1
|
|
2
|
Chiu CH, Wildman DE. Morris Goodman (1925-2010): Founder of the field of molecular anthropology. Evol Anthropol 2011; 20:1-2. [DOI: 10.1002/evan.20298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
3
|
Fischer DF, Backendorf C. Identification of regulatory elements by gene family footprinting and in vivo analysis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2007; 104:37-64. [PMID: 17290818 DOI: 10.1007/10_027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Gene families of recently duplicated but subsequently diverged genes provide an unique opportunity for comparative analysis of regulatory elements. We have studied the human SPRR gene family of small proline rich proteins involved in barrier function of stratified squamous epithelia. These genes are all expressed in normal human keratinocytes, but respond differently to environmental insults. Comparisons of the functional promoter regions allows the rapid identification of both conserved and of novel regulatory elements that appeared after gene duplication. Competitive electrophoretic mobility shift assays can be used to confirm their presence. Here we show the power of gene family footprinting by the identification of two novel elements in the SPRR3 promoter, not present in SPRR1A and SPRR2A. One of these elements binds a protein similar to GAAP-1, a pro-apoptotic activator of IRF-1 and p53. In vivo analysis shows that this element functions as an inhibitor of SPRR3 transcription. The second novel element functions as an activator of promoter activity and is characterized by its A/T rich sequence. The latter interacting protein indeed binds through contacts in the minor groove, and strikingly, depends on the presence of calcium for DNA interaction.
Collapse
Affiliation(s)
- David F Fischer
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
4
|
Kehrer-Sawatzki H, Cooper DN. Understanding the recent evolution of the human genome: insights from human-chimpanzee genome comparisons. Hum Mutat 2007; 28:99-130. [PMID: 17024666 DOI: 10.1002/humu.20420] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The sequencing of the chimpanzee genome and the comparison with its human counterpart have begun to reveal the spectrum of genetic changes that has accompanied human evolution. In addition to gross karyotypic rearrangements such as the fusion that formed human chromosome 2 and the human-specific pericentric inversions of chromosomes 1 and 18, there is considerable submicroscopic structural variation involving deletions, duplications, and inversions. Lineage-specific segmental duplications, detected by array comparative genomic hybridization and direct sequence comparison, have made a very significant contribution to this structural divergence, which is at least three-fold greater than that due to nucleotide substitutions. Since structural genomic changes may have given rise to irreversible functional differences between the diverging species, their detailed analysis could help to identify the biological processes that have accompanied speciation. To this end, interspecies comparisons have revealed numerous human-specific gains and losses of genes as well as changes in gene expression. The very considerable structural diversity (polymorphism) evident within both lineages has, however, hampered the analysis of the structural divergence between the human and chimpanzee genomes. The concomitant evaluation of genetic divergence and diversity at the nucleotide level has nevertheless served to identify many genes that have evolved under positive selection and may thus have been involved in the development of human lineage-specific traits. Genes that display signs of weak negative selection have also been identified and could represent candidate loci for complex genomic disorders. Here, we review recent progress in comparing the human and chimpanzee genomes and discuss how the differences detected have improved our understanding of the evolution of the human genome.
Collapse
|
5
|
Johnson RM, Prychitko T, Gumucio D, Wildman DE, Uddin M, Goodman M. Phylogenetic comparisons suggest that distance from the locus control region guides developmental expression of primate beta-type globin genes. Proc Natl Acad Sci U S A 2006; 103:3186-91. [PMID: 16488971 PMCID: PMC1413942 DOI: 10.1073/pnas.0511347103] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phylogenetic inferences drawn from comparative data on mammalian beta-globin gene clusters indicate that the ancestral primate cluster contained a locus control region (LCR) and five paralogously related beta-type globin loci (5'-LCR-epsilon-gamma-psieta-delta-beta-3'), with epsilon and gamma expressed solely during embryonic life. A gamma locus tandem duplication (5'-gamma(1)-gamma(2)-3') triggered gamma's evolution toward fetal expression but by a different trajectory in platyrrhines (New World monkeys) than in catarrhines (Old World monkeys and apes, including humans). In platyrrhine (e.g., Cebus) fetuses, gamma(1) at the ancestral distance from epsilon is down-regulated, whereas gamma(2) at increased distance is up-regulated. Catarrhine gamma(1) and gamma(2) acquired longer distances from epsilon (14 and 19 kb, respectively), and both are up-regulated throughout fetal life with gamma(1)'s expression predominating over gamma(2)'s. On enlarging the platyrrhine expression data, we find Aotus gamma is embryonic, Alouatta gamma is inactive at term, and in Callithrix, gamma(1) is down-regulated fetally, whereas gamma(2) is up-regulated. Of eight mammalian taxa now represented per taxon by embryonic, fetal, and postnatal beta-type globin gene expression data, four taxa are primates, and data for three of these primates are from this laboratory. Our results support a model in which a short distance (<10 kb) between epsilon and the adjacent gamma is a plesiomorphic character that allows the LCR to drive embryonic expression of both genes, whereas a longer distance (>10 kb) impedes embryonic activation of the downstream gene.
Collapse
Affiliation(s)
| | | | - Deborah Gumucio
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Derek E. Wildman
- Obstetrics and Gynecology, and
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201; and
| | - Monica Uddin
- Anatomy and Cell Biology, and
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201; and
| | - Morris Goodman
- Anatomy and Cell Biology, and
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201; and
| |
Collapse
|
6
|
Abstract
Evolutionary approaches to the identification of DNA sequences required for transcription of the genes of the beta-globin cluster are reviewed. Sequence alignments of non-coding regions from widely divergent species revealed many conserved motifs (phylogenetic footprints) that were putative transcription factor binding sites and candidate binding proteins were identified. The differential timing of the prosimian and simian gamma-globin genes was analyzed by identifying base changes in the vicinity of the phylogenetic footprints. These differential phylogenetic footprints were shown to bind different nuclear factors, and the behavior of constructs with human or galago gamma-promoters in transgenic mice indicated that DNA motifs near the gamma-globin genes are sufficient to determine the developmental stage of expression. Locus control region alignments have identified many conserved sequence differences outside of the hypersensitive sites. Globin protein and mRNA expression profiles during embryological development in a series of catarrhine (Old World monkeys and apes) and platyrrhine (New World monkeys) primates have been determined. While all catarrhines examined to date have globin expression patterns that are highly similar to the well-established human switching behavior, platyrrhines have inactivated their gamma 1 genes by a variety of mechanisms, and have an earlier gamma-beta switch.
Collapse
Affiliation(s)
- Robert M Johnson
- Department of Biochemistry and Molecular Biology, Wayne State University, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
7
|
|
8
|
Desjardins PR, Burkman JM, Shrager JB, Allmond LA, Stedman HH. Evolutionary implications of three novel members of the human sarcomeric myosin heavy chain gene family. Mol Biol Evol 2002; 19:375-93. [PMID: 11919279 DOI: 10.1093/oxfordjournals.molbev.a004093] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sarcomeric myosin heavy chain (MyHC) is the major contractile protein of striated muscle. Six tandemly linked skeletal MyHC genes on chromosome 17 and two cardiac MyHC genes on chromosome 14 have been previously described in the human genome. We report the identification of three novel human sarcomeric MyHC genes on chromosomes 3, 7, and 20, which are notable for their atypical size and intron-exon structure. Two of the encoded proteins are structurally most like the slow-beta MyHC, whereas the third one is closest to the adult fast IIb isoform. Data from pairwise comparisons of aligned coding sequences imply the existence of ancestral genomes with four sarcomeric genes before the emergence of a dedicated smooth muscle MyHC gene. To further address the evolutionary relationships of the distinct sarcomeric and nonsarcomeric rod sequences, we have identified and further annotated human genomic DNA sequences corresponding to 14 class-II MyHCs. An extensive analysis provides a timeline for intron gain and loss, gene contraction and expansion, and gene conversion among genes encoding class-II myosins. One of the novel human genes is found to have introns at positions shared only with the molluscan catchin/MyHC gene, providing evidence for the structure of a pre-Cambrian ancestral gene.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Chromosomes, Human, Pair 20/genetics
- Chromosomes, Human, Pair 3/genetics
- Chromosomes, Human, Pair 7/genetics
- Cloning, Molecular
- DNA, Complementary
- Drosophila/genetics
- Evolution, Molecular
- Gene Conversion
- Gene Deletion
- Humans
- Molecular Sequence Data
- Muscle, Skeletal/chemistry
- Myosin Heavy Chains/genetics
- Repetitive Sequences, Nucleic Acid
- Sarcomeres/chemistry
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Philippe R Desjardins
- Department of Surgery, School of Medicine, University of Pennsylvania, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
9
|
Chuzhanova NA, Krawczak M, Thomas N, Nemytikova LA, Gusev VD, Cooper DN. The evolution of the vertebrate beta-globin gene promoter. Evolution 2002; 56:224-32. [PMID: 11926491 DOI: 10.1111/j.0014-3820.2002.tb01333.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Complexity analysis is capable of highlighting those gross evolutionary changes in gene promoter regions (loosely termed "promoter shuffling") that are undetectable by conventional DNA sequence alignment. Complexity analysis was therefore used here to identify the modular components (blocks) of the orthologous beta-globin gene promoter sequences of 22 vertebrate species, from zebrafish to humans. Considerable variation between the beta-globin gene promoters was apparent in terms of block presence/absence, copy number, and relative location. Some sequence blocks appear to be ubiquitous, whereas others are restricted to a specific taxon. Block similarities were also evident between the promoters of the paralogous human beta-like globin genes. It may be inferred that a wide variety of different mutational mechanisms have operated upon the beta-globin gene promoter over evolutionary time. Because these include gross changes such as deletion, duplication, amplification, elongation, contraction, and fusion, as well as the steady accumulation of single base-pair substitutions, it is clear that some redefinition of the term "promoter shuffling" is required. This notwithstanding, and as previously described for the vertebrate growth hormone gene promoter, the modular structure of the beta-globin promoter region and those of its paralogous counterparts have continually been rearranged into new combinations through the alteration, or shuffling, of preexisting blocks. Some of these changes may have had no influence on promoter function, but others could have altered either the level of gene expression or the responsiveness of the promoter to external stimuli. The comparative study of vertebrate beta-globin gene promoter regions described here confirms the generality of the phenomenon of sequence block shuffling and thus supports the view that it could have played an important role in the evolution of differential gene expression.
Collapse
|
10
|
Chuzhanova NA, Krawczak M, Thomas N, Nemytikova LA, Gusev VD, Cooper DN. THE EVOLUTION OF THE VERTEBRATE β-GLOBIN GENE PROMOTER. Evolution 2002. [DOI: 10.1554/0014-3820(2002)056[0224:teotvg]2.0.co;2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Kim J. Macro-evolution of the hairy enhancer in Drosophila species. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2001; 291:175-85. [PMID: 11479916 DOI: 10.1002/jez.1067] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
It has been suggested that many of the changes in the developmental program might be in the cis-acting promoters and enhancer regions. Here I study the macro-evolutionary changes of an enhancer region for the early developmental gene hairy in Drosophila melanogaster, D. simulans, D. pseudoobscura, D. willistoni, D. nebulosa, D. hydei, and D. virilis. The enhancer region is characterized by small, highly conserved blocks interspersed among highly variable regions. Nevertheless, species phylogenies constructed by the enhancer sequences agree with the widely accepted phylogeny of these species. The evolution of the variable regions is consistent with a molecular clock, while the evolution of the conserved blocks is significantly different from a clock. In particular, the D. pseudoobscura lineage shows the highest degree of species-specific change consistent with changes in expression timing reported in an earlier study. It has been suggested that the variation in sequence length between highly conserved blocks may play a role in the coordination of regulatory processes, such as protein-protein interactions; thus, stabilizing selection has been suggested to act on the length variations. Here I develop a test for stabilizing selection on length variation and show that the hairy enhancer does not show statistically significant evidence for stabilizing selection. J. Exp. Zool. (Mol. Dev. Evol.) 291:175-185, 2001.
Collapse
Affiliation(s)
- J Kim
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
12
|
Page SL, Goodman M. Catarrhine phylogeny: noncoding DNA evidence for a diphyletic origin of the mangabeys and for a human-chimpanzee clade. Mol Phylogenet Evol 2001; 18:14-25. [PMID: 11161738 DOI: 10.1006/mpev.2000.0895] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maximum-parsimony and maximum-likelihood analyses of two of the serum albumin gene's intron sequences from 24 catarrhines (17 cercopithecid and 7 hominid) and 3 platyrrhines (an outgroup to the catarrhines) yielded results on catarrhine phylogeny that are congruent with those obtained with noncoding sequences of the gamma(1)-gamma(2) globin gene genomic region, using only those flanking and intergenic gamma sequences that in their history were not involved in gene conversion. A data set that combined in a tandem alignment these two sets of noncoding DNA orthologues from the two unlinked nuclear genomic loci yielded the following confirmatory results both on the course of cladistic branchings (the divisions in a cladistic classification of higher ranking taxa into subordinate taxa) and on the ages of the taxa (each taxon representing a clade). The cercopithecid branch of catarrhines, at approximately 14 Ma (mega annum) divided into Colobini (the leaf-eating Old World monkeys) and Cercopithecini (the cheek-pouched Old World monkeys). At approximately 10-9 Ma, Colobini divided into an African clade, Colobina, and an Asian clade, Presbytina; similarly at this time level, Cercopithecini divided into Cercopithecina (the guenons, patas, and green monkeys) and Papionina. At approximately 7 Ma, Papionina divided into Macaca, Cercocebus, and Papio. At approximately 5 Ma, Cercocebus divided subgenerically into C. (Cercocebus) for terrestrial mangabeys and C. (Mandrillus) for drills and mandrills, while at approximately 4 Ma Papio divided subgenerically into P. (Locophocebus) for arboreal mangabeys, P. (Theropithecus) for gelada baboons, and P. (Papio) for hamadryas baboons. In turn, the hominid branch of catarrhines at approximately 18 Ma divided into Hylobatini (gibbons and siamangs) and Hominini; at approximately 14 Ma, Hominini divided into Pongina (orangutans) and Hominina; at approximately 7 Ma, Hominina divided into Gorilla and Homo; and at approximately 6-5 Ma, Homo divided subgenerically into H. (Homo) for humans and H. (Pan) for common and bonobo chimpanzees. Rates of noncoding DNA evolution were assessed using a data set of noncoding gamma sequence orthologues that represented 18 catarrhines, 16 platyrrhines, 3 non-anthropoid primates (2 tarsiers and 1 strepsirhine), and rabbit (as outgroup to the primates). Results obtained with this data set revealed a faster rate of nucleotide substitutions in the early primate lineage to the anthropoid (platyrrhine/catarrhine) ancestor than from that ancestor to the present. Rates were slower in catarrhines than in platyrrhines, slower in the cheek-pouched than in the leaf-eating cercopithecids, and slower yet in the hominids. On relating these results to data on brain sizes and life spans, it was suggested that life-history strategies that favor intelligence and longer life spans also select for decreases in de novo mutation rates.
Collapse
Affiliation(s)
- S L Page
- Department of Biology and Life Sciences, Norwich University, 158 Harmon Drive, Northfield, Vermont 05663, USA
| | | |
Collapse
|
13
|
Abstract
Gene conversion is often viewed as a homogenizing force that opposes adaptive evolution. The objective of this study is to suggest a potential role for gene conversion in adaptive evolution of proteins through aiding the transfer of a population from one adaptive peak to another. Our hypothesis starts with the observation that a tandem gene duplication may result in an extra gene copy that is released from selective constraints. In such cases, individually deleterious mutations may accumulate on the extra copy of the gene, and through gene conversion these mutations may subsequently be presented to the functioning gene for selection en masse. Thus, groups of mutations that jointly confer a selective advantage may regularly be made available for selection. We present a mathematical model of this process and identify the range of rates of gene conversion, gene duplication and mutation under which it may operate. The results indicate that the process may be biologically feasible if the rate of appearance of the potentially beneficial mutations is not too small in relation to the rates of null mutation and of gene conversion. This process appears to be a possible mechanism for effecting adaptive peak shifts in large populations. We show that all the evolutionary steps in the proposed model may have occurred in the evolution of primate gamma -globin genes. We suggest that hide-and-release mechanisms for genetic variation may constitute a more general principal of evolvability.
Collapse
Affiliation(s)
- T F Hansen
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect St., New Haven, CT 06520, USA
| | | | | |
Collapse
|
14
|
Broder S, Venter JC. Sequencing the entire genomes of free-living organisms: the foundation of pharmacology in the new millennium. Annu Rev Pharmacol Toxicol 2000; 40:97-132. [PMID: 10836129 DOI: 10.1146/annurev.pharmtox.40.1.97] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The power and effectiveness of clinical pharmacology are about to be transformed with a speed that earlier in this decade could not have been foreseen even by the most astute visionaries. In the very near future, we will have at our disposal the reference DNA sequence for the entire human genome, estimated to contain approximately 3.5 billion bp. At the same time, the science of whole genome sequencing is fostering the computational science of bioinformatics needed to develop practical applications for pharmacology and toxicology. Indeed, it is likely that pharmacology, toxicology, bioinformatics, and genomics will merge into a new branch of medical science for studying and developing pharmaceuticals from molecule to bedside.
Collapse
Affiliation(s)
- S Broder
- Celera Genomics, Rockville, Maryland 20850, USA.
| | | |
Collapse
|
15
|
Abstract
One of the oldest problems in evolutionary biology remains largely unsolved. Which mutations generate evolutionarily relevant phenotypic variation? What kinds of molecular changes do they entail? What are the phenotypic magnitudes, frequencies of origin, and pleiotropic effects of such mutations? How is the genome constructed to allow the observed abundance of phenotypic diversity? Historically, the neo-Darwinian synthesizers stressed the predominance of micromutations in evolution, whereas others noted the similarities between some dramatic mutations and evolutionary transitions to argue for macromutationism. Arguments on both sides have been biased by misconceptions of the developmental effects of mutations. For example, the traditional view that mutations of important developmental genes always have large pleiotropic effects can now be seen to be a conclusion drawn from observations of a small class of mutations with dramatic effects. It is possible that some mutations, for example, those in cis-regulatory DNA, have few or no pleiotropic effects and may be the predominant source of morphological evolution. In contrast, mutations causing dramatic phenotypic effects, although superficially similar to hypothesized evolutionary transitions, are unlikely to fairly represent the true path of evolution. Recent developmental studies of gene function provide a new way of conceptualizing and studying variation that contrasts with the traditional genetic view that was incorporated into neo-Darwinian theory and population genetics. This new approach in developmental biology is as important for microevolutionary studies as the actual results from recent evolutionary developmental studies. In particular, this approach will assist in the task of identifying the specific mutations generating phenotypic variation and elucidating how they alter gene function. These data will provide the current missing link between molecular and phenotypic variation in natural populations.
Collapse
Affiliation(s)
- D L Stern
- University Museum of Zoology, Department of Zoology, University of Cambridge, United Kingdom.
| |
Collapse
|
16
|
|
17
|
Krawczak M, Chuzhanova NA, Cooper DN. Evolution of the proximal promoter region of the mammalian growth hormone gene. Gene 1999; 237:143-51. [PMID: 10524245 DOI: 10.1016/s0378-1119(99)00313-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The evolutionary relationship between the proximal growth hormone (GH) gene promoter sequences of 12 mammalian species was explored by comparison of their trinucleotide composition and by multiple sequence alignment. Both approaches yielded results that were consistent with the known fossil record-based phylogeny of the analysed sequences, suggesting that the two methods of tree reconstruction might be equally efficient and reliable. The pattern of evolution inferred for the mammalian GH gene promoters was found to vary both temporally and spatially. Thus, two distinct regions devoid of any evolutionary changes exist in primates, but only one of these 'gaps' is also observed in rodents, and neither is seen in ruminants. Furthermore, different evolutionary rates must have prevailed during different periods of evolutionary time and in different lineages, with a dramatic increase in evolutionary rate apparent in primates. Since a similar pattern of discontinuity has been previously noted for the evolution of the GH-coding regions, it may reflect the action of positive selection operating upon the GH gene as a single cohesive unit. Strong evidence for the action of gene conversion between primate GH gene promoters is provided by the fact that the human GH1 and GH2 sequences, which are thought to have diverged before the divergence of Old World monkeys from great apes, are more similar to one another than either is to the rhesus monkey GH2 promoter. Finally, it was noted that a number of nucleotide positions in the GH1 gene promoter that are polymorphic in humans appear to be highly conserved in mammals. This apparent conundrum, which could represent a caveat for the interpretation of phylogenetic footprinting studies, is potentially explicable in terms either of reduced genetic diversity in highly inbred animal species or insufficient population data from non-human species.
Collapse
Affiliation(s)
- M Krawczak
- Institute of Medical Genetics, University of Wales College of Medicine, Heath Park Cardiff CF4 4XN, UK.
| | | | | |
Collapse
|
18
|
Meireles CM, Czelusniak J, Schneider MP, Muniz JA, Brigido MC, Ferreira HS, Goodman M. Molecular phylogeny of ateline new world monkeys (Platyrrhini, atelinae) based on gamma-globin gene sequences: evidence that brachyteles is the sister group of lagothrix. Mol Phylogenet Evol 1999; 12:10-30. [PMID: 10222158 DOI: 10.1006/mpev.1998.0574] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nucleotide sequences, each spanning approximately 7 kb of the contiguous gamma1 and gamma2 globin genomic loci, were determined for seven species representing all extant genera (Ateles, Lagothrix, Brachyteles, and Alouatta) of the New World monkey subfamily Atelinae. After aligning these seven ateline sequences with outgroup sequences from several other primate (non-ateline) genera, they were analyzed by maximum parsimony, maximum likelihood, and neighbor-joining algorithms. All three analyzes estimated the same phylogenetic relationships: [Alouatta [Ateles (Brachyteles, Lagothrix)]]. Brachyteles and Lagothrix are sister-groups supported by 100% of bootstrap replications in the parsimony analyses. Ateles joins this clade, followed by the basal genus Alouatta; these joinings were strongly supported, again with 100% bootstrap values. This cladistic pattern for the four ateline genera is congruent with that obtained in previous studies utilizing epsilon-globin, IRBP, and G6PD nuclear genomic sequences as well as mitochondrial COII sequences. Because the number of aligned nucleotide positions is much larger in the present datasetoff than in any of these other datasets, much stronger support was obtained for the cladistic classification that divides subfamily Atelinae into tribes Alouattini (Alouatta) and Atelini, while the latter divides into subtribes Atelina (Ateles) and Brachytelina (Brachyteles and Lagothrix).
Collapse
Affiliation(s)
- C M Meireles
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Chiu CH, Gregoire L, Gumucio D, Muniz J, Lancaster W, Goodman M. Model for the fetal recruitment of simian ?-globin genes based on findings from two new world monkeysCebus apella andCallithrix jacchus (Platyrrhini, Primates). ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1097-010x(19990415)285:1<27::aid-jez4>3.0.co;2-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Affiliation(s)
- M Goodman
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|