1
|
Abou-Saleh H, Ouhtit A, Halade GV, Rahman MM. Bone Benefits of Fish Oil Supplementation Depend on its EPA and DHA Content. Nutrients 2019; 11:nu11112701. [PMID: 31717258 PMCID: PMC6893665 DOI: 10.3390/nu11112701] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/02/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023] Open
Abstract
The preventive effect of high-dose (9%) regular-fish oil (FO) against bone loss during aging has been demonstrated, but the effects of a low-dose (1%–4%) of a highly purified concentrated FO (CFO) has not been elucidated. The aim of this study was to determine the dose-dependent effect of a CFO against bone loss in C57BL/6 female mice during aging. Twelve-month old mice were fed with 1% and 4% CFO and 4% safflower oil (SFO) diets, including a group with a 4% regular-FO diet and a group with a lab chow diet for 12 months. Bone mineral density (BMD) was analyzed by dual-energy x-ray absorptiometry (DXA) before and after the dietary intervention. At the end of dietary intervention, bone resorption markers in serum and inflammatory markers in bone marrow and splenocytes and inflammatory signaling pathways in the bone marrow were analyzed. As compared to the 4% SFO control, 4% CFO maintained higher BMD during aging, while 1% CFO offered only a mild benefit. However, the 1% CFO fed group exhibited slightly better BMD than the 4% regular-FO fed group. BMD loss protection by CFO was accompanied by reduced levels of the bone resorption marker, TRAP, and the osteoclast-stimulating-factor, RANKL, without affecting the decoy-receptor of RANKL, osteoprotegerin (OPG). Further, CFO supplementation was associated with an increase in the production of IL-10, IL-12, and IFN-γ and a decrease in the production of TNF-α and IL-6, and the activation of NF-κB, p38 MAPK, and JNK signaling pathways. In conclusion, the supplementation of 4% CFO is very efficient in maintaining BMD during aging, whereas 1% CFO is only mildly beneficial. CFO supplementation starting at middle age may maintain better bone health during aging.
Collapse
Affiliation(s)
- Haissam Abou-Saleh
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Al Tarfa, Doha PO Box 2713, Qatar; (H.A.-S.); (A.O.)
| | - Allal Ouhtit
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Al Tarfa, Doha PO Box 2713, Qatar; (H.A.-S.); (A.O.)
| | - Ganesh V. Halade
- Division of Cardiovascular Disease, Department of 9 Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Md Mizanur Rahman
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Al Tarfa, Doha PO Box 2713, Qatar; (H.A.-S.); (A.O.)
- Correspondence:
| |
Collapse
|
2
|
Rahman MM, Veigas JM, Williams PJ, Fernandes G. DHA is a more potent inhibitor of breast cancer metastasis to bone and related osteolysis than EPA. Breast Cancer Res Treat 2013; 141:341-52. [PMID: 24062211 DOI: 10.1007/s10549-013-2703-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 09/14/2013] [Indexed: 12/31/2022]
Abstract
Breast cancer patients often develop bone metastasis evidenced by osteolytic lesions, leading to severe pain and bone fracture. Attenuation of breast cancer metastasis to bone and associated osteolysis by fish oil, rich in EPA and DHA, has been demonstrated previously. However, it was not known whether EPA and DHA differentially or similarly affect breast cancer bone metastasis and associated osteolysis. In vitro culture of parental and luciferase gene encoded MDA-MB-231 human breast cancer cell lines treated with EPA and DHA revealed that DHA inhibits proliferation and invasion of breast cancer cells more potently than EPA. Intra-cardiac injection of parental and luciferase gene encoded MDA-MB-231 cells to athymic NCr nu/nu mice demonstrated that DHA-treated mice had significantly less breast cancer cell burden in bone, and also significantly less osteolytic lesions than EPA-treated mice. In vivo cell migration assay as measured by luciferase intensity revealed that DHA attenuated cell migration specifically to the bone. Moreover, the DHA-treated group showed reduced levels of CD44 and TRAP positive area in bone compared to EPA-treated group. Breast cancer cell burden and osteolytic lesions were also examined in intra-tibially breast cancer cell injected mice and found less breast cancer cell growth and associated osteolysis in DHA-treated mice as compared to EPA-treated mice. Finally, doxorubicin-resistant MCF-7 (MCF-7dox) human breast cancer cell line was used to examine if DHA can improve sensitization of MCF-7dox cells to doxorubicin. DHA improved the inhibitory effect of doxorubicin on proliferation and invasion of MCF-7dox cells. Interestingly, drug resistance gene P-gp was also down-regulated in DHA plus doxorubicin-treated cells. In conclusion, DHA attenuates breast cancer bone metastasis and associated osteolysis more potently than EPA, possibly by inhibiting migration of breast cancer cell to the bone as well as by inhibiting osteoclastic bone resorption.
Collapse
Affiliation(s)
- Md Mizanur Rahman
- Department of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA,
| | | | | | | |
Collapse
|
3
|
Losos JK, Evans DH, Gibbins AMV. Targeted modification of the complete chicken lysozyme gene by poxvirus-mediated recombination. Biochem Cell Biol 2005; 83:230-8. [PMID: 15864331 DOI: 10.1139/o05-025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have developed a novel ex vivo system for the rapid one-step targeted modification of large eucaryotic DNA sequences. The highly recombinant environment resulting from infection of rabbit cornea cells with the Shope fibroma virus was exploited to mediate precise modifications of the complete chicken lysozyme gene domain (21.5 kb). Homologous recombination was designed to occur between target DNA (containing the complete lysozyme gene domain) maintained in a lambda bacteriophage vector and modified targeting DNA maintained in a plasmid. The targeting plasmids were designed to transfer exogenous sequences (for example, beta-galactosidase alpha-complement, green fluorescent protein, and hydrophobic tail coding sequences) to specific sites within the lysozyme gene domain. Cotransfection of the target phage and a targeting plasmid into Shope fibroma virus infected cells resulted in the poxvirus-mediated transfer of the modified sequences from plasmid to phage. Phage DNA (recombinant and nonrecombinant) was then harvested from the total cellular DNA by packaging into lambda phage particles and correct recombinants were identified. Four different gene-targeting pairings were carried out, and from 3% to 11% of the recovered phages were recombinant. Using this poxvirus-mediated targeting system, four different regions of the chicken lysozyme gene domain have been modified precisely by our research group overall with a variety of inserts (6-971 bp), deletions (584-3000 bp), and replacements. We have never failed to obtain the desired recombinant. Poxvirus-mediated recombination thus constitutes a routine, rapid, and remarkably efficient genetic engineering system for the precise modification of large eucaryotic gene domains when compared with traditional practices.
Collapse
Affiliation(s)
- Jan K Losos
- Department of Animal and Poultry Science, University of Guelph, ON, Canada
| | | | | |
Collapse
|
4
|
Shimizu M, Losos JK, Gibbins AMV. Analysis of an approach to oviduct-specific expression of modified chicken lysozyme genes. Biochem Cell Biol 2005; 83:49-60. [PMID: 15746966 DOI: 10.1139/o04-122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The -2.7 kb enhancer (E) element of the chicken lysozyme gene domain appears to govern expression of the gene in macrophages but not in oviduct tubular gland cells, the only other site of lysozyme expression. The ultimate goal of our research was to determine whether lysozyme domain variants could be developed that would mainly be expressed in the oviduct so that transgenic birds could be produced that would deposit exogenous protein in the egg white. Accordingly, precise mutations were made by poxvirus-mediated gene targeting in FEF/PU.1 and CCAAT/enhancer-binding protein (C/EBP) transcription factor binding sites in the -2.7 kb E of cloned copies of a specific lysozyme gene variant that includes a hydrophobic pentapeptide tail encoding sequence inserted immediately prior to the stop codon. This variant contains the entire lysozyme domain and is cloned in a lambda bacteriophage vector (lambdaDIILys-HT); the novel tail sequence enables distinction in cell-based expression systems between transcripts of the variant and those of the endogenous gene. These various lysozyme domain mutants, in bacteriophage vector form, were tested for expression in cultured chicken blastodermal cells cotransfected with plasmids encoding the transcription factors C/EBP and v-Myb. In the absence of these plasmids, barely detectable levels of endogenous lysozyme gene transcription resulted in the blastodermal cells. In the presence of the plasmids, however, transcripts of the endogenous gene could be detected as well as varying levels (as evaluated by quantitative real-time PCR) of transcripts of all of the lysozyme domain mutants. These results are discussed in the context of the known role and occurrence of various transcription factors involved in gene expression in differentiating macrophage cells. The ultimate test of expression of the variants in macrophages vs. oviduct cells will be to use them to produce transgenic birds.
Collapse
Affiliation(s)
- Mamiko Shimizu
- Department of Animal and Poultry Science, University of Guelph, ON N1G 2W1, Canada
| | | | | |
Collapse
|
5
|
Lampard GR, Verrinder Gibbins AM. Secretion of foreign proteins mediated by chicken lysozyme gene regulatory sequences. Biochem Cell Biol 2003; 80:777-88. [PMID: 12555811 DOI: 10.1139/o02-163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exploitation of the insulating properties of the complete chicken lysozyme gene domain may facilitate the production of transgenic chicken bioreactors with the capacity to deposit valuable proteins in the egg white. Chimeric genes consisting of the chicken lysozyme gene regulatory sequences and sequences encoding foreign proteins could be inserted randomly into the chicken genome and retain appropriate expression levels. The research reported here established that chicken lysozyme gene regulatory sequences can be used to direct the production and secretion of green fluorescent protein (used as a reporter protein) in transiently transfected chicken blastodermal cells. Attempts to verify these findings in transgenic hens are currently in progress. To provide a rapid means of generating constructs encoding other foreign proteins under the control of lysozyme gene regulatory sequences that can facilitate the secretion of heterologous proteins in vivo, a generic lysozyme gene regulatory scaffold was created using a poxvirus-mediated gene targeting system.
Collapse
Affiliation(s)
- Gregory R Lampard
- Department of Animal and Poultry Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | |
Collapse
|
6
|
Lefevre P, Melnik S, Wilson N, Riggs AD, Bonifer C. Developmentally regulated recruitment of transcription factors and chromatin modification activities to chicken lysozyme cis-regulatory elements in vivo. Mol Cell Biol 2003; 23:4386-400. [PMID: 12773578 PMCID: PMC156125 DOI: 10.1128/mcb.23.12.4386-4400.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the chicken lysozyme gene is upregulated during macrophage differentiation and reaches its highest level in bacterial lipopolysaccharide (LPS)-stimulated macrophages. This is accompanied by complex alterations in chromatin structure. We have previously shown that chromatin fine-structure alterations precede the onset of gene expression in macrophage precursor cells and mark the lysozyme chromatin domain for expression later in development. To further examine this phenomenon and to investigate the basis for the differentiation-dependent alterations of lysozyme chromatin, we studied the recruitment of transcription factors to the lysozyme locus in vivo at different stages of myeloid differentiation. Factor recruitment occurred in several steps. First, early-acting transcription factors such as NF1 and Fli-1 bound to a subset of enhancer elements and recruited CREB-binding protein. LPS stimulation led to an additional recruitment of C/EBPbeta and a significant change in enhancer and promoter structure. Transcription factor recruitment was accompanied by specific changes in histone modification within the lysozyme chromatin domain. Interestingly, we present evidence for a transient interaction of transcription factors with lysozyme chromatin in lysozyme-nonexpressing macrophage precursors, which was accompanied by a partial demethylation of CpG sites. This indicates that a partially accessible chromatin structure of lineage-specific genes is a hallmark of hematopoietic progenitor cells.
Collapse
Affiliation(s)
- Pascal Lefevre
- Molecular Medicine Unit, University of Leeds, St James's University Hospital, Leeds LS9 7TF, United Kingdom
| | | | | | | | | |
Collapse
|
7
|
Abstract
Myeloid blood cells comprise an important component of the immune system. Proper control of both lineage- and stage-specific gene expression is required for normal myeloid cell development and function. In recent years, a relatively small number of critical transcriptional regulators have been identified that serve important roles both in myeloid cell development and regulation of lineage-restricted gene expression in mature myeloid cells. This review summarizes our current understanding of the regulation of lineage- and stage-restricted transcription during myeloid cell differentiation, how critical transcriptional regulators control myeloid cell development, and how perturbations in transcription factor function results in the development of leukemia.
Collapse
Affiliation(s)
- David G Skalnik
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
8
|
Chaya D, Hayamizu T, Bustin M, Zaret KS. Transcription factor FoxA (HNF3) on a nucleosome at an enhancer complex in liver chromatin. J Biol Chem 2001; 276:44385-9. [PMID: 11571307 DOI: 10.1074/jbc.m108214200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleosome-like particles and acetylated histones occur near active promoters and enhancers, and certain transcription factors can recognize their target sites on the surface of a nucleosome in vitro; yet it has been unclear whether transcription factors can occupy target sites on nucleosomes in native chromatin. We developed a method for sequential chromatin immunoprecipitation of distinct nuclear proteins that are simultaneously cross-linked to nucleosome-sized genomic DNA segments. We find that core histone H2A co-occupies, along with the FoxA (hepatocyte nuclear factor-3) transcription factor, DNA for the albumin transcriptional enhancer in native liver chromatin, where the enhancer is active. Because histone H2A on nuclear DNA is only known to exist in nucleosomes, we conclude that transcription factors can form a stable complex on nucleosomes at an active enhancer element in vivo.
Collapse
Affiliation(s)
- D Chaya
- Cell and Developmental Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | |
Collapse
|
9
|
Lefevre P, Kontaraki J, Bonifer C. Identification of factors mediating the developmental regulation of the early acting -3.9 kb chicken lysozyme enhancer element. Nucleic Acids Res 2001; 29:4551-60. [PMID: 11713304 PMCID: PMC92539 DOI: 10.1093/nar/29.22.4551] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2001] [Revised: 09/27/2001] [Accepted: 09/27/2001] [Indexed: 11/13/2022] Open
Abstract
The chicken lysozyme gene -3.9 kb enhancer forms a DNase I hypersensitive site (DHS) early in macrophage differentiation, but not in more primitive multipotent myeloid precursor cells. A nucleosome becomes precisely positioned across the enhancer in parallel with DHS formation. In transfection assays, the 5'-part of the -3.9 kb element has ubiquitous enhancer activity. The 3'-part has no stimulatory activity, but is necessary for enhancer repression in lysozyme non-expressing cells. Recent studies have shown that the chromatin fine structure of this region is affected by inhibition of histone deacetylase activity after Trichostatin A (TSA) treatment, but only in lysozyme non-expressing cells. These results indicated a developmental modification of chromatin structure from a dynamic, but inactive, to a stabilised, possibly hyperacetylated, active state. Here we have identified positively and negatively acting transcription factors binding to the -3.9 kb enhancer and determined their contribution to enhancer activity. Furthermore, we examined the influence of TSA treatment on enhancer activity in macrophage cells and lysozyme non-expressing cells, including multipotent macrophage precursors. Interestingly, TSA treatment was able to restore enhancer activity fully in macrophage precursor cells, but not in non-macrophage lineage cells. These results suggest (i) that the transcription factor complement of multipotent progenitor cells is similar to that of lysozyme-expressing cells and (ii) that developmental regulation of the -3.9 kb enhancer is mediated by the interplay of repressing and activating factors that respond to or initiate changes in the chromatin acetylation state.
Collapse
Affiliation(s)
- P Lefevre
- Molecular Medicine Unit, University of Leeds, St James's University Hospital, Clinical Sciences Building, Leeds LS9 7TF, UK
| | | | | |
Collapse
|
10
|
Chromatin fine structure profiles for a developmentally regulated gene: reorganization of the lysozyme locus before trans-activator binding and gene expression. Genes Dev 2000. [DOI: 10.1101/gad.14.16.2106] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The chicken lysozyme locus is activated in a stepwise fashion during myeloid differentiation. We have used this locus as a model to study at high resolution changes in chromatin structure both in chicken cell lines representing various stages of macrophage differentiation and in primary cells from transgenic mice. In this study we have addressed the question of whether chromatin rearrangements can be detected in myeloid precursor cells at a stage well before overt transcription of the lysozyme gene begins. In addition to restriction enzyme accessibility assays and DMS footprinting, we have applied new, very sensitive techniques to assay for chromatin changes. Particularly informative was UV photofootprinting, using terminal transferase-dependent PCR and nonradioactive detection. We find that the basic chromatin structure in lysozyme nonexpressing hematopoietic precursor cells is highly similar to the pattern found in fully differentiated lysozyme-expressing cells. In addition, we find that only in nonexpressing cells are dimethylsulfate footprints and UV photofootprints affected by trichostatin, an inhibitor of histone deacetylation. These results are interpreted to mean that most chromatin pattern formation is complete before the binding of end-stage trans-activators, supporting the notion that heritable chromatin structure is central to the stable epigenetic programs that guide development.
Collapse
|
11
|
Abstract
Several different types of regulatory mechanisms contribute to the tissue- and development-specific regulation of a gene. It is now well established that, in addition to promoters, upstream cis-regulatory elements, which bind a variety of trans-acting factors, are essential for correct gene activation. In the last few years, however, it has become evident that the chromatin structure of eukaryotic genes is an important additional regulatory layer that is essential for correct gene expression during development. Chromatin is essentially a repressive environment for transcription factors; hence, much effort in recent years has been devoted to the elucidation of how these repressive forces are overcome during the process of gene locus activation. A particular interesting question in this context is: what are the molecular mechanisms by which extensive regions of chromatin, in many cases far outside the coding region, are reorganized during development? In this review, I summarize data from recent investigations that have uncovered a surprising variety of factors involved in this process.
Collapse
Affiliation(s)
- C Bonifer
- University of Leeds, Molecular Medicine Unit, St. James's University Hospital, UK.
| |
Collapse
|