1
|
Das S, Mohamedy U, Hirano M, Nei M, Nikolaidis N. Analysis of the immunoglobulin light chain genes in zebra finch: evolutionary implications. Mol Biol Evol 2010; 27:113-20. [PMID: 19744999 DOI: 10.1093/molbev/msp212] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
All jawed vertebrates produce immunoglobulins (IGs) as a defense mechanism against pathogens. Typically, IGs are composed of two identical heavy chains (IGH) and two identical light chains (IGL). Most tetrapod species encode more than one isotype of light chains. Chicken is the only representative of birds for which genomic information is currently available and is an exception to the above rule because it encodes only a single IGL isotype (i.e., lambda). Here, we show that the genome of zebra finch, another bird species, encodes a single IGL isotype, that is, lambda, like the chicken. These results strongly suggest that the second isotype (i.e., kappa) present in both reptiles and mammals was lost in a very early stage of bird evolution. Furthermore, we show that both chicken and zebra finch contain a single set of functional variable, joining, and constant region genes and multiple variable region pseudogenes. The latter finding suggests that this type of genomic organization was already present in the common ancestor of these bird species and remained unchanged over a long evolutionary time. This conservation is in contrast with the high levels of variation observed in the mammalian IGL loci. The presence of a single functional variable region gene followed by multiple variable pseudogenes in zebra finch suggest that this species may be generating antibody diversity by a gene conversion-like mechanism like the chicken.
Collapse
Affiliation(s)
- Sabyasachi Das
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, School of Medicine, Emory University, USA.
| | | | | | | | | |
Collapse
|
2
|
Vendramini D. Noncoding DNA and the teem theory of inheritance, emotions and innate behaviour. Med Hypotheses 2005; 64:512-9. [PMID: 15617858 DOI: 10.1016/j.mehy.2004.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Accepted: 08/25/2004] [Indexed: 10/26/2022]
Abstract
The evolutionary function of noncoding 'junk' DNA remains one of the most challenging mysteries of genetics. Here a new model of DNA is proposed to explain this function. The hypothesis asserts the DNA molecule contains not one, but two separate modes of inheritance. In addition to exons that code for proteins and physical traits, it is argued noncoding repetitive elements code for the inheritance of emotions and innate behaviour in metazoans. That is to say, noncoding DNA functions as the medium of a second, hitherto unknown evolutionary process that genetically archives adaptive information, configured as emotions and acquired during the life of an organism, into an inheritable form. This second evolutionary process, here called 'Teemosis', is a selectionist process, but paradoxically, because it does not affect physical traits, it has no maladaptive Lamarckian consequences. The medical implications of the hypothesis are discussed.
Collapse
|
3
|
Bailey JA, Eichler EE. Genome-wide detection and analysis of recent segmental duplications within mammalian organisms. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 68:115-24. [PMID: 15338609 DOI: 10.1101/sqb.2003.68.115] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- J A Bailey
- Department of Genetics, Center for Computational Genomics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
4
|
Jurka J, Kohany O, Pavlicek A, Kapitonov VV, Jurka MV. Duplication, coclustering, and selection of human Alu retrotransposons. Proc Natl Acad Sci U S A 2004; 101:1268-72. [PMID: 14736919 PMCID: PMC337042 DOI: 10.1073/pnas.0308084100] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2003] [Indexed: 11/18/2022] Open
Abstract
Alu and L1 are families of non-LTR retrotransposons representing approximately equal 30% of the human genome. Genomic distributions of young Alu and L1 elements are quite similar, but over time, Alu densities in GC-rich DNA increase in comparison with L1 densities. Here we analyze two processes that may contribute to this phenomenon. First, DNA duplications in the human genome occur more frequently in Alu- and GC-rich than in AT-rich chromosomal regions. Second, most Alu elements tend to be coclustered with each other, but recently retroposed elements are likely to be inserted outside the existing clusters. These "stand-alone" elements appear to be rapidly eliminated from the genome. We also report that over time, the densities of recently retroposed Alu families on chromosome Y decline rapidly, whereas Alu densities on chromosome X increase relative to autosomal densities. We propose that these changes in the chromosomal proportions of Alu densities and the elimination of stand-alone Alus represent the same process of paternal Alu selection. We also propose that long-term Alu accumulation in GC-rich DNA is associated with DNA duplication initiated by elevated recombinogenic activities in Alu clusters.
Collapse
Affiliation(s)
- Jerzy Jurka
- Genetic Information Research Institute, 2081 Landings Drive, Mountain View, CA 94043-0815, USA.
| | | | | | | | | |
Collapse
|
5
|
Bailey JA, Yavor AM, Massa HF, Trask BJ, Eichler EE. Segmental duplications: organization and impact within the current human genome project assembly. Genome Res 2001; 11:1005-17. [PMID: 11381028 PMCID: PMC311093 DOI: 10.1101/gr.gr-1871r] [Citation(s) in RCA: 471] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Segmental duplications play fundamental roles in both genomic disease and gene evolution. To understand their organization within the human genome, we have developed the computational tools and methods necessary to detect identity between long stretches of genomic sequence despite the presence of high copy repeats and large insertion-deletions. Here we present our analysis of the most recent genome assembly (January 2001) in which we focus on the global organization of these segments and the role they play in the whole-genome assembly process. Initially, we considered only large recent duplication events that fell well-below levels of draft sequencing error (alignments 90%-98% similar and > or =1 kb in length). Duplications (90%-98%; > or =1 kb) comprise 3.6% of all human sequence. These duplications show clustering and up to 10-fold enrichment within pericentromeric and subtelomeric regions. In terms of assembly, duplicated sequences were found to be over-represented in unordered and unassigned contigs indicating that duplicated sequences are difficult to assign to their proper position. To assess coverage of these regions within the genome, we selected BACs containing interchromosomal duplications and characterized their duplication pattern by FISH. Only 47% (106/224) of chromosomes positive by FISH had a corresponding chromosomal position by comparison. We present data that indicate that this is attributable to misassembly, misassignment, and/or decreased sequencing coverage within duplicated regions. Surprisingly, if we consider putative duplications >98% identity, we identify 10.6% (286 Mb) of the current assembly as paralogous. The majority of these alignments, we believe, represent unmerged overlaps within unique regions. Taken together the above data indicate that segmental duplications represent a significant impediment to accurate human genome assembly, requiring the development of specialized techniques to finish these exceptional regions of the genome. The identification and characterization of these highly duplicated regions represents an important step in the complete sequencing of a human reference genome.
Collapse
Affiliation(s)
- J A Bailey
- Department of Genetics and Center for Human Genetics, Case Western Reserve School of Medicine and University Hospitals of Cleveland, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
6
|
Bailey JA, Yavor AM, Massa HF, Trask BJ, Eichler EE. Segmental Duplications: Organization and Impact Within the Current Human Genome Project Assembly. Genome Res 2001. [DOI: 10.1101/gr.187101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Segmental duplications play fundamental roles in both genomic disease and gene evolution. To understand their organization within the human genome, we have developed the computational tools and methods necessary to detect identity between long stretches of genomic sequence despite the presence of high copy repeats and large insertion-deletions. Here we present our analysis of the most recent genome assembly (January 2001) in which we focus on the global organization of these segments and the role they play in the whole-genome assembly process. Initially, we considered only large recent duplication events that fell well-below levels of draft sequencing error (alignments 90%–98% similar and ≥1 kb in length). Duplications (90%–98%; ≥1 kb) comprise 3.6% of all human sequence. These duplications show clustering and up to 10-fold enrichment within pericentromeric and subtelomeric regions. In terms of assembly, duplicated sequences were found to be over-represented in unordered and unassigned contigs indicating that duplicated sequences are difficult to assign to their proper position. To assess coverage of these regions within the genome, we selected BACs containing interchromosomal duplications and characterized their duplication pattern by FISH. Only 47% (106/224) of chromosomes positive by FISH had a corresponding chromosomal position by BLAST comparison. We present data that indicate that this is attributable to misassembly, misassignment, and/or decreased sequencing coverage within duplicated regions. Surprisingly, if we consider putative duplications >98% identity, we identify 10.6% (286 Mb) of the current assembly as paralogous. The majority of these alignments, we believe, represent unmerged overlaps within unique regions. Taken together the above data indicate that segmental duplications represent a significant impediment to accurate human genome assembly, requiring the development of specialized techniques to finish these exceptional regions of the genome. The identification and characterization of these highly duplicated regions represents an important step in the complete sequencing of a human reference genome.
Collapse
|
7
|
Seroussi E, Kedra D, Pan HQ, Peyrard M, Schwartz C, Scambler P, Donnai D, Roe BA, Dumanski JP. Duplications on human chromosome 22 reveal a novel Ret Finger Protein-like gene family with sense and endogenous antisense transcripts. Genome Res 1999; 9:803-14. [PMID: 10508838 DOI: 10.1101/gr.9.9.803] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Analysis of 600 kb of sequence encompassing the beta-prime adaptin (BAM22) gene on human chromosome 22 revealed intrachromosomal duplications within 22q12-13 resulting in three active RFPL genes, two RFPL pseudogenes, and two pseudogenes of BAM22. The genomic sequence of BAM22vartheta1 shows a remarkable similarity to that of BAM22. The cDNA sequence comparison of RFPL1, RFPL2, and RFPL3 showed 95%-96% identity between the genes, which were most similar to the Ret Finger Protein gene from human chromosome 6. The sense RFPL transcripts encode proteins with the tripartite structure, composed of RING finger, coiled-coil, and B30-2 domains, which are characteristic of the RING-B30 family. Each of these domains are thought to mediate protein-protein interactions by promoting homo- or heterodimerization. The MID1 gene on Xp22 is also a member of the RING-B30 family and is mutated in Opitz syndrome (OS). The autosomal dominant form of OS shows linkage to 22q11-q12. We detected a polymorphic protein-truncating allele of RFPL1 in 8% of the population, which was not associated with the OS phenotype. We identified 6-kb and 1.2-kb noncoding antisense mRNAs of RFPL1S and RFPL3S antisense genes, respectively. The RFPL1S and RFPL3S genes cover substantial portions of their sense counterparts, which suggests that the function of RFPL1S and RFPL3S is a post-transcriptional regulation of the sense RFPL genes. We illustrate the role of intrachromosomal duplications in the generation of RFPL genes, which were created by a series of duplications and share an ancestor with the RING-B30 domain containing genes from the major histocompatibility complex region on human chromosome 6.
Collapse
Affiliation(s)
- E Seroussi
- Department of Molecular Medicine, Karolinska Hospital, 171 76 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Gaudieri S, Kulski JK, Dawkins RL, Gojobori T. Different Evolutionary Histories in Two Subgenomic Regions of the Major Histocompatibility Complex. Genome Res 1999. [DOI: 10.1101/gr.9.6.541] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Two subgenomic regions within the major histocompatibility complex, the alpha and beta blocks, contain members of the multicopy gene families HLA class I, human endogenous retroviral sequence (HERV-16; previously known as P5 and PERB3), hemochromatosis candidate genes (HCG) (II, IV, VIII, IX), 3.8-1, and MIC (PERB11). In this study we show that the two blocks consist of imperfect duplicated segments, which contain linked members of the different gene families. The duplication and truncation sites of the segments are associated with retroelements. The retroelement sites appear to generate the imperfect duplications, insertions/deletions, and rearrangements, most likely via homologous recombination. Although the two blocks share several characteristics, they differ in the number and orientation of the duplicated segments. On the 62.1 haplotype, the alpha block consists of at least 10 duplicated segments that predominantly contain pseudogenes and gene fragments of the HLA class I and MIC (PERB11) gene families. In contrast, the beta block has two major duplications containing the genes HLA-B and HLA-C, and MICA(PERB11.1) and MICB(PERB11.2). Given the common origin between the blocks, we reconstructed the duplication history of the segments to understand the processes involved in producing the different organization in the two blocks. We then found that the beta block contains four distinct duplications from two separate events, whereas the alpha block is characterized by multisegment duplications. We will discuss these results in relation to the genetic content of the two blocks.
Collapse
|
9
|
Kolb VM. Biomimicry as a basis for drug discovery. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1999; 51:185-217. [PMID: 9949862 DOI: 10.1007/978-3-0348-8845-5_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Selected works are discussed which clearly demonstrate that mimicking various aspects of the process by which natural products evolved is becoming a powerful tool in contemporary drug discovery. Natural products are an established and rich source of drugs. The term "natural product" is often used synonymously with "secondary metabolite." Knowledge of genetics and molecular evolution helps us understand how biosynthesis of many classes of secondary metabolites evolved. One proposed hypothesis is termed "inventive evolution." It invokes duplication of genes, and mutation of the gene copies, among other genetic events. The modified duplicate genes, per se or in conjunction with other genetic events, may give rise to new enzymes, which, in turn, may generate new products, some of which may be selected for. Steps of the inventive evolution can be mimicked in several ways for purpose of drug discovery. For example, libraries of chemical compounds of any imaginable structure may be produced by combinatorial synthesis. Out of these libraries new active compounds can be selected. In another example, genetic system can be manipulated to produce modified natural products ("unnatural natural products"), from which new drugs can be selected. In some instances, similar natural products turn up in species that are not direct descendants of each other. This is presumably due to a horizontal gene transfer. The mechanism of this inter-species gene transfer can be mimicked in therapeutic gene delivery. Mimicking specifics or principles of chemical evolution including experimental and test-tube evolution also provides leads for new drug discovery.
Collapse
Affiliation(s)
- V M Kolb
- Department of Chemistry, University of Wisconsin-Parkside, Kenosha 53141, USA
| |
Collapse
|
10
|
Grewal PK, van Geel M, Frants RR, de Jong P, Hewitt JE. Recent amplification of the human FRG1 gene during primate evolution. Gene 1999; 227:79-88. [PMID: 9931447 DOI: 10.1016/s0378-1119(98)00587-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
There is evidence of multiple copies of the FSHD Region Candidate Gene 1 (FRG1) in humans. Analysis of human FRG1 ESTs showed many of them to be non-processed pseudogenes dispersed throughout the genome. To determine when the amplification of FRG1 occurred, we used a PCR-based approach to identify FRG1 sequences from great apes, chimpanzee, gorilla and orang-utan, and an Old World monkey, Macaca mulatta. In common with humans, multiple copies of FRG1 were detected in the great apes. However, in Macaca mulatta, only two FRG1 loci were identified, one presumed to be the homologue of the human chromosome 4q gene. This is strikingly similar to the distribution of a dispersed 3.3-kb repeat family in primates. A member of this family, D4Z4, maps to the subtelomeric region of 4q, in close proximity to FRG1. We propose that an ancestral duplication of distal 4q included FRG1. This duplication is present in Macaca mulatta whose divergence from hominoids is thought to have occurred at least 33 million years ago. We propose that this telomeric region then underwent further amplification and dispersion events in the great ape lineage, with copies of FRG1 and the 3.3-kb repeats being localized in heterochromatic regions.
Collapse
Affiliation(s)
- P K Grewal
- School of Biological Sciences, The University of Manchester, 3.239 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | |
Collapse
|
11
|
Huber R, Mazzarella R, Chen CN, Chen E, Ireland M, Lindsay S, Pilia G, Crisponi L. Glypican 3 and glypican 4 are juxtaposed in Xq26.1. Gene 1998; 225:9-16. [PMID: 9931407 DOI: 10.1016/s0378-1119(98)00549-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, we have shown that mutations in the X-linked glypican 3 (GPC3) gene cause the Simpson-Golabi-Behmel overgrowth syndrome (SGBS; ). The next centromeric gene detected is another glypican, glypican 4 (GPC4), with its 5' end 120763bp downstream of the 3' terminus of GPC3. One recovered GPC4 cDNA with an open reading frame of 1668nt encodes a putative protein containing three heparan sulfate glycosylation signals and the 14 signature cysteines of the glypican family. This protein is 94.3% identical to mouse GPC4 and 26% identical to human GPC3. In contrast to GPC3, which produces a single transcript of 2.3kb and is stringently restricted in expression to predominantly mesoderm-derived tissues, Northern analyses show that GPC4 produces two transcripts, 3.4 and 4.6kb, which are very widely expressed (though at a much higher level in fetal lung and kidney). Interestingly, of 20 SGBS patients who showed deletions in GPC3, one was also deleted for part of GPC4. Thus, GPC4 is not required for human viability, even in the absence of GPC3. This patient shows a complex phenotype, including the unusual feature of hydrocephalus; but because an uncle with SGBS is less affected, it remains unclear whether the GPC4 deletion itself contributes to the phenotype.
Collapse
Affiliation(s)
- R Huber
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore MD 21224,
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Mazzarella R, Schlessinger D. Pathological consequences of sequence duplications in the human genome. Genome Res 1998; 8:1007-21. [PMID: 9799789 DOI: 10.1101/gr.8.10.1007] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As large-scale sequencing accumulates momentum, an increasing number of instances are being revealed in which genes or other relatively rare sequences are duplicated, either in tandem or at nearby locations. Such duplications are a source of considerable polymorphism in populations, and also increase the evolutionary possibilities for the coregulation of juxtaposed sequences. As a further consequence, they promote inversions and deletions that are responsible for significant inherited pathology. Here we review known examples of genomic duplications present on the human X chromosome and autosomes.
Collapse
Affiliation(s)
- R Mazzarella
- Institute for Biomedical Computing and Center for Genetics in Medicine, Washington University School of Medicine, St. Louis, Missouri 63110 USA
| | | |
Collapse
|
13
|
Abstract
Artificial chromosomes have been developed in the last 10 years to sustain genome mapping and, more recently, to begin initiating functional studies and some approaches to gene therapy. The use of yeast artificial chromosomes (YACs) in mapping the human X chromosome is reported as an example. The requirements which have postponed the development of human artificial chromosomes have now been relatively met, and some prospects are previewed here.
Collapse
Affiliation(s)
- D Schlessinger
- Center for Genetics in Medicine, Washington University School of Medicine, St Louis, MO, USA.
| | | |
Collapse
|
14
|
Huber R, Crisponi L, Mazzarella R, Chen CN, Su Y, Shizuya H, Chen EY, Cao A, Pilia G. Analysis of exon/intron structure and 400 kb of genomic sequence surrounding the 5'-promoter and 3'-terminal ends of the human glypican 3 (GPC3) gene. Genomics 1997; 45:48-58. [PMID: 9339360 DOI: 10.1006/geno.1997.4916] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
GPC3, the gene modified in the Simpson-Golabi-Behmel gigantism/overgrowth syndrome (SGBS), is shown to span more than 500 kb of genomic sequence, with the transcript beginning 197 bp 5' of the translational start site. The Xq26.1 region containing GPC3 as the only known gene has been extended to > 900 kb by sequence analysis of flanking BAC clones. Two GC isochores (40.6 and 42.6% GC) are observed at the 5' and 3' ends of the locus, with a large repertoire of repetitive sequences that includes an unusual cluster of four L1 elements > 92% identical over 2.8 kb. Eight exons, accounting for the full 2.4-kb GPC3 cDNA, have been sequenced along with neighboring intronic regions. PCR assays have been developed to amplify each exon and exon/intron junction sequence, to help discriminate instances of SGBS among individuals with overgrowth syndromes and to facilitate mutational analysis of lesions in the gene.
Collapse
Affiliation(s)
- R Huber
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|