2024; 12:1322558. [PMID: 38389727 PMCID: PMC10881676 DOI: 10.3389/fchem.2024.1322558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
The last decades have seen an increase in the isolation and characterization of anticancer compounds derived from marine organisms, especially invertebrates, and their use in clinical trials. In this regard, ascidians, which are included in the subphylum Tunicata, represent successful examples with two drugs, Aplidine© and Yondelis© that reached the market as orphan drugs against several malignancies. Here, we report that an organic extract prepared from homogenized tissues of the Mediterranean ascidian Ciona robusta inhibited cell proliferation in HT-29, HepG2, and U2OS human cells with the former being the most sensitive to the extract (EC50 = 250 μg/mL). We demonstrated that the ascidian organic extract was not cytotoxic on HT-29 cells that were induced to differentiate with sodium butyrate, suggesting a preference for the mixture for the malignant phenotype. Finally, we report that cell death induced by the organic extract was mediated by the activation of a process of cytotoxic autophagy as a result of the increased expression of the LC3-II marker and number of autophagic vacuoles, which almost doubled in the treated HT-29 cells. In summary, although the detailed chemical composition of the Ciona robusta extract is still undetermined, our data suggest the presence of bioactive compounds possessing anticancer activity.
Collapse
Affiliation(s)
- Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | | | - Maria Russo
- National Research Council, Institute of Food Sciences, Avellino, Italy
| | - Marco Rosapane
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
- National Research Council, Institute of Food Sciences, Avellino, Italy
| | - Elisabetta Tosti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Gian Luigi Russo
- National Research Council, Institute of Food Sciences, Avellino, Italy
| |
Collapse
|
2
|
Boulay JL, Du Pasquier L, Cooper MD. Cytokine Receptor Diversity in the Lamprey Predicts the Minimal Essential Cytokine Networks of Vertebrates. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1013-1020. [PMID: 35914837 DOI: 10.4049/jimmunol.2200274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/10/2022] [Indexed: 07/28/2023]
Abstract
The vertebrate adaptive immune systems (Agnatha and Gnathostomata) use sets of T and B lymphocyte lineages that somatically generate highly diverse repertoires of Ag-specific receptors and Abs. In Gnathostomata, cytokine networks regulate the activation of lymphoid and myeloid cells, whereas little is known about these components in Agnathans. Most gnathostome cytokines are four-helix bundle cytokines with poorly conserved primary sequences. In contrast, sequence conservation across bilaterians has been observed for cognate cytokine receptor chains, allowing their structural classification into two classes, and for downstream JAK/STAT signaling mediators. With conserved numbers among Gnathostomata, human cytokine receptor chains (comprising 34 class I and 12 class II) are able to interact with 28 class I helical cytokines (including most ILs) and 16 class II cytokines (including all IFNs), respectively. Hypothesizing that the arsenal of cytokine receptors and transducers may reflect homologous cytokine networks, we analyzed the lamprey genome and transcriptome to identify genes and transcripts for 23 class I and five class II cytokine receptors alongside one JAK signal mediator and four STAT transcription factors. On the basis of deduction of their respective orthologs, we predict that these receptors may interact with 16 class I and 3 class II helical cytokines (including IL-4, IL-6, IL-7, IL-12, IL-10, IFN-γ, and thymic stromal lymphoprotein homologs). On the basis of their respective activities in mammals, this analysis suggests the existence of lamprey cytokine networks that may regulate myeloid and lymphoid cell differentiation, including potential Th1/Th2 polarization. The predicted networks thus appear remarkably homologous to those of Gnathostomata, albeit reduced to essential functions.
Collapse
Affiliation(s)
- Jean-Louis Boulay
- Laboratory of Brain Tumor Immunotherapy and Biology, Department of BioMedicine, University Hospital of Basel and University of Basel, Basel, Switzerland;
| | - Louis Du Pasquier
- Laboratory of Zoology and Evolutionary Biology, Department of Environmental Sciences, University of Basel, Basel, Switzerland; and
| | - Max D Cooper
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University, Atlanta, GA
| |
Collapse
|
3
|
Costantini M, Musto H. The Isochores as a Fundamental Level of Genome Structure and Organization: A General Overview. J Mol Evol 2017; 84:93-103. [PMID: 28243687 DOI: 10.1007/s00239-017-9785-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/15/2017] [Indexed: 11/30/2022]
Abstract
The recent availability of a number of fully sequenced genomes (including marine organisms) allowed to map very precisely the isochores, based on DNA sequences, confirming the results obtained before genome sequencing by the ultracentrifugation in CsCl. In fact, the analytical profile of human DNA showed that the vertebrate genome is a mosaic of isochores, typically megabase-size DNA segments that belong to a small number of families characterized by different GC levels. In this review, we will concentrate on some general genome features regarding the compositional organization from different organisms and their evolution, ranging from vertebrates to invertebrates until unicellular organisms. Since isochores are tightly linked to biological properties such as gene density, replication timing, and recombination, the new level of detail provided by the isochore map helped the understanding of genome structure, function, and evolution. All the findings reported here confirm the idea that the isochores can be considered as a "fundamental level of genome structure and organization." We stress that we do not discuss in this review the origin of isochores, which is still a matter of controversy, but we focus on well established structural and physiological aspects.
Collapse
Affiliation(s)
- Maria Costantini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy.
| | - Héctor Musto
- Laboratorio de Organización y Evolución del Genoma, Unidad de Genómica Evolutiva, Facultad de Ciencias, 11400, Montevideo, Uruguay
| |
Collapse
|
4
|
Costantini M. An overview on genome organization of marine organisms. Mar Genomics 2015; 24 Pt 1:3-9. [PMID: 25899406 DOI: 10.1016/j.margen.2015.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/17/2015] [Accepted: 03/17/2015] [Indexed: 11/16/2022]
Abstract
In this review we will concentrate on some general genome features of marine organisms and their evolution, ranging from vertebrate to invertebrates until unicellular organisms. Before genome sequencing, the ultracentrifugation in CsCl led to high resolution of mammalian DNA (without seeing at the sequence). The analytical profile of human DNA showed that the vertebrate genome is a mosaic of isochores, typically megabase-size DNA segments that belong in a small number of families characterized by different GC levels. The recent availability of a number of fully sequenced genomes allowed mapping very precisely the isochores, based on DNA sequences. Since isochores are tightly linked to biological properties such as gene density, replication timing and recombination, the new level of detail provided by the isochore map helped the understanding of genome structure, function and evolution. This led the current level of knowledge and to further insights.
Collapse
Affiliation(s)
- Maria Costantini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| |
Collapse
|
5
|
Huang XD, Wei GJ, Zhang H, He MX. Nuclear factor of activated T cells (NFAT) in pearl oyster Pinctada fucata: molecular cloning and functional characterization. FISH & SHELLFISH IMMUNOLOGY 2015; 42:108-113. [PMID: 25449375 DOI: 10.1016/j.fsi.2014.10.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/23/2014] [Accepted: 10/28/2014] [Indexed: 06/04/2023]
Abstract
Nuclear factor of activated T cells (NFAT) plays an important role in nonimmune cells and also in T cells and many other cells of the immune system, by regulating the expression of a variety of genes involved in the immune response, organ development, developmental apoptosis and angiogenesis. In the present study, the NFAT homology gene, PfNFAT, from the pearl oyster Pinctada fucata was cloned and its genomic structure and promoter were analyzed. PfNFAT encodes a putative protein of 1226 amino acids, and contains a highly conserved Rel homology region (RHR) with DNA-binding specificity, and a regulatory domain (NFAT homology region, NHR) containing a potent transactivation domain (TAD). The PfNFAT gene consists of 12 exons and 11 introns, and its promoter contains potential binding sites for transcription factors such as NF-κB (Nuclear factor κB), STATx (signal transducer and activator of transcription), AP-1 (activator protein-1) and Sox-5/9 (SRY type HMG box-5/9), MyoD (Myogenic Differentiation Antigen) and IRF (Interferon regulatory factor). Comparison and phylogenetic analysis revealed that PfNFAT shows high identity with other invertebrate NFAT, and clusters with the NFAT5 subgroup. Furthermore, gene expression analysis revealed that PfNFAT is involved in the immune response to lipopolysaccharide (LPS) and Polyinosinic-polycytidylic acid (poly I:C) stimulation and in the nucleus inserting operation. The study of PfNFAT may increase understanding of molluscan innate immunity.
Collapse
Affiliation(s)
- Xian-De Huang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Guo-jian Wei
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Hua Zhang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Mao-Xian He
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| |
Collapse
|
6
|
Villarreal LP. The source of self: genetic parasites and the origin of adaptive immunity. Ann N Y Acad Sci 2009; 1178:194-232. [PMID: 19845639 DOI: 10.1111/j.1749-6632.2009.05020.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stable colonization of the host by viruses (genetic parasites) can alter the systems of host identity and provide immunity against related viruses. To attain the needed stability, some viruses of prokaryotes (P1 phage) use a strategy called an addiction module. The linked protective and destructive gene functions of an addiction module insures both virus persistence but will also destroy cells that interrupt this module and thereby prevent infection by competitors. Previously, I have generalized this concept to also include persistent and lytic states of virus infection, which can be considered as a virus addiction module. Such states often involve defective viruses. In this report, I examine the origin of the adaptive immune system from the perspective of a virus addiction module. The likely role of both endogenous and exogenous retroviruses, DNA viruses, and their defective elements is considered in the origin of all the basal components of adaptive immunity (T-cell receptor, RAG-mediated gene rearrangement, clonal lymphocyte proliferation, antigen surface presentation, apoptosis, and education of immune cells). It is concluded that colonization by viruses and their defectives provides a more coherent explanation for the origin of adaptive immunity.
Collapse
Affiliation(s)
- Luis P Villarreal
- Center for Virus Research, Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA.
| |
Collapse
|
7
|
Abstract
Background Previous investigations from our laboratory were largely focused on the genome organization of vertebrates. We showed that these genomes are mosaics of isochores, megabase-size DNA sequences that are fairly homogeneous in base composition yet belong to a small number of families that cover a wide compositional spectrum. A question raised by these results concerned how far back in evolution an isochore organization of the eukaryotic genome arose. Results The present investigation deals with the compositional patterns of the invertebrates for which full genome sequences, or at least scaffolds, are available. We found that (i) a mosaic of isochores is the long-range organization of all the genomes that we investigated; (ii) the isochore families from the invertebrate genomes matched the corresponding families of vertebrates in GC levels; (iii) the relative amounts of isochore families were remarkably different for different genomes, except for those from phylogenetically close species, such as the Drosophilids. Conclusion This work demonstrates not only that an isochore organization is present in all metazoan genomes analyzed that included Nematodes, Arthropods among Protostomia, Echinoderms and Chordates among Deuterostomia, but also that the isochore families of invertebrates share GC levels with the corresponding families of vertebrates.
Collapse
|
8
|
Zou SM, Jiang XY. Retracted: Gene duplication and functional evolution of Hox genes in fishes. JOURNAL OF FISH BIOLOGY 2008; 73:329-354. [PMID: 20646134 DOI: 10.1111/j.1095-8649.2008.01852.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
With their power to shape animal morphology, few genes have captured the imagination of biologists as much as the evolutionarily conserved members of the Hox clusters. Hox genes encode transcription factors that play a key role in specifying the body plan in metazoans and are therefore essential in explaining patterns of evolutionary diversity. While each Hox cluster contains the same genes among the different mammalian species, this does not happen in ray-finned fish, in which both the number and organization of Hox genes and even Hox clusters are variable. Teleost fishes provide the first unambiguous support for ancient whole-genome duplication (third round) in an animal lineage. The number of genes differs in each cluster as a result of increased freedom to mutate after duplication. This has also allowed them to diverge and to adopt novel developmental roles. In this review, the authors have firstly focused on broadly outlining the duplication of Hoxgenes in fishes and discussing how comparative genomics is elucidating the molecular changes associated with the evolution of Hox genes expression and developmental function in the teleost fishes.Additional related research aspects, such as imaging of roles of microRNAs, chromatin regulation and evolutionary findings are also discussed.
Collapse
Affiliation(s)
- S M Zou
- Key Laboratory of Aquatic Genetic Resources and Aquacultural Ecosystem Certificated by the Ministry of Agriculture, Shanghai Fisheries University, Jungong Road 334, Shanghai 200090, China
| | | |
Collapse
|
9
|
Leveugle M, Prat K, Popovici C, Birnbaum D, Coulier F. Phylogenetic analysis of Ciona intestinalis gene superfamilies supports the hypothesis of successive gene expansions. J Mol Evol 2004; 58:168-81. [PMID: 15042337 DOI: 10.1007/s00239-003-2538-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2003] [Accepted: 08/04/2003] [Indexed: 10/26/2022]
Abstract
Understanding the formation of metazoan multigene families is a good approach to reconstitute the evolution of the chordate genome. In this attempt, the analysis of the genome of selected species provides valuable information. Ciona intestinalis belongs to the urochordates, whose lineage separated from the chordate lineage that later gave birth to vertebrates. We have searched available sequences from the small marine ascidian C. intestinalis for orthologs of members of five vertebrate superfamilies, including tyrosine kinase receptors, ETS, FOX and SOX transcription factors, and WNT secreted regulatory factors, and conducted phylogenetic analyses. We have found that most vertebrate subfamilies have a single C. intestinalis ortholog. Our results support the hypothesis of a gene expansion prior the base of chordate ancestry followed by another gene expansion during vertebrate evolution. They also indicate that Ciona intestinalis genome will be a very valuable tool for evolutionary analyses.
Collapse
Affiliation(s)
- Magalie Leveugle
- Département d'Oncologie Moléculaire, Unité 119 INSERM, IFR57, Marseille, France
| | | | | | | | | |
Collapse
|