1
|
Xu X, Wang X, Li Y, Chen R, Wen H, Wang Y, Ma G. Research progress of ankyrin repeat domain 1 protein: an updated review. Cell Mol Biol Lett 2024; 29:131. [PMID: 39420247 PMCID: PMC11488291 DOI: 10.1186/s11658-024-00647-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Ankyrin repeat domain 1 (Ankrd1) is an acute response protein that belongs to the muscle ankyrin repeat protein (MARP) family. Accumulating evidence has revealed that Ankrd1 plays a crucial role in a wide range of biological processes and diseases. This review consolidates current knowledge on Ankrd1's functions in myocardium and skeletal muscle development, neurogenesis, cancer, bone formation, angiogenesis, wound healing, fibrosis, apoptosis, inflammation, and infection. The comprehensive profile of Ankrd1 in cardiovascular diseases, myopathy, and its potential as a candidate prognostic and diagnostic biomarker are also discussed. In the future, more studies of Ankrd1 are warranted to clarify its role in diseases and assess its potential as a therapeutic target.
Collapse
Affiliation(s)
- Xusan Xu
- Maternal and Child Research Institute, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
| | - Xiaoxia Wang
- Department of Neurology, Longjiang Hospital, Foshan, 528300, China
| | - Yu Li
- Department of Pediatrics, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
| | - Riling Chen
- Department of Pediatrics, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
| | - Houlang Wen
- Medical Genetics Laboratory, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China.
| | - Yajun Wang
- Respiratory Research Institute, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China.
| | - Guoda Ma
- Maternal and Child Research Institute, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China.
| |
Collapse
|
2
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
3
|
ERK: A Key Player in the Pathophysiology of Cardiac Hypertrophy. Int J Mol Sci 2019; 20:ijms20092164. [PMID: 31052420 PMCID: PMC6539093 DOI: 10.3390/ijms20092164] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 12/17/2022] Open
Abstract
Cardiac hypertrophy is an adaptive and compensatory mechanism preserving cardiac output during detrimental stimuli. Nevertheless, long-term stimuli incite chronic hypertrophy and may lead to heart failure. In this review, we analyze the recent literature regarding the role of ERK (extracellular signal-regulated kinase) activity in cardiac hypertrophy. ERK signaling produces beneficial effects during the early phase of chronic pressure overload in response to G protein-coupled receptors (GPCRs) and integrin stimulation. These functions comprise (i) adaptive concentric hypertrophy and (ii) cell death prevention. On the other hand, ERK participates in maladaptive hypertrophy during hypertension and chemotherapy-mediated cardiac side effects. Specific ERK-associated scaffold proteins are implicated in either cardioprotective or detrimental hypertrophic functions. Interestingly, ERK phosphorylated at threonine 188 and activated ERK5 (the big MAPK 1) are associated with pathological forms of hypertrophy. Finally, we examine the connection between ERK activation and hypertrophy in (i) transgenic mice overexpressing constitutively activated RTKs (receptor tyrosine kinases), (ii) animal models with mutated sarcomeric proteins characteristic of inherited hypertrophic cardiomyopathies (HCMs), and (iii) mice reproducing syndromic genetic RASopathies. Overall, the scientific literature suggests that during cardiac hypertrophy, ERK could be a “good” player to be stimulated or a “bad” actor to be mitigated, depending on the pathophysiological context.
Collapse
|
4
|
Fanter CE, Lin Z, Keenan SW, Janzen FJ, Mitchell TS, Warren DE. Development-specific transcriptomic profiling suggests new mechanisms for anoxic survival in the ventricle of overwintering turtles. J Exp Biol 2019; 223:jeb.213918. [DOI: 10.1242/jeb.213918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/18/2019] [Indexed: 12/28/2022]
Abstract
Oxygen deprivation swiftly damages tissues in most animals, yet some species show remarkable abilities to tolerate little or even no oxygen. Painted turtles exhibit a development-dependent tolerance that allows adults to survive anoxia ∼4x longer than hatchlings: adults survive ∼170 days and hatchlings survive ∼40 days at 3°C. We hypothesized this difference is related to development-dependent differences in ventricular gene expression. Using a comparative ontogenetic approach, we examined whole transcriptomic changes before, during, and five days after a 20-day bout of anoxic submergence at 3°C. Ontogeny accounted for more gene expression differences than treatment (anoxia or recovery): 1,175 vs. 237 genes, respectively. Of the 237 differences, 93 could confer protection against anoxia and reperfusion injury, 68 could be injurious, and 20 may be constitutively protective. Especially striking during anoxia was the expression pattern of all 76 annotated ribosomal protein (R-protein) mRNAs, which decreased in anoxia-tolerant adults, but increased in anoxia-sensitive hatchlings, suggesting adult-specific regulation of translational suppression. These genes, along with 60 others that decreased their levels in adults and either increased or remained unchanged in hatchlings, implicate antagonistic pleiotropy as a mechanism to resolve the long-standing question about why hatchling painted turtles overwinter in terrestrial nests, rather than emerge and overwinter in water during their first year. In sum, developmental differences in the transcriptome of the turtle ventricle revealed potentially protective mechanisms that contribute to extraordinary adult-specific anoxia tolerance, and provide a unique perspective on differences between the anoxia-induced molecular responses of anoxia-tolerant or anoxia-sensitive phenotypes within a species.
Collapse
Affiliation(s)
- Cornelia E. Fanter
- Saint Louis University, Department of Biology, 3507 Laclede Ave., St. Louis, Missouri, 63103, USA
| | - Zhenguo Lin
- Saint Louis University, Department of Biology, 3507 Laclede Ave., St. Louis, Missouri, 63103, USA
| | - Sarah W. Keenan
- South Dakota School of Mines & Technology, Department of Geology and Geological Engineering, 501 East St. Joseph St., Rapid City, South Dakota, 57701, USA
| | - Fredric J. Janzen
- Iowa State University, Department of Ecology, Evolution and Organismal Biology, 251 Bessey Hall, Ames, Iowa, 50011, USA
| | - Timothy S. Mitchell
- University of Minnesota, Department of Ecology, Evolution and Behavior, 1479 Gortner Ave. Saint Paul, MN, 55108, USA
| | - Daniel E. Warren
- Saint Louis University, Department of Biology, 3507 Laclede Ave., St. Louis, Missouri, 63103, USA
| |
Collapse
|
5
|
Ankyrin Repeat Domain 1 Protein: A Functionally Pleiotropic Protein with Cardiac Biomarker Potential. Int J Mol Sci 2017; 18:ijms18071362. [PMID: 28672880 PMCID: PMC5535855 DOI: 10.3390/ijms18071362] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 12/20/2022] Open
Abstract
The ankyrin repeat domain 1 (ANKRD1) protein is a cardiac-specific stress-response protein that is part of the muscle ankyrin repeat protein family. ANKRD1 is functionally pleiotropic, playing pivotal roles in transcriptional regulation, sarcomere assembly and mechano-sensing in the heart. Importantly, cardiac ANKRD1 has been shown to be highly induced in various cardiomyopathies and in heart failure, although it is still unclear what impact this may have on the pathophysiology of heart failure. This review aims at highlighting the known properties, functions and regulation of ANKRD1, with focus on the underlying mechanisms that may be involved. The current views on the actions of ANKRD1 in cardiovascular disease and its utility as a candidate cardiac biomarker with diagnostic and/or prognostic potential are also discussed. More studies of ANKRD1 are warranted to obtain deeper functional insights into this molecule to allow assessment of its potential clinical applications as a diagnostic or prognostic marker and/or as a possible therapeutic target.
Collapse
|
6
|
Liang Y, Sheikh F. Scaffold Proteins Regulating Extracellular Regulated Kinase Function in Cardiac Hypertrophy and Disease. Front Pharmacol 2016; 7:37. [PMID: 26973524 PMCID: PMC4770026 DOI: 10.3389/fphar.2016.00037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 02/11/2016] [Indexed: 01/07/2023] Open
Abstract
The mitogen activated protein kinase (MAPK)-extracellular regulated kinase 1/2 (ERK1/2) pathway is a central downstream signaling pathway that is activated in cardiac muscle cells during mechanical and agonist-mediated hypertrophy. Studies in genetic mouse models deficient in ERK-associated MAPK components pathway have further reinforced a direct role for this pathway in stress-induced cardiac hypertrophy and disease. However, more recent studies have highlighted that these signaling pathways may exert their regulatory functions in a more compartmentalized manner in cardiac muscle. Emerging data has uncovered specific MAPK scaffolding proteins that tether MAPK/ERK signaling specifically at the sarcomere and plasma membrane in cardiac muscle and show that deficiencies in these scaffolding proteins alter ERK activity and phosphorylation, which are then critical in altering the cardiac myocyte response to stress-induced hypertrophy and disease progression. In this review, we provide insights on ERK-associated scaffolding proteins regulating cardiac myofilament function and their impact on cardiac hypertrophy and disease.
Collapse
Affiliation(s)
- Yan Liang
- Department of Medicine, University of California-San Diego, La Jolla CA, USA
| | - Farah Sheikh
- Department of Medicine, University of California-San Diego, La Jolla CA, USA
| |
Collapse
|
7
|
Obara Y, Nagasawa R, Nemoto W, Pellegrino MJ, Takahashi M, Habecker BA, Stork PJS, Ichiyanagi O, Ito H, Tomita Y, Ishii K, Nakahata N. ERK5 induces ankrd1 for catecholamine biosynthesis and homeostasis in adrenal medullary cells. Cell Signal 2015; 28:177-189. [PMID: 26739108 DOI: 10.1016/j.cellsig.2015.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 12/24/2015] [Indexed: 01/04/2023]
Abstract
Extracellular signal-regulated kinases (ERKs) play important roles in proliferation, differentiation and gene expression. In our previous study, we demonstrated that both ERK5 and ERK1/2 were responsible for neurite outgrowth and tyrosine hydroxylase (TH) expression in rat pheochromocytoma cells (PC12) (J Biol Chem 284, 23,564-23,573, 2009). However, the functional differences between ERK5 and ERK1/2 signaling in neural differentiation remain unclear. In the present study, we show that ERK5, but not ERK1/2 regulates TH levels in rat sympathetic neurons. Furthermore, microarray analysis performed in PC12 cells using ERK5 and ERK1/2-specific inhibitors, identified ankyrin repeat domain 1 (ankrd1) as an ERK5-dependent and ERK1/2-independent gene. Here, we report a novel role of the ERK5/ankrd1 signaling in regulating TH levels and catecholamine biosynthesis. Ankrd1 mRNA was induced by nerve growth factor in time- and concentration-dependent manners. TH levels were reduced by ankrd1 knockdown with no changes in the mRNA levels, suggesting that ankrd1 was involved in stabilization of TH protein. Interestingly, ubiquitination of TH was enhanced and catecholamine biosynthesis was reduced by ankrd1 knockdown. Finally, we examined the relationship of ERK5 to TH levels in human adrenal pheochromocytomas. Whereas TH levels were correlated with ERK5 levels in normal adrenal medullas, ERK5 was down-regulated and TH was up-regulated in pheochromocytomas, indicating that TH levels are regulated by alternative mechanisms in tumors. Taken together, ERK5 signaling is required for catecholamine biosynthesis during neural differentiation, in part to induce ankrd1, and to maintain appropriate TH levels. This pathway is disrupted in pathological conditions.
Collapse
Affiliation(s)
- Yutaro Obara
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan; Department of Pharmacology, Yamagata University School of Medicine, Iida-Nishi 2-2-2, Yamagata 990-9585, Japan.
| | - Ryusuke Nagasawa
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Wataru Nemoto
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Michael J Pellegrino
- Department of Physiology and Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | - Maho Takahashi
- The Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | - Beth A Habecker
- Department of Physiology and Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | - Philip J S Stork
- The Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | - Osamu Ichiyanagi
- Department of Urology, Yamagata University School of Medicine, Iida-Nishi 2-2-2, Yamagata 990-9585, Japan
| | - Hiromi Ito
- Department of Urology, Yamagata University School of Medicine, Iida-Nishi 2-2-2, Yamagata 990-9585, Japan
| | - Yoshihiko Tomita
- Department of Urology, Yamagata University School of Medicine, Iida-Nishi 2-2-2, Yamagata 990-9585, Japan
| | - Kuniaki Ishii
- Department of Pharmacology, Yamagata University School of Medicine, Iida-Nishi 2-2-2, Yamagata 990-9585, Japan
| | - Norimichi Nakahata
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
8
|
Overexpression of ankyrin repeat domain 1 enhances cardiomyocyte apoptosis by promoting p53 activation and mitochondrial dysfunction in rodents. Clin Sci (Lond) 2015; 128:665-78. [PMID: 25511237 DOI: 10.1042/cs20140586] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Ankrd1 (ankyrin repeat domain 1) gene is known to be up-regulated in heart failure and acts as a co-activator of p53, modulating its transcriptional activity, but it remains inconclusive whether this gene promotes or inhibits cell apoptosis. In the present study, we attempted to investigate the role of Ankrd1 on AngII (angiotensin II)- or pressure-overload-induced cardiomyocyte apoptosis. In the failing hearts of mice with pressure overload, the protein expression of Ankrd1-encoded CARP (cardiac ankyrin repeat protein) was significantly increased. In NRCs (neonatal rat cardiomyocytes), AngII increased the expression of Ankrd1 and CARP. In the presence of AngII in NRCs, infection with a recombinant adenovirus containing rat Ankrd1 cDNA (Ad-Ankrd1) enhanced the mitochondrial translocation of Bax and phosphorylated p53, increased mitochondrial permeability and cardiomyocyte apoptosis, and reduced cell viability, whereas these effects were antagonized by silencing of Ankrd1. Intra-myocardial injection of Ad-Ankrd1 in mice with TAC (transverse aortic constriction) markedly exacerbated cardiac dysfunction with an increase in the lung weight/body weight ratio and a decrease in left ventricular fractional shortening. Cardiomyocyte apoptosis and the expression of phosphorylated p53 were also significantly increased in Ad-Ankrd1-infected TAC mice, whereas knockdown of Ankrd1 significantly inhibited the apoptotic signal pathway as well as cardiomyocyte apoptosis in pressure-overload mice. These findings indicate that overexpression of Ankrd1 exacerbates pathological cardiac dysfunction through enhancement of cardiomyocyte apoptosis mediated by the up-regulation of p53.
Collapse
|
9
|
Cardiac transcription factor Nkx2.5 interacts with p53 and modulates its activity. Arch Biochem Biophys 2015; 569:45-53. [DOI: 10.1016/j.abb.2015.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/01/2015] [Indexed: 01/30/2023]
|
10
|
Bang ML, Gu Y, Dalton ND, Peterson KL, Chien KR, Chen J. The muscle ankyrin repeat proteins CARP, Ankrd2, and DARP are not essential for normal cardiac development and function at basal conditions and in response to pressure overload. PLoS One 2014; 9:e93638. [PMID: 24736439 PMCID: PMC3988038 DOI: 10.1371/journal.pone.0093638] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/04/2014] [Indexed: 01/07/2023] Open
Abstract
Ankrd1/CARP, Ankrd2/Arpp, and Ankrd23/DARP belong to a family of stress inducible ankyrin repeat proteins expressed in striated muscle (MARPs). The MARPs are homologous in structure and localized in the nucleus where they negatively regulate gene expression as well as in the sarcomeric I-band, where they are thought to be involved in mechanosensing. Together with their strong induction during cardiac disease and the identification of causative Ankrd1 gene mutations in cardiomyopathy patients, this suggests their important roles in cardiac development, function, and disease. To determine the functional role of MARPs in vivo, we studied knockout (KO) mice of each of the three family members. Single KO mice were viable and had no apparent cardiac phenotype. We therefore hypothesized that the three highly homologous MARP proteins may have redundant functions in the heart and studied double and triple MARP KO mice. Unexpectedly, MARP triple KO mice were viable and had normal cardiac function both at basal levels and in response to mechanical pressure overload induced by transverse aortic constriction as assessed by echocardiography and hemodynamic studies. Thus, CARP, Ankrd2, and DARP are not essential for normal cardiac development and function at basal conditions and in response to mechanical pressure overload.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research, UOS Milan, National Research Council and Humanitas Clinical and Research Center, Rozzano (Milan), Italy
- * E-mail: (M-LB); (JC)
| | - Yusu Gu
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Nancy D. Dalton
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Kirk L. Peterson
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Kenneth R. Chien
- Department of Cell and Molecular Biology and Medicine, Karolinska Insititutet, Stockholm, Sweden
- Harvard University, Department of Stem Cell and Regenerative Biology, Cambridge, Massachusetts, United States of America
| | - Ju Chen
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (M-LB); (JC)
| |
Collapse
|
11
|
Cloning, expression, and bioinformatics analysis of the sheep CARP gene. Mol Cell Biochem 2013; 378:29-37. [PMID: 23475534 DOI: 10.1007/s11010-013-1590-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/08/2013] [Indexed: 12/24/2022]
Abstract
The cardiac ankyrin repeat protein (CARP) is a multifunctional protein that is expressed specifically in mammalian cardiac muscle and plays important roles in stress responses, transcriptional regulation, myofibrillar assembly, and the development of cardiac and skeletal muscle. In this study, the sheep homolog of the CARP gene was cloned and characterized. The coding region of the gene consists of 960 bp and encodes 319 amino acids with molecular weight 36.2 KD. Bioinformatics analysis demonstrated that the 3' untranslated region (3'-UTR) of the gene contains many AU-rich elements that are associated with mRNA stability and a potential regulatory site for miRNA binding. The protein was predicted to contain 14 potential phosphorylation sites and an O-GlcNAc glycosylation site and to be expressed in both the nucleus and cytoplasm. The evolutionary analysis revealed that the sheep CARP exhibited a high level of homology with the mammalian counterparts; however, the protein exhibited an increased evolutionary distance from the chicken, frog, and fish homologs. RT-PCR revealed that in addition to its high mRNA expression level in cardiac muscle, trace amounts of the sheep CARP mRNA were expressed in the skeletal muscle, stomach, and small intestine. However, western blot analysis demonstrated that the CARP protein was expressed only in cardiac muscle. The coding sequence was cloned into the pET30a-TEV-LIC vector, and the soluble CARP-MBP (maltose-binding protein) fusion protein was expressed in a prokaryotic host and purified by affinity chromatography. Our data provide the basis for future studies of the structure and function of sheep CARP.
Collapse
|
12
|
Chen B, Zhong L, Roush SF, Pentassuglia L, Peng X, Samaras S, Davidson JM, Sawyer DB, Lim CC. Disruption of a GATA4/Ankrd1 signaling axis in cardiomyocytes leads to sarcomere disarray: implications for anthracycline cardiomyopathy. PLoS One 2012; 7:e35743. [PMID: 22532871 PMCID: PMC3332030 DOI: 10.1371/journal.pone.0035743] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 03/23/2012] [Indexed: 01/07/2023] Open
Abstract
Doxorubicin (Adriamycin) is an effective anti-cancer drug, but its clinical usage is limited by a dose-dependent cardiotoxicity characterized by widespread sarcomere disarray and loss of myofilaments. Cardiac ankyrin repeat protein (CARP, ANKRD1) is a transcriptional regulatory protein that is extremely susceptible to doxorubicin; however, the mechanism(s) of doxorubicin-induced CARP depletion and its specific role in cardiomyocytes have not been completely defined. We report that doxorubicin treatment in cardiomyocytes resulted in inhibition of CARP transcription, depletion of CARP protein levels, inhibition of myofilament gene transcription, and marked sarcomere disarray. Knockdown of CARP with small interfering RNA (siRNA) similarly inhibited myofilament gene transcription and disrupted cardiomyocyte sarcomere structure. Adenoviral overexpression of CARP, however, was unable to rescue the doxorubicin-induced sarcomere disarray phenotype. Doxorubicin also induced depletion of the cardiac transcription factor GATA4 in cardiomyocytes. CARP expression is regulated in part by GATA4, prompting us to examine the relationship between GATA4 and CARP in cardiomyocytes. We show in co-transfection experiments that GATA4 operates upstream of CARP by activating the proximal CARP promoter. GATA4-siRNA knockdown in cardiomyocytes inhibited CARP expression and myofilament gene transcription, and induced extensive sarcomere disarray. Adenoviral overexpression of GATA4 (AdV-GATA4) in cardiomyocytes prior to doxorubicin exposure maintained GATA4 levels, modestly restored CARP levels, and attenuated sarcomere disarray. Interestingly, siRNA-mediated depletion of CARP completely abolished the Adv-GATA4 rescue of the doxorubicin-induced sarcomere phenotype. These data demonstrate co-dependent roles for GATA4 and CARP in regulating sarcomere gene expression and maintaining sarcomeric organization in cardiomyocytes in culture. The data further suggests that concurrent depletion of GATA4 and CARP in cardiomyocytes by doxorubicin contributes in large part to myofibrillar disarray and the overall pathophysiology of anthracycline cardiomyopathy.
Collapse
Affiliation(s)
- Billy Chen
- Molecular Medicine Program, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Lin Zhong
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Sarah F. Roush
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Laura Pentassuglia
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Xuyang Peng
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Susan Samaras
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Jeffrey M. Davidson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Research Service, Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, United Sates of America
| | - Douglas B. Sawyer
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Chee Chew Lim
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
13
|
Kojic S, Radojkovic D, Faulkner G. Muscle ankyrin repeat proteins: their role in striated muscle function in health and disease. Crit Rev Clin Lab Sci 2011; 48:269-94. [DOI: 10.3109/10408363.2011.643857] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Mohamed JS, Boriek AM. Loss of desmin triggers mechanosensitivity and up-regulation of Ankrd1 expression through Akt-NF-κB signaling pathway in smooth muscle cells. FASEB J 2011; 26:757-65. [PMID: 22085644 DOI: 10.1096/fj.10-160291] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Muscle cells, including human airway smooth muscle cells (HASMCs) express ankyrin repeat protein 1 (Ankrd1), a member of ankyrin repeat protein family. Ankrd1 efficiently interacts with the type III intermediate filament desmin. Our earlier study showed that desmin is an intracellular load-bearing protein that influences airway compliance, lung recoil, and airway contractile responsiveness. These results suggest that Ankrd1 and desmin may play important roles on ASMC homeostasis. Here we show that small interfering (si)RNA-mediated knockdown of the desmin gene in HASMCs, recombinant HASMCs (reHASMCs), up-regulates Ankrd1 expression. Moreover, loss of desmin in HASMCs increases the phosphorylation of Akt, inhibitor of κB kinase (IKK)-α, and inhibitor of κB (IκB)-α proteins, leading to NF-κB activation. Treatment of reHASMCs with Akt, IKKα, IκBα, or NF-κB inhibitor inhibits the loss of desmin-induced Ankrd1 up-regulation, suggesting Akt/NF-κB-mediated Ankrd1 regulation. Transfection of reHASMCs with siRNA specific for p50 or p65 corroborates the NF-κB-mediated Ankrd1 regulation. Luciferase reporter assays show that NF-κB directly binds on Ankrd1 promoter and up-regulates Ankrd1 levels. Overall, our data provide a new link between desmin and Ankrd1 regulation, which may be important for ASMC homeostasis.
Collapse
Affiliation(s)
- Junaith S Mohamed
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
15
|
Gao MH, Tang T, Lai NC, Miyanohara A, Guo T, Tang R, Firth AL, Yuan JX, Hammond HK. Beneficial effects of adenylyl cyclase type 6 (AC6) expression persist using a catalytically inactive AC6 mutant. Mol Pharmacol 2011; 79:381-8. [PMID: 21127130 PMCID: PMC3061356 DOI: 10.1124/mol.110.067298] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 12/01/2010] [Indexed: 01/03/2023] Open
Abstract
Cardiac-directed expression of AC6 has pronounced favorable effects on cardiac function possibly not linked with cAMP production. To determine rigorously whether cAMP generation is required for the beneficial effects of increased AC6 expression, we generated a catalytically inactive AC6 mutant (AC6mut) that has markedly diminished cAMP generating capacity by replacing aspartic acid with alanine at position 426 in the C1 domain (catalytic region) of AC6. Gene transfer of AC6 or AC6mut (adenovirus-mediated) in adult rat cardiac myocytes resulted in similar expression levels and intracellular distribution, but AC6mut expression was associated with marked reduction in cAMP production. Despite marked reduction in cAMP generation, AC6mut influenced intracellular signaling events similarly to that observed after expression of catalytically intact AC6. For example, both AC6 and AC6mut reduced phenylephrine-induced cardiac myocyte hypertrophy and apoptosis (p < 0.001), expression of cardiac ankyrin repeat protein (p < 0.01), and phospholamban (p < 0.05). AC6mut expression, similar to its catalytically intact cohort, was associated with increased Ca2+ transients in cardiac myocytes after isoproterenol stimulation. Many of the biological effects of AC6 expression are replicated by a catalytically inactive AC6 mutant, indicating that the mechanisms for these effects do not require increased cAMP generation.
Collapse
Affiliation(s)
- Mei Hua Gao
- Department of Medicine, University of California San Diego, Veterans Affairs San Diego Healthcare System, La Jolla, CA 92161, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
A novel role for cardiac ankyrin repeat protein Ankrd1/CARP as a co-activator of the p53 tumor suppressor protein. Arch Biochem Biophys 2010; 502:60-7. [PMID: 20599664 DOI: 10.1016/j.abb.2010.06.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 06/24/2010] [Accepted: 06/25/2010] [Indexed: 01/08/2023]
Abstract
The muscle ankyrin repeat protein (MARP) family member Ankrd1/CARP is a part of the titin-mechanosensory signaling complex in the sarcomere and in response to stretch it translocates to the nucleus where it participates in the regulation of cardiac genes as a transcriptional co-repressor. Several studies have focused on its structural role in muscle, but its regulatory role is still poorly understood. To gain more insight into the regulatory function of Ankrd1/CARP we searched for transcription factors that could interact and modulate its activity. Using protein array methodology we identified the tumor suppressor protein p53 as an Ankrd1/CARP interacting partner and confirmed their interaction both in vivo and in vitro. We demonstrate a novel role for Ankrd1/CARP as a transcriptional co-activator, moderately up regulating p53 activity. Furthermore, we show that p53 operates as an upstream effector of Ankrd1/CARP, by up regulating the proximal ANKRD1 promoter. Our findings suggest that, besides acting as a transcriptional co-repressor, Ankrd1/CARP could have a stimulatory effect on gene expression in cultured skeletal muscle cells. It is probable that Ankrd1/CARP has a role in the propagation of signals initiated by myogenic regulatory factors (MRFs) during myogenesis.
Collapse
|
17
|
ANKRD1, the gene encoding cardiac ankyrin repeat protein, is a novel dilated cardiomyopathy gene. J Am Coll Cardiol 2009; 54:325-33. [PMID: 19608030 DOI: 10.1016/j.jacc.2009.02.076] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 02/05/2009] [Accepted: 02/16/2009] [Indexed: 01/04/2023]
Abstract
OBJECTIVES We evaluated ankyrin repeat domain 1 (ANKRD1), the gene encoding cardiac ankyrin repeat protein (CARP), as a novel candidate gene for dilated cardiomyopathy (DCM) through mutation analysis of a cohort of familial or idiopathic DCM patients, based on the hypothesis that inherited dysfunction of mechanical stretch-based signaling is present in a subset of DCM patients. BACKGROUND CARP, a transcription coinhibitor, is a member of the titin-N2A mechanosensory complex and translocates to the nucleus in response to stretch. It is up-regulated in cardiac failure and hypertrophy and represses expression of sarcomeric proteins. Its overexpression results in contractile dysfunction. METHODS In all, 208 DCM patients were screened for mutations/variants in the coding region of ANKRD1 using polymerase chain reaction, denaturing high-performance liquid chromatography, and direct deoxyribonucleic acid sequencing. In vitro functional analyses of the mutation were performed using yeast 2-hybrid assays and investigating the effect on stretch-mediated gene expression in myoblastoid cell lines using quantitative real-time reverse transcription-polymerase chain reaction. RESULTS Three missense heterozygous ANKRD1 mutations (P105S, V107L, and M184I) were identified in 4 DCM patients. The M184I mutation results in loss of CARP binding with Talin 1 and FHL2, and the P105S mutation in loss of Talin 1 binding. Intracellular localization of mutant CARP proteins is not altered. The mutations result in differential stretch-induced gene expression compared with wild-type CARP. CONCLUSIONS ANKRD1 is a novel DCM gene, with mutations present in 1.9% of DCM patients. The ANKRD1 mutations may cause DCM as a result of disruption of the normal cardiac stretch-based signaling.
Collapse
|
18
|
Mutations in the ANKRD1 gene encoding CARP are responsible for human dilated cardiomyopathy. Eur Heart J 2009; 30:2128-36. [DOI: 10.1093/eurheartj/ehp225] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
19
|
Das B, Gupta S, Vasanji A, Xu Z, Misra S, Sen S. Nuclear co-translocation of myotrophin and p65 stimulates myocyte growth. Regulation by myotrophin hairpin loops. J Biol Chem 2008; 283:27947-27956. [PMID: 18693253 DOI: 10.1074/jbc.m801210200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myotrophin, a 12-kDa ankyrin repeat protein, stimulates protein synthesis and cardiomyocyte growth to initiate cardiac hypertrophy by activating the NF-kappaB signaling cascade. We found that, after internalization into myocytes, myotrophin cotranslocates into the nucleus with p65 to stimulate myocyte growth. We used structure-based mutations on the hairpin loops of myotrophin to determine the effect of the loops on myotrophin and p65 localization, induction of protein synthesis, and cardiac hypertrophy. Loop mutants, most prominently glutamic acid 33-->alanine (E33A), stimulated protein synthesis much less than wild type. Myotrophin-E33A internalized into myocytes but did not translocate into the nucleus and failed to promote nuclear translocation of p65. In addition, two cardiac hypertrophy marker genes, atrial natriuretic factor and beta-myosin heavy chain, were not up-regulated in E33A-treated cells. Myotrophin-induced myocyte growth and initiation of hypertrophy thus require nuclear co-translocation of myotrophin and p65, in a manner that depends crucially on the myotrophin hairpin loops.
Collapse
Affiliation(s)
- Biswajit Das
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio 44195
| | - Sudhiranjan Gupta
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio 44195
| | - Amit Vasanji
- Image Processing and Analysis Center, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Zhen Xu
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio 44195
| | - Saurav Misra
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio 44195
| | - Subha Sen
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio 44195.
| |
Collapse
|
20
|
Zagorski J, Sanapareddy N, Gellar MA, Kline JA, Watts JA. Transcriptional profile of right ventricular tissue during acute pulmonary embolism in rats. Physiol Genomics 2008; 34:101-11. [DOI: 10.1152/physiolgenomics.00261.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Acute pulmonary embolism (PE) is the third leading cause of cardiovascular death in the United States. Moderate to severe PE can cause pulmonary arterial hypertension (PH) with resultant right ventricular (RV) heart damage. The mechanisms leading to RV failure after PE are not well defined, although it is becoming clear that PH-induced inflammatory responses are involved. We previously demonstrated profound neutrophil-mediated inflammation and RV dysfunction during PE that was associated with increased expression of several chemokine genes. However, a complete assessment of transcriptional changes in RVs during PE is still lacking. We have now used DNA microarrays to assess the alterations in gene expression in RV tissue during acute PE/PH in rats. Key results were confirmed with real-time RT-PCR. Nine CC-chemokine genes (CCL-2, -3, -4, -6, -7, -9, -17, -20, -27), five CXC-chemokine genes (CXCL-1, -2, -9, -10, -16), and the receptors CCR1 and CXCR4 were upregulated after 18 h of moderate PE, while one C-chemokine (XCL-1) and one CXC-chemokine (CXCL-12) were downregulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated increased expression of many inflammatory genes. There was also a major shift in the expression of components of metabolic pathways, including downregulation of fatty acid transporters and oxidative enzymes, a change in glucose transporters, and upregulation of stretch-sensing and hypoxia-inducible transcription factors. This pattern suggests an extensive shift in cardiac physiology favoring the expression of the “fetal gene program.”
Collapse
Affiliation(s)
- John Zagorski
- Department of Emergency Medicine, James G. Cannon Research Center, Carolinas Medical Center, Charlotte, North Carolina
| | - Nina Sanapareddy
- Department of Emergency Medicine, James G. Cannon Research Center, Carolinas Medical Center, Charlotte, North Carolina
| | - Michael A. Gellar
- Department of Emergency Medicine, James G. Cannon Research Center, Carolinas Medical Center, Charlotte, North Carolina
| | - Jeffrey A. Kline
- Department of Emergency Medicine, James G. Cannon Research Center, Carolinas Medical Center, Charlotte, North Carolina
| | - John A. Watts
- Department of Emergency Medicine, James G. Cannon Research Center, Carolinas Medical Center, Charlotte, North Carolina
| |
Collapse
|
21
|
|
22
|
Samaras SE, Shi Y, Davidson JM. CARP: fishing for novel mechanisms of neovascularization. J Investig Dermatol Symp Proc 2006; 11:124-31. [PMID: 17069020 DOI: 10.1038/sj.jidsymp.5650014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Gene expression profiling of mouse skin wounds has led to the discovery of numerous target genes that may have therapeutic or diagnostic value. Among these, cardiac ankyrin repeat protein (CARP, ankrd1) expression was markedly and persistently elevated in several cutaneous compartments. This review summarizes the current state of knowledge of CARP and its regulation in biological systems. In addition to its role as a nuclear transcription cofactor in many cell types including vascular endothelium, CARP is also a structural component of the sarcomere. CARP transcripts are prominent in cardiogenesis and muscle injury, and they are under complex regulation by cytokines, hypoxia, doxorubicin, and other forms of stress. CARP overexpression in wounds by adenoviral gene transfer leads to a high vascular density, and CARP exerts effects on endothelial behavior. The unusual cellular distribution and actions of CARP make it a novel candidate gene in tissue repair.
Collapse
Affiliation(s)
- Susan E Samaras
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2561, USA
| | | | | |
Collapse
|
23
|
Debrus S, Rahbani L, Marttila M, Delorme B, Paradis P, Nemer M. The zinc finger-only protein Zfp260 is a novel cardiac regulator and a nuclear effector of alpha1-adrenergic signaling. Mol Cell Biol 2005; 25:8669-82. [PMID: 16166646 PMCID: PMC1265756 DOI: 10.1128/mcb.25.19.8669-8682.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
alpha1-Adrenergic receptors mediate several biological effects of catecholamines, including the regulation of myocyte growth and contractility and transcriptional regulation of the atrial natriuretic factor (ANF) gene whose promoter contains an alpha1-adrenergic response element. The nuclear pathways and effectors that link receptor activation to genetic changes remain poorly understood. Here, we describe the isolation by the yeast one-hybrid system of a cardiac cDNA encoding a novel nuclear zinc finger protein, Zfp260, belonging to the Krüppel family of transcriptional regulators. Zfp260 is highly expressed in the embryonic heart but is downregulated during postnatal development. Functional studies indicate that Zfp260 is a transcriptional activator of ANF and a cofactor for GATA-4, a key cardiac regulator. Knockdown of Zfp260 in cardiac cells decreases endogenous ANF gene expression and abrogates its response to alpha1-adrenergic stimulation. Interestingly, Zfp260 transcripts are induced by alpha1-adrenergic agonists and are elevated in genetic models of hypertension and cardiac hypertrophy. The data identify Zfp260 as a novel transcriptional regulator in normal and pathological heart development and a nuclear effector of alpha1-adrenergic signaling.
Collapse
MESH Headings
- Adenoviridae/genetics
- Amino Acid Sequence
- Animals
- Atrial Natriuretic Factor/metabolism
- Base Sequence
- Blotting, Western
- Cell Nucleus/metabolism
- Cell Proliferation
- Cloning, Molecular
- DNA, Complementary/metabolism
- Down-Regulation
- Fluorescent Antibody Technique, Indirect
- Gene Expression Regulation
- Gene Expression Regulation, Developmental
- Gene Library
- Genes, Reporter
- HeLa Cells
- Heart/embryology
- Humans
- Hypertension/genetics
- Hypertrophy/genetics
- Immunohistochemistry
- Lac Operon
- Molecular Sequence Data
- Myocardium/metabolism
- Myocytes, Cardiac/metabolism
- Oligonucleotides, Antisense/chemistry
- Plasmids/metabolism
- Promoter Regions, Genetic
- Protein Structure, Tertiary
- RNA/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred WKY
- Rats, Sprague-Dawley
- Receptors, Adrenergic, alpha-1/metabolism
- Recombinant Proteins/chemistry
- Sequence Homology, Amino Acid
- Signal Transduction
- Time Factors
- Trans-Activators/biosynthesis
- Trans-Activators/chemistry
- Transcription, Genetic
- Transcriptional Activation
- Zinc Fingers
Collapse
Affiliation(s)
- Sophie Debrus
- Unité de Recherche en Développement et Différenciation Cardiaques, Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal QC H2W 1R7, Canada
| | | | | | | | | | | |
Collapse
|
24
|
Yang W, Zhang Y, Ma G, Zhao X, Chen Y, Zhu D. Identification of gene expression modifications in myostatin-stimulated myoblasts. Biochem Biophys Res Commun 2005; 326:660-6. [PMID: 15596150 DOI: 10.1016/j.bbrc.2004.11.096] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Indexed: 12/23/2022]
Abstract
Myostatin belongs to the transforming growth factor beta superfamily and has been shown to function as an inhibitor of skeletal muscle proliferation and differentiation. To gain insight into the molecular mechanisms of myostatin function during myogenesis, differential display reverse transcription PCR was employed to identify altered gene expressions associated with myostatin inhibitory function in chicken fetal myoblasts (CFMs). In this work, we have identified seven up-regulated and 12 down-regulated genes in myostatin stimulated CFMs. Those genes are involved in myogenic differentiation, cell architecture, energy metabolism, signal transduction, and apoptosis. The down-regulation of muscle creatine kinase B, troponin C, and myosin regulatory light chain is in agreement with the myostatin negative role in myocyte differentiation. In addition, the expression alteration of skeletal muscle-specific cardiac ankyrin repeat protein and the bcl-2 related anti-apoptotic protein Nr-13 suggests possible unique roles for myostatin in regulating myogenesis by controlling cofactors participated transcriptional regulation and apoptosis.
Collapse
Affiliation(s)
- Wei Yang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, PR China
| | | | | | | | | | | |
Collapse
|