1
|
Subtype-Specific Selection for Resistance to Fluoroquinolones but Not to Tetracyclines Is Evident in Campylobacter jejuni Isolates from Beef Cattle in Confined Feeding Operations in Southern Alberta, Canada. Appl Environ Microbiol 2018; 84:AEM.02713-17. [PMID: 29352087 DOI: 10.1128/aem.02713-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/17/2018] [Indexed: 11/20/2022] Open
Abstract
Campylobacter jejuni was longitudinally isolated from beef cattle housed in four confined feeding operations (CFOs) in Southern Alberta, Canada, over 18 months. All of the cattle were administered a variety of antimicrobial agents (AMAs) nontherapeutically and metaphylactically during their time in the CFOs. In total, 7,966 C. jejuni isolates were recovered from cattle. More animals were colonized by the bacterium after >60 days in the CFO (interim) than were individuals upon entry at the CFO (arrival). Subtyping and resistance to seven AMAs were determined for 1,832 (23.0%) and 1,648 (20.7%) isolates, respectively. Increases in the proportion of isolates resistant to tetracycline were observed at all four CFOs between sample times and to ciprofloxacin and nalidixic acid at one or more CFOs. The vast majority of isolates resistant to tetracycline carried tetO, whereas ciprofloxacin resistance was predominantly attributed to mutations in the gyrA gene. Although considerable diversity was observed, a majority of C. jejuni isolates belonged to one of five predominant subtype clusters. There was no difference in subtype diversity by CFO, but the population structure differed between sample times. Selection for resistance to ciprofloxacin and nalidixic acid was subtype dependent, whereas selection for resistance to tetracycline was not. The findings indicate that a proportion of cattle entering CFOs carry resistant C. jejuni subtypes, and the characteristics of beef cattle CFOs facilitate transmission/proliferation of diverse subtypes, including those resistant to AMAs, which coupled with the densities of CFOs likely contribute to the high rates of cattle-associated campylobacteriosis in Southern Alberta.IMPORTANCE A small proportion of cattle entering a CFO carry Campylobacter jejuni, including subtypes resistant to AMAs. The large numbers of cattle arriving from diverse locations at the CFOs and intermingling within the CFOs over time, coupled with the high-density housing of animals, the high rates of transmission of C. jejuni subtypes among animals, and the extensive use of AMAs merge to create an ideal situation where the proliferation of diverse antimicrobial-resistant C. jejuni subtypes is facilitated. Considering that Southern Alberta reports high rates of campylobacteriosis in the human population and that many of these clinical cases are due to C. jejuni subtypes associated with cattle, it is likely that the characteristics of beef cattle CFOs favor the propagation of clinically relevant C. jejuni subtypes, including those resistant to medically important AMAs, which constitute a risk to human health.
Collapse
|
2
|
Iraola G, Pérez R, Betancor L, Marandino A, Morsella C, Méndez A, Paolicchi F, Piccirillo A, Tomás G, Velilla A, Calleros L. A novel real-time PCR assay for quantitative detection of Campylobacter fetus based on ribosomal sequences. BMC Vet Res 2016; 12:286. [PMID: 27978826 PMCID: PMC5159996 DOI: 10.1186/s12917-016-0913-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 12/06/2016] [Indexed: 12/20/2022] Open
Abstract
Background Campylobacter fetus is a pathogen of major concern for animal and human health. The species shows a great intraspecific variation, with three subspecies: C. fetus subsp. fetus, C. fetus subsp. venerealis, and C. fetus subsp. testudinum. Campylobacter fetus fetus affects a broad range of hosts and induces abortion in sheep and cows. Campylobacter fetus venerealis is restricted to cattle and causes the endemic disease bovine genital campylobacteriosis, which triggers reproductive problems and is responsible for major economic losses. Campylobacter fetus testudinum has been proposed recently based on genetically divergent strains isolated from reptiles and humans. Both C. fetus fetus and C. fetus testudinum are opportunistic pathogens for immune-compromised humans. Biochemical tests remain as the gold standard for identifying C. fetus but the fastidious growing requirements and the lack of reliability and reproducibility of some biochemical tests motivated the development of molecular diagnostic tools. These methods have been successfully tested on bovine isolates but fail to detect some genetically divergent strains isolated from other hosts. The aim of the present study was to develop a highly specific molecular assay to identify and quantify C. fetus strains. Results We developed a highly sensitive real-time PCR assay that targets a unique region of the 16S rRNA gene. This assay successfully detected all C. fetus strains, including those that were negative for the cstA gene-based assay used as a standard for molecular C. fetus identification. The assay showed high specificity and absence of cross-reactivity with other bacterial species. The analytical testing of the assay was determined using a standard curve. The assay demonstrated a wide dynamic range between 102 and 107 genome copies per reaction, and a good reproducibility with small intra- and inter-assay variability. Conclusions The possibility to characterize samples in a rapid, sensitive and reproducible way makes this assay a good option to establish a new standard in molecular identification and quantification of C. fetus species. Electronic supplementary material The online version of this article (doi:10.1186/s12917-016-0913-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gregorio Iraola
- Sección Genética Evolutiva, Facultad de Ciencias, Iguá 4225, Montevideo, 11400, Uruguay.,Unidad de Bioinformática, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Ruben Pérez
- Sección Genética Evolutiva, Facultad de Ciencias, Iguá 4225, Montevideo, 11400, Uruguay
| | - Laura Betancor
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Ana Marandino
- Sección Genética Evolutiva, Facultad de Ciencias, Iguá 4225, Montevideo, 11400, Uruguay
| | - Claudia Morsella
- Laboratorio de Bacteriología, Unidad Integrada INTA-Universidad Nacional de Mar del Plata, Balcarce, Argentina
| | - Alejandra Méndez
- Laboratorio de Bacteriología, Unidad Integrada INTA-Universidad Nacional de Mar del Plata, Balcarce, Argentina
| | - Fernando Paolicchi
- Laboratorio de Bacteriología, Unidad Integrada INTA-Universidad Nacional de Mar del Plata, Balcarce, Argentina
| | - Alessandra Piccirillo
- Dipartimento di Biomedicina Comparata e Alimentazione, Università degli Studi di Padova, Padova, Italy
| | - Gonzalo Tomás
- Sección Genética Evolutiva, Facultad de Ciencias, Iguá 4225, Montevideo, 11400, Uruguay
| | - Alejandra Velilla
- Laboratorio de Bacteriología, Unidad Integrada INTA-Universidad Nacional de Mar del Plata, Balcarce, Argentina
| | - Lucía Calleros
- Sección Genética Evolutiva, Facultad de Ciencias, Iguá 4225, Montevideo, 11400, Uruguay.
| |
Collapse
|
3
|
van der Graaf-van Bloois L, van Bergen MA, van der Wal FJ, de Boer AG, Duim B, Schmidt T, Wagenaar JA. Evaluation of molecular assays for identification Campylobacter fetus species and subspecies and development of a C. fetus specific real-time PCR assay. J Microbiol Methods 2013; 95:93-7. [DOI: 10.1016/j.mimet.2013.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 05/15/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
|
4
|
Real Time PCR to detect and differentiate Campylobacter fetus subspecies fetus and Campylobacter fetus subspecies venerealis. J Microbiol Methods 2013; 94:199-204. [PMID: 23811208 DOI: 10.1016/j.mimet.2013.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 05/17/2013] [Accepted: 06/11/2013] [Indexed: 11/23/2022]
Abstract
Bovine venereal campylobacter infection, caused by Campylobacter fetus venerealis, is of significant economic importance to the livestock industry. Unfortunately, the successful detection and discrimination of C. fetus venerealis from C. fetus fetus continue to be a limitation throughout the world. There are several publications warning of the problem with biotyping methods as well as with recent molecular based assays. In this study, assessed on 1071 isolates, we report on the successful development of two Real Time SYBR® Green PCR assays that will allow for the detection and discrimination of C. fetus fetus and C. fetus venerealis. The sensitivity reported here for the C. fetus (CampF4/R4) and the C. fetus venerealis (CampF7/R7) specific PCR assays are 100% and 98.7% respectively. The specificity for these same PCR assays are 99.6% and 99.8% respectively.
Collapse
|
5
|
Mshelia GD, Amin JD, Woldehiwet Z, Murray RD, Egwu GO. Epidemiology of bovine venereal campylobacteriosis: geographic distribution and recent advances in molecular diagnostic techniques. Reprod Domest Anim 2011; 45:e221-30. [PMID: 19929895 DOI: 10.1111/j.1439-0531.2009.01546.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Bovine venereal campylobacteriosis (BVC) is a major cause of economic loss to the cattle industries in different parts of the world. Camplylobacter fetus subsp. venerealis (Cfv), the main causative agent of BVC, is highly adapted to the genital tract of cattle and is transmitted by carrier bulls. However, infertility and abortions can also be caused by the intestinal pathogens C. fetus subsp. fetus (Cff), and C. jenuni, which are not venereally transmitted. Bovine venereal campylobacteriosis, caused by Cfv associated with lowered fertility, embryo mortality and abortion, repeated returns to service, reduced pregnancy rates and extended calving intervals, has the highest prevalence in developing countries where natural breeding in cattle is widely practised. The epidemiology, pathogenesis and diagnosis of the disease have been the subject of previous reviews. The main focus of this review is to highlight the epidemiology of this disease with particular reference to geographical distribution and recent advances in molecular diagnostic techniques. It is hoped that further research interest of scientists will be stimulated with a view to finding lasting solutions to the reproductive problems associated with the disease for better livestock productivity, particularly in developing endemic countries.
Collapse
Affiliation(s)
- G D Mshelia
- Department of Veterinary Surgery and Theriogenology Veterinary Medicine, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria.
| | | | | | | | | |
Collapse
|
6
|
Groff AC, Kirinus JK, Silva MSE, Machado G, Costa MM, Vargas AP. Polymerase chain reaction for the diagnosis of bovine genital campylobacteriosis. PESQUISA VETERINARIA BRASILEIRA 2010. [DOI: 10.1590/s0100-736x2010001200005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Bovine genital campylobacteriosis is a common venereal disease of cattle; the prevalence of this disease can be underestimated mostly because of the nature of the etiological agent, the microaerobic Campylobacter fetus subspecies venerealis. The purpose of the current study was to evaluate the utilization of polymerase chain reaction (PCR) in the diagnosis of genital campylobacteriosis in samples obtained from bull prepuce aspirate, cow cervical mucus, and abomasum contents of aborted fetuses, collected into enrichment medium. Five different DNA extraction protocols were tested: thermal extraction, lysis with proteinase K, lysis with guanidine isothiocyanate, lysis with DNAzol, and lysis with hexadecyltrimethylammonium bromide (CTAB). The specificity, sensitivity, and technical application of the PCR assay were also evaluated with clinical samples and compared to bacterial isolation by standard culture. DNA extraction by the CTAB protocol provided better results in PCR, and it was able to detect 63 colony-forming units per ml of C. fetus. Out of 277 clinical samples tested, 68 (24%) were positive for Campylobacter fetus using PCR, while only 8 (2.8%) of the samples were positive by bacterial isolation in solid medium, proving the superiority of the PCR technique when compared to the standard isolation method, and providing evidence for its usefulness as a better screening test in cattle for the diagnosis of bovine genital campylobacteriosis.
Collapse
|
7
|
Chai LC, Robin T, Ragavan UM, Gunsalam JW, Bakar FA, Ghazali FM, Radu S, Kumar MP. Thermophilic Campylobacter spp. in salad vegetables in Malaysia. Int J Food Microbiol 2007; 117:106-11. [PMID: 17399832 DOI: 10.1016/j.ijfoodmicro.2007.02.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2006] [Revised: 02/26/2007] [Accepted: 02/27/2007] [Indexed: 11/17/2022]
Abstract
The main aim of this study was to combine the techniques of most probable number (MPN) and polymerase chain reaction (PCR) for quantifying the prevalence and numbers of Campylobacter spp. in ulam, a popular Malaysian salad dish, from a traditional wet market and two modern supermarkets in Selangor, Malaysia. A total of 309 samples of raw vegetables which are used in ulam were examined in the study. The prevalences of campylobacters in raw vegetables were, for supermarket I, Campylobacter spp., 51.9%; Campylobacter jejuni, 40.7%; and Campylobacter coli, 35.2%: for supermarket II, Campylobacter spp., 67.7%; C. jejuni, 67.7%; and C. coli, 65.7%: and for the wet market, Campylobacter spp., 29.4%; C. jejuni, 25.5%; and C. coli, 22.6%. In addition Campylobacter fetus was detected in 1.9% of raw vegetables from supermarket I. The maximum numbers of Campylobacter spp. in raw vegetables from supermarkets and the wet market were >2400 and 460 MPN/g, respectively.
Collapse
Affiliation(s)
- Lay Ching Chai
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia, 43300 UPM Serdang, Selangor, Malaysia.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Wang G, Clark CG, Taylor TM, Pucknell C, Barton C, Price L, Woodward DL, Rodgers FG. Colony multiplex PCR assay for identification and differentiation of Campylobacter jejuni, C. coli, C. lari, C. upsaliensis, and C. fetus subsp. fetus. J Clin Microbiol 2002; 40:4744-7. [PMID: 12454184 PMCID: PMC154608 DOI: 10.1128/jcm.40.12.4744-4747.2002] [Citation(s) in RCA: 324] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A multiplex PCR assay was used to simultaneously detect genes from the five major clinically relevant Campylobacter spp. Those genes selected were hipO and 23S rRNA from Campylobacter jejuni; glyA from each of C. coli, C. lari, and C. upsaliensis; and sapB2 from C. fetus subsp. fetus. The assay was evaluated with 137 clinical and environmental isolates and was found to be rapid and easy to perform and had a high sensitivity and specificity for characterizing isolates, even in mixed cultures.
Collapse
Affiliation(s)
- Gehua Wang
- National Laboratory for Enteric Pathogens, National Microbiology Laboratory, Winnipeg, Manitoba, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Casadémont I, Bizet C, Chevrier D, Guesdon JL. Rapid detection of Campylobacter fetus by polymerase chain reaction combined with non-radioactive hybridization using an oligonucleotide covalently bound to microwells. Mol Cell Probes 2000; 14:233-40. [PMID: 10970727 DOI: 10.1006/mcpr.2000.0312] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Campylobacter fetus is recognized as a human and animal pathogen. The isolation and differentiation of C. fetus in diagnostic laboratories is hindered by its relatively slow growth and lack of distinguishing biochemical characteristics. We cloned and sequenced a 1581-bp DNA fragment, IG02, isolated from a C. fetus genomic library. This fragment was used as a probe on DNAs extracted from C. fetus strains and other Campylobacter species: IG02 hybridized only with DNAs from C. fetus strains. A PCR-based test was developed for the detection of C. fetus. A pair of oligonucleotide primers was designed to amplify a 141-bp fragment of IG02. The amplified product was analysed by a non-radioactive sandwich hybridization in microtiter plate using a capture oligonucleotide and a biotin-labelled oligonucleotide for the detection. The combination of PCR and non-radioactive microplate hybridization is a convenient method for the rapid detection of C. fetus.
Collapse
Affiliation(s)
- I Casadémont
- Laboratoire de Prédéveloppement des Sondes, Institut Pasteur, Paris, Cedex 15, 75724, France
| | | | | | | |
Collapse
|