1
|
Chinnici J, Yerke L, Tsou C, Busarajan S, Mancuso R, Sadhak ND, Kim J, Maddi A. Candida albicans cell wall integrity transcription factors regulate polymicrobial biofilm formation with Streptococcus gordonii. PeerJ 2019; 7:e7870. [PMID: 31616604 PMCID: PMC6791342 DOI: 10.7717/peerj.7870] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022] Open
Abstract
Polymicrobial biofilms play important roles in oral and systemic infections. The oral plaque bacterium Streptococcus gordonii is known to attach to the hyphal cell wall of the fungus Candida albicans to form corn-cob like structures in biofilms. However, the role of C. albicans in formation of polymicrobial biofilms is not completely understood. The objective of this study was to determine the role of C. albicans transcription factors in regulation of polymicrobial biofilms and antibiotic tolerance of S. gordonii. The proteins secreted by C. albicans and S. gordonii in mixed planktonic cultures were determined using mass spectrometry. Antibiotic tolerance of S. gordonii to ampicillin and erythromycin was determined in mixed cultures and mixed biofilms with C. albicans. Additionally, biofilm formation of S. gordonii with C. albicans knock-out mutants of 45 transcription factors that affect cell wall integrity, filamentous growth and biofilm formation was determined. Furthermore, these mutants were also screened for antibiotic tolerance in mixed biofilms with S. gordonii. Analysis of secreted proteomes resulted in the identification of proteins being secreted exclusively in mixed cultures. Antibiotic testing showed that S. gordonii had significantly increased survival in mixed planktonic cultures with antibiotics as compared to single cultures. C. albicans mutants of transcription factors Sfl2, Brg1, Leu3, Cas5, Cta4, Tec1, Tup1, Rim101 and Efg1 were significantly affected in mixed biofilm formation. Also mixed biofilms of S. gordonii with mutants of C. albicans transcription factors, Tec1 and Sfl2, had significantly reduced antibiotic tolerance as compared to control cultures. Our data indicates that C. albicans may have an important role in mixed biofilm formation as well as antibiotic tolerance of S. gordonii in polymicrobial biofilms. C. albicans may play a facilitating role than being just an innocent bystander in oral biofilms and infections.
Collapse
Affiliation(s)
- Jennifer Chinnici
- Departments of Periodontics & Endodontics and Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Lisa Yerke
- Departments of Periodontics & Endodontics and Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Charlene Tsou
- Departments of Periodontics & Endodontics and Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Sujay Busarajan
- Departments of Periodontics & Endodontics and Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Ryan Mancuso
- Departments of Periodontics & Endodontics and Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Nishanth D Sadhak
- Departments of Periodontics & Endodontics and Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Jaewon Kim
- Departments of Periodontics & Endodontics and Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Abhiram Maddi
- Departments of Periodontics & Endodontics and Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States of America
| |
Collapse
|
2
|
Proteomic analysis of protein phosphatase Z1 from Candida albicans. PLoS One 2017; 12:e0183176. [PMID: 28837603 PMCID: PMC5570430 DOI: 10.1371/journal.pone.0183176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/31/2017] [Indexed: 11/19/2022] Open
Abstract
Protein phosphatase Z is a "novel type" fungus specific serine/threonine protein phosphatase. Previously our research group identified the CaPPZ1 gene in the opportunistic pathogen Candida albicans and reported that the gene deletion had several important physiological consequences. In order to reveal the protein targets and the associated mechanisms behind the functions of the phosphatase a proteomic method was adopted for the comparison of the cappz1 deletion mutant and the genetically matching QMY23 control strain. Proteins extracted from the control and deletion mutant strains were separated by two-dimensional gel electrophoresis and the protein spots were stained with RuBPS and Pro-Q Diamond in order to visualize the total proteome and the phosphoproteome, respectively. The alterations in spot intensities were determined by densitometry and were analysed with the Delta2D (Decodon) software. Spots showing significantly different intensities between the mutant and control strains were excised from the gels and were digested with trypsin. The resulting peptides were identified by LC-MS/MS mass spectrometry. As many as 15 protein spots were found that exhibited significant changes in their intensity upon the deletion of the phosphatase and 20 phosphoproteins were identified in which the level of phosphorylation was modified significantly in the mutant. In agreement with previous findings we found that the affected proteins function in protein synthesis, oxidative stress response, regulation of morphology and metabolism. Among these proteins we identified two potential CaPpz1 substrates (Eft2 and Rpp0) that may regulate the elongation step of translation. RT-qPCR experiments revealed that the expression of the genes coding for the affected proteins was not altered significantly. Thus, the absence of CaPpz1 exerted its effects via protein synthesis/degradation and phosphorylation/dephosphorylation. In addition, our proteomics data strongly suggested a role for CaPpz1 in biofilm formation, was confirmed experimentally. Thus our unbiased proteomic approach lead to the discovery of a novel function for this phosphatase in C. albicans.
Collapse
|
3
|
Zhang SH, Yao JH, Song HD, Wang L, Xue JL. Cloning and expression of translation elongation factor 2 (EF-2) in zebrafish. ACTA ACUST UNITED AC 2008; 19:1-7. [PMID: 18300156 DOI: 10.1080/10425170500332314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We have identified a developmentally regulated gene translation elongation factor 2 (EF-2) in zebrafish (GenBank Accession No. AAQ91234). Analysis of DNA sequence of zebrafish EF-2 shows that the 2826 bp cDNA spans an open reading frame from nucleotide 55 to 2631 and encodes a protein of 858 amino acids. It shares an identity of 92, 93, 93, 92, 79 and 80% in amino acid sequence to human, mouse, Chinese hamster, Gallus gullus, C. elegans and Drosophila EF-2, respectively. Zebrafish EF-2 protein has 16 conserved domains, GTP-binding domain is found in the NH2 terminus, and the ADP-ribosylation domain locates at the COOH terminus. Whole mount in situ hybridization on zebrafish embryos shows that the transcripts of EF-2 gene are detected during the early development of zebrafish embryo and constantly change from 5-somite stage to protruding-mouth stage. It expresses strongly throughout envelope at 5-somite stage. Then the stained cells concentrate strongly in the eyes, brain and muscle tissue. From prim-25 stage the stained cells only appear strongly in the lens and the anterior portion of the cerebellum.
Collapse
Affiliation(s)
- Shu-Hong Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | | | | | | | | |
Collapse
|
4
|
Walia A, Calderone R. The SSK2 MAPKKK of Candida albicans is required for oxidant adaptation in vitro. FEMS Yeast Res 2007; 8:287-99. [PMID: 18093132 DOI: 10.1111/j.1567-1364.2007.00329.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The Ssk2p (MAPKKK) of Candida albicans was deleted and functions assigned based on phenotyping studies. SSK2 deletion was first attempted using the UAU1 disruption method. All transformants lacking one copy of SSK2 appeared to be triploids, suggesting that the SSK2 is essential for the organism. To verify this observation, a strain was constructed in which one allele was deleted using the SAT1 flipper disruption method. The second allele was then placed under control of the on/off tetracycline-regulatable (TetR) promoter. The transcription of SSK2 was measured by reverse transcriptase-PCR and although the promoter was somewhat leaky, transcript was significantly reduced in an ssk2/TetR-SSK2 transformant (AT2) in the presence of doxycycline. Strains AT1 and AT2 constructed using the SAT1 flipper and TetR promoter method, respectively, were studied phenotypically in different growth media to determine the role of Ssk2p in morphogenesis. The mutants were also compared under on/off conditions in the presence of 1.5 M NaCl and various types of oxidants. Strain AT2 demonstrated resistance to 1.5 M NaCl in the absence of doxycycline but was inhibited by 8 mM hydrogen peroxide.
Collapse
Affiliation(s)
- Aditi Walia
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | |
Collapse
|
5
|
Yoshino T, Maeda Y, Amagai A. The real factor for polypeptide elongation in Dictyostelium cells is EF-2B, not EF-2A. Biochem Biophys Res Commun 2007; 359:586-91. [PMID: 17560550 DOI: 10.1016/j.bbrc.2007.05.155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Accepted: 05/18/2007] [Indexed: 10/23/2022]
Abstract
Polypeptide elongation factor 2 (EF-2) plays an essential role in protein synthesis and is believed to be indispensable for cell proliferation. Recently, it has been demonstrated that there are two kinds of EF-2 (EF-2A and EF-2B with 76.6% of sequence identity at the amino acid level) in Dictyostelium discoideum. Although the knockout of EF-2A slightly impaired cytokinesis, EF-2A null cells exhibited almost normal protein synthesis and cell growth, suggesting that there is another molecule capable of compensating for EF-2 function. Since EF-2B is the most likely candidate, we examined its function using ef-2b knockdown cells prepared by the RNAi method. Our results strongly suggest that EF-2B is required for protein synthesis and cell proliferation, functioning as the real EF-2. Interestingly, the expressions of ef-2a and ef-2b mRNAs during development are reversely regulated, and the ef-2b expression is greatly augmented in ef-2a null cells.
Collapse
Affiliation(s)
- Tomoko Yoshino
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | | | | |
Collapse
|
6
|
Brand A, MacCallum DM, Brown AJP, Gow NAR, Odds FC. Ectopic expression of URA3 can influence the virulence phenotypes and proteome of Candida albicans but can be overcome by targeted reintegration of URA3 at the RPS10 locus. EUKARYOTIC CELL 2005; 3:900-9. [PMID: 15302823 PMCID: PMC500875 DOI: 10.1128/ec.3.4.900-909.2004] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Uridine auxotrophy, based on disruption of both URA3 alleles in diploid Candida albicans strain SC5314, has been widely used to select gene deletion mutants created in this fungus by "Ura-blasting" and PCR-mediated disruption. We compared wild-type URA3 expression with levels in mutant strains where URA3 was positioned either within deleted genes or at the highly expressed RPS10 locus. URA3 expression levels differed significantly and correlated with the specific activity of Ura3p, orotidine 5'-monophosphate decarboxylase. Reduced URA3 expression following integration at the GCN4 locus was associated with an attenuation of virulence. Furthermore, a comparison of the SC5314 (URA3) and CAI-4 (ura3) proteomes revealed that inactivation of URA3 caused significant changes in the levels of 14 other proteins. The protein levels of all except one were partially or fully restored by the reintegration of a single copy of URA3 at the RPS10 locus. Transcript levels of genes expressed ectopically at this locus in reconstituted heterozygous mutants also matched the levels found when the genes were expressed at their native loci. Therefore, phenotypic changes in C. albicans can be associated with the selectable marker rather than the target gene. Reintegration of URA3 at an appropriate expression locus such as RPS10 can offset most problems related to the phenotypic changes associated with gene knockout methodologies.
Collapse
Affiliation(s)
- Alexandra Brand
- School of Medical Sciences, Institute of Medical Sciences, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
7
|
Watanabe S, Sakurai K, Amagai A, Maeda Y. Unexpected roles of a Dictyostelium homologue of eukaryotic EF-2 in growth and differentiation. J Cell Sci 2003; 116:2647-54. [PMID: 12746492 DOI: 10.1242/jcs.00476] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
EF-2 is believed to be indispensable for polypeptide chain elongation in protein synthesis and therefore for cell proliferation. Surprisingly, we could isolate ef2 null cells from Dictyostelium discoideum that exhibited almost normal growth and protein synthesis, which suggests that there is another molecule capable of compensating for EF-2 function. The knock-out of Dictyostelium EF-2 (Dd-EF2H; 101 kDa phosphoprotein) impairs cytokinesis, resulting in formation of multinucleate cells. The initiation of differentiation, including the acquisition of aggregation competence, was delayed in Dd-ef2 null cells compared with that in wild-type. By contrast, Dd-ef2 overexpression enhanced the progression of differentiation, thus indicating a positive involvement of Dd-EF2H in growth/differentiation transition.
Collapse
Affiliation(s)
- Sohsuke Watanabe
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | | | | | | |
Collapse
|
8
|
Sturtevant J. Translation elongation-3-like factors: are they rational antifungal targets? Expert Opin Ther Targets 2002; 6:545-53. [PMID: 12387678 DOI: 10.1517/14728222.6.5.545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The occurrence of fungal infection has escalated significantly in recent years and is expected to continue to increase for the foreseeable future. Unfortunately, only a limited number of antifungal drugs are currently available partially due to a lack of suitable targets. The most commonly used antifungals target the same molecule in the cell membrane and, while efficacious, are either extremely toxic or susceptible to resistance. This article examines elongation factor-3, which is unique to fungi and essential for fungal cell survival and, thus, an attractive antifungal target. A search for inhibitors of this 'perfect target' led to identification of compounds (sordarins) which inhibited elongation factor-2, a protein with a mammalian homologue. Molecular analysis demonstrated why sordarins can specifically act against fungal elongation factor-2. This data questions the validity of pursuing genes as targets only if they are unique to fungi. Proteins that are homologous to elongation factor-3 are also discussed. The advances in molecular techniques and bioinformatics will allow the re-evaluation of targets previously thought to be unattractive. In addition, molecular genetics provides new and novel information on cellular processes that can potentially introduce new targets.
Collapse
Affiliation(s)
- Joy Sturtevant
- Dept of Microbiology, Immunology and Parasitology, Center of Excellence in Oral and Craniofacial Biology, LSU Health Sciences Center - School of Dentistry, 1100 Florida Ave, Box F8-130, New Orleans, LA 70119, USA.
| |
Collapse
|
9
|
Navarro-García F, Sánchez M, Nombela C, Pla J. Virulence genes in the pathogenic yeast Candida albicans. FEMS Microbiol Rev 2001; 25:245-68. [PMID: 11250036 DOI: 10.1111/j.1574-6976.2001.tb00577.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In recent years, the incidence of fungal infections has been rising all over the world. Although the amount of research in the field of pathogenic fungi has also increased, there is still a need for the identification of reliable determinants of virulence. In this review, we focus on identified Candida albicans genes whose deletant strains have been tested in experimental virulence assays. We discuss the putative relationship of these genes to virulence and also outline the use of new different systems to examine the precise effect in virulence of different genes.
Collapse
Affiliation(s)
- F Navarro-García
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | | | | | | |
Collapse
|
10
|
Abstract
The frequency of opportunistic infections caused by the fungus Candida albicans is very high and is expected to continue to increase as the number of immunocompromised patients rises. Research initiatives to study the biology of this organism and elucidate its pathogenic determinants have therefore expanded significantly during the last 5-10 years. The past few years have also brought continuous improvement in the techniques to study gene function by gene inactivation and by regulated gene expression and to study gene expression and protein localization by using gene reporter systems. As steadily more genomic sequence information from this human fungal pathogen becomes available, we are entering a new era in antimicrobial research. However, many of the currently available molecular genetics tools are poorly adapted to a genome-wide functional analysis in C. albicans, and further development of these tools is hampered by the asexual and diploid nature of this organism. This review outlines recent advances in the development of molecular tools for functional analysis in C. albicans and summarizes current knowledge about the genomic and genetic variability of this important human fungal pathogen.
Collapse
Affiliation(s)
- M D De Backer
- Department of Advanced Bio-Technologies, Janssen Research Foundation, B-2340 Beerse, Belgium.
| | | | | |
Collapse
|
11
|
Shastry M, Nielsen J, Ku T, Hsu MJ, Liberator P, Anderson J, Schmatz D, Justice MC. Species-specific inhibition of fungal protein synthesis by sordarin: identification of a sordarin-specificity region in eukaryotic elongation factor 2. MICROBIOLOGY (READING, ENGLAND) 2001; 147:383-390. [PMID: 11158355 DOI: 10.1099/00221287-147-2-383] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The sordarin class of natural products selectively inhibits fungal protein synthesis by impairing the function of eukaryotic elongation factor 2 (eEF2). Mutations in Saccharomyces cerevisiae eEF2 or the ribosomal stalk protein rpP0 can confer resistance to sordarin, although eEF2 is the major determinant of sordarin specificity. It has been shown previously that sordarin specifically binds S. cerevisiae eEF2 while there is no detectable binding to eEF2 from plants or mammals, despite the high level of amino acid sequence conservation among these proteins. In both whole-cell assays and in vitro translation assays, the efficacy of sordarin varies among different species of pathogenic fungi. To investigate the basis of sordarin's fungal selectivity, eEF2 has been cloned and characterized from several sordarin-sensitive and -insensitive fungal species. Results from in vivo expression of Candida species eEF2s in S. cerevisiae and in vitro translation and growth inhibition assays using hybrid S. cerevisiae eEF2 proteins demonstrate that three amino acid residues within eEF2 account for the selectivity of this class of compounds. It is also shown that the corresponding residues at these positions in human eEF2 are sufficient to confer sordarin insensitivity to S. cerevisiae identical to that observed with mammalian eEF2.
Collapse
Affiliation(s)
- Mythili Shastry
- Department of Animal Health, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA1
| | - Jennifer Nielsen
- Department of Animal Health, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA1
| | - Theresa Ku
- Department of Animal Health, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA1
| | - Ming-Jo Hsu
- Department of Animal Health, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA1
| | - Paul Liberator
- Department of Animal Health, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA1
| | - Jennifer Anderson
- Department of Animal Health, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA1
| | - Dennis Schmatz
- Department of Animal Health, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA1
| | - Michael C Justice
- Department of Animal Health, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA1
| |
Collapse
|