1
|
Du Z, Bas-Cristóbal Menéndez A, Urban M, Hartley A, Ratsma D, Koedam M, van den Bosch TPP, Clahsen-van Groningen M, Gribnau J, Mulder J, Reinders MEJ, Baan CC, van der Eerden B, Harbottle RP, Hoogduijn MJ. Erythropoietin delivery through kidney organoids engineered with an episomal DNA vector. Stem Cell Res Ther 2025; 16:174. [PMID: 40221815 PMCID: PMC11993987 DOI: 10.1186/s13287-025-04282-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND The kidney's endocrine function is essential for maintaining body homeostasis. Erythropoietin (EPO) is one of the key endocrine factors produced by the kidney, and kidney disease patients frequently experience anemia due to impaired EPO production. In the present study we explored the potential of human induced pluripotent stem cell (iPSC)-derived kidney organoids to restore EPO production. METHODS EPO secretion by kidney organoids was examined under 1% and 20% oxygen levels. To increase the EPO secreting capacity of kidney organoids, iPSC were genetically engineered with a non-integrating scaffold/matrix attachment region (S/MAR) DNA vector containing the EPO gene and generated EPO-overexpressing (EPO+) kidney organoids. To assess the physiological effects of EPO + organoids, 2-8 organoids were implanted subcutaneously in immunodeficient mice. RESULTS Kidney organoids produced low amounts of EPO under 1% oxygen. EPO S/MAR DNA vectors persisted and continued to robustly express EPO during iPSC expansion and kidney organoid differentiation without interfering with cellular proliferation. EPO + iPSC demonstrated efficient differentiation into kidney organoids. One-month post-implantation, EPO + organoids displayed continuously elevated EPO mRNA levels and significantly increased endothelial cell numbers compared to control organoids. Hematocrit levels were notably elevated in mice implanted with EPO + organoids in an organoid number-dependent manner. EPO + organoids furthermore influenced bone homeostasis in their hosts, evidenced by a change in trabecular bone composition. CONCLUSION Kidney organoids modified by EPO S/MAR DNA vector allow stable long-term delivery of EPO. The observed physiological effects following the implantation of EPO + organoids underscore the potential of gene-edited kidney organoids for endocrine restoration therapy.
Collapse
Affiliation(s)
- Z Du
- Erasmus MC Transplant Institute, Department of Internal Medicine, University Medical Center, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
| | - A Bas-Cristóbal Menéndez
- Erasmus MC Transplant Institute, Department of Internal Medicine, University Medical Center, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
- Department of Pediatrics, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M Urban
- DNA Vector Lab, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - A Hartley
- DNA Vector Lab, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - D Ratsma
- Department of Internal Medicine, University Medical Center, Rotterdam, The Netherlands
| | - M Koedam
- Department of Internal Medicine, University Medical Center, Rotterdam, The Netherlands
| | - T P P van den Bosch
- Department of Pathology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - M Clahsen-van Groningen
- Department of Pathology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - J Gribnau
- Department of Developmental Biology and iPS Core Facility, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - J Mulder
- Department of Pediatrics, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - M E J Reinders
- Erasmus MC Transplant Institute, Department of Internal Medicine, University Medical Center, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
| | - C C Baan
- Erasmus MC Transplant Institute, Department of Internal Medicine, University Medical Center, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
| | - B van der Eerden
- Department of Internal Medicine, University Medical Center, Rotterdam, The Netherlands
| | - R P Harbottle
- DNA Vector Lab, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin J Hoogduijn
- Erasmus MC Transplant Institute, Department of Internal Medicine, University Medical Center, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands.
| |
Collapse
|
2
|
Vassiliadi DA, Delivanis DA, Papalou O, Tsagarakis S. Approach to the Patient With Bilateral Adrenal Masses. J Clin Endocrinol Metab 2024; 109:2136-2148. [PMID: 38478374 DOI: 10.1210/clinem/dgae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Indexed: 07/13/2024]
Abstract
Bilateral adrenal masses, increasingly encountered in clinical practice, manifest across diverse contexts, including incidental discovery, malignancy staging, and targeted imaging after hormonal diagnosis of adrenal disorders. The spectrum encompasses various pathologies, such as cortical adenomas, macronodular adrenal disease, pheochromocytomas, myelolipomas, infiltrative disorders, and primary and secondary malignancies. Notably, not all masses in both adrenal glands necessarily share the same etiology, often exhibiting diverse causes. Recently, the European Society of Endocrinology and the European Network for the Study of Adrenal Tumors updated guidelines, introduced a 4-option schema based on imaging, aiding in targeted hormonal testing and management. This "Approach to the Patient" review delves into the latest advancements in imaging, biochemical, and genetic approaches for the diagnostic and management nuances of bilateral adrenal masses. It provides insights and a contemporary framework for navigating the complexities associated with this clinical entity.
Collapse
Affiliation(s)
- Dimitra Argyro Vassiliadi
- Department of Endocrinology, Diabetes and Metabolism, European Reference Network on Rare Endocrine Conditions (ENDO-ERN), Evangelismos Hospital, 10676, Athens, Greece
| | - Danae Anastasia Delivanis
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN 55905, USA
| | - Olga Papalou
- Department of Endocrinology, Diabetes and Metabolism, European Reference Network on Rare Endocrine Conditions (ENDO-ERN), Evangelismos Hospital, 10676, Athens, Greece
| | - Stylianos Tsagarakis
- Department of Endocrinology, Diabetes and Metabolism, European Reference Network on Rare Endocrine Conditions (ENDO-ERN), Evangelismos Hospital, 10676, Athens, Greece
- Private Practice, 10675, Athens, Greece
| |
Collapse
|
3
|
Ma Y, Zhou Z, Yang GY, Ding J, Wang X. The Effect of Erythropoietin and Its Derivatives on Ischemic Stroke Therapy: A Comprehensive Review. Front Pharmacol 2022; 13:743926. [PMID: 35250554 PMCID: PMC8892214 DOI: 10.3389/fphar.2022.743926] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/19/2022] [Indexed: 12/17/2022] Open
Abstract
Numerous studies explored the therapeutic effects of erythropoietin (EPO) on neurodegenerative diseases. Few studies provided comprehensive and latest knowledge of EPO treatment for ischemic stroke. In the present review, we introduced the structure, expression, function of EPO, and its receptors in the central nervous system. Furthermore, we comprehensively discussed EPO treatment in pre-clinical studies, clinical trials, and its therapeutic mechanisms including suppressing inflammation. Finally, advanced studies of the therapy of EPO derivatives in ischemic stroke were also discussed. We wish to provide valuable information on EPO and EPO derivatives’ treatment for ischemic stroke for basic researchers and clinicians to accelerate the process of their clinical applications.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiyuan Zhou
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guo-Yuan Yang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Guo-Yuan Yang, ; Jing Ding,
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Guo-Yuan Yang, ; Jing Ding,
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
4
|
A Review of Pleiotropic Potential of Erythropoietin as an Adjunctive Therapy for COVID-19. JOURNAL OF CLINICAL AND BASIC RESEARCH 2022. [DOI: 10.52547/jcbr.6.1.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
5
|
Calissendorff J, Juhlin CC, Sundin A, Bancos I, Falhammar H. Adrenal myelolipomas. Lancet Diabetes Endocrinol 2021; 9:767-775. [PMID: 34450092 PMCID: PMC8851410 DOI: 10.1016/s2213-8587(21)00178-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022]
Abstract
Adrenal myelolipomas are benign, lipomatous tumours with elements of myeloid cells, most of which present as adrenal incidentalomas and comprise 3·3-6·5% of all adrenal masses. Adrenal myelolipomas are usually unilateral (in 95% of cases), variable in size, most often found during midlife, and affect both sexes almost equally. On imaging, adrenal myelolipomas show pathognomonic imaging features consistent with the presence of macroscopic fat. Large adrenal myelolipomas can cause symptoms of mass effect, and can occasionally be complicated by haemorrhage. In the event of a concomitant adrenal cortical adenoma or hyperplasia, adrenal hormone excess might be detected in patients with adrenal myelolipoma. Patients with congenital adrenal hyperplasia exhibit a higher prevalence of adrenal myelolipomas than other patient groups, and are at risk of developing large and bilateral lesions. This Review discusses the pathogenesis, clinical presentation, and management of adrenal myelolipomas.
Collapse
Affiliation(s)
- Jan Calissendorff
- Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| | - Carl Christofer Juhlin
- Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Anders Sundin
- Department of Surgical Sciences, Radiology and Molecular Imaging, Uppsala University, Uppsala, Sweden
| | - Irina Bancos
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Henrik Falhammar
- Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Human Milk Growth Factors and Their Role in NEC Prevention: A Narrative Review. Nutrients 2021; 13:nu13113751. [PMID: 34836007 PMCID: PMC8620589 DOI: 10.3390/nu13113751] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/25/2022] Open
Abstract
Growing evidence demonstrates human milk's protective effect against necrotizing enterocolitis (NEC). Human milk derives these properties from biologically active compounds that influence intestinal growth, barrier function, microvascular development, and immunological maturation. Among these protective compounds are growth factors that are secreted into milk with relatively high concentrations during the early postnatal period, when newborns are most susceptible to NEC. This paper reviews the current knowledge on human milk growth factors and their mechanisms of action relevant to NEC prevention. It will also discuss the stability of these growth factors with human milk pasteurization and their potential for use as supplements to infant formulas with the goal of preventing NEC.
Collapse
|
7
|
[Clinical guidelines for the diagnosis and treatment of feeding intolerance in preterm infants (2020)]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22. [PMID: 33059799 PMCID: PMC7568993 DOI: 10.7499/j.issn.1008-8830.2008132] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Feeding intolerance (FI) is one of the most common clinical problems in preterm infant and often leads to the delay in reaching total enteral nutrition and prolonged hospital stay. The prevention and treatment of FI are of great significance in improving the survival rate of preterm infants. With reference to current evidence in China and overseas, the clinical guidelines for the diagnosis and treatment of FI in preterm infants were developed based on Grading of Recommendations Assessment, Development and Evaluation (GRADE), so as to help neonatal pediatricians, nursing staff, and nutritionists with early identification and standard management of FI in preterm infants.
Collapse
|
8
|
Constanthin PE, Contestabile A, Petrenko V, Quairiaux C, Salmon P, Hüppi PS, Kiss JZ. Endogenous erythropoietin signaling regulates migration and laminar positioning of upper-layer neurons in the developing neocortex. Development 2020; 147:dev190249. [PMID: 32764029 PMCID: PMC7561482 DOI: 10.1242/dev.190249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/24/2020] [Indexed: 01/24/2023]
Abstract
Erythropoietin (EPO), the hypoxia-inducible hematopoietic hormone, has well-established neuroprotective/neurotrophic roles in the developing central nervous system and the therapeutic potential of EPO has been widely explored in clinical studies for the treatment of perinatal hypoxic brain lesion, as well as prematurity. Here, we reveal that both EPO and Epo receptor (EPOR) are expressed in the developing rat somatosensory cortex during radial migration and laminar positioning of granular and supragranular neurons. Experimental deregulation of EPO signaling using genetic approaches results in aberrant migration, as well as permanent neuronal misplacement leading to abnormal network activity and protracted sensory behavioral deficits. We identify ERK as the downstream effector of the EPO signaling pathway for neuronal migration. These findings reveal a crucial role for endogenous EPO signaling in neuronal migration, and offer important insights for understanding how the temporary deregulation of EPO could result in migration defects that lead to abnormal behavior in the adult.
Collapse
Affiliation(s)
- Paul E Constanthin
- Department of Fundamental Neurosciences, University Medical Center, University of Geneva, 1201 Geneva, Switzerland
| | - Alessandro Contestabile
- Department of Fundamental Neurosciences, University Medical Center, University of Geneva, 1201 Geneva, Switzerland
| | - Volodymyr Petrenko
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialties, University Hospital of Geneva, 1201 Geneva, Switzerland
- Department of Cell Physiology and Metabolism; Diabetes Center, Faculty of Medicine, University of Geneva; Institute of Genetics and Genomics in Geneva (iGE3), 1201 Geneva, Switzerland
| | - Charles Quairiaux
- Department of Fundamental Neurosciences, University Medical Center, University of Geneva, 1201 Geneva, Switzerland
| | - Patrick Salmon
- Department of Fundamental Neurosciences, University Medical Center, University of Geneva, 1201 Geneva, Switzerland
| | - Petra S Hüppi
- Department of Pediatrics, Faculty of Medicine, University Hospital of Geneva, 1201 Geneva, Switzerland
| | - Jozsef Z Kiss
- Department of Fundamental Neurosciences, University Medical Center, University of Geneva, 1201 Geneva, Switzerland
| |
Collapse
|
9
|
Tang Z, Yang G, Wang X, Chen F, Liao Z, Zhang Z, Liu Z, Zeng W, Fang M, Wang W, Sun X, Huo G. AKT/GSK-3β/β-catenin signaling pathway participates in erythropoietin-promoted glioma proliferation. J Neurooncol 2020; 149:231-242. [PMID: 32909117 DOI: 10.1007/s11060-020-03602-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/23/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Although erythropoietin (EPO) has been proven to significantly promote the proliferation of cancer cells, the mechanism for promoting glioma proliferation is poorly understood. Here, we examined the functional role of the AKT/GSK-3β/β-catenin signaling pathway in the EPO-mediated proliferation of glioma. METHODS The distribution of EPO and Ki-67 among clinical samples with different WHO grades was plotted by Immunological Histological Chemistry analysis. U87 and U251 glioma cell lines were treated with short hairpin RNA targeting (shEPO), recombinant human erythropoietin (rhEPO) and/or AKT-specific inhibitor (MK-2206). The changes in phosphorylated AKT, nuclear β-catenin, cyclin D1 and p27kip1 expression were detected. Cell cycle distributions and glioma proliferation in vitro and in vivo were analyzed. RESULTS The expression level of EPO was significantly elevated with the increase of WHO grade and Ki67 in clinical glioma specimens. In vitro, knockdown of endogenous EPO in U87 and U251 cells effectively block the phosphorylation of AKT and GSK-3β and the expression of nuclear β-catenin. shEPO treatment also significantly decreased the expression of cyclin D1 and increased the expression of p27kip1. The cell cycle transition then slowed down and the proliferation of glioma cells or mouse xenograft tumors both decreased. Treatment of cells or tumors with extra rhEPO reversed the above biological effects mediated by shEPO. rhEPO-induced activation of the AKT/GSK-3β/β-catenin pathway and proliferation were abolished by MK-2206. CONCLUSIONS Our study identified the AKT/GSK-3β/β-catenin axis as a critical mediator of EPO-induced glioma proliferation and further provided a clinically significant dimension to the biology of EPO.
Collapse
Affiliation(s)
- Zhaohua Tang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, China
| | - Gang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, China
| | - Xiaoshu Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, China
| | - Feilan Chen
- Laboratory Animal Centre, Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, China
| | - Zhengbu Liao
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, China
| | - Zhiwei Zhang
- Laboratory of Medical Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Zili Liu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, China
| | - Wenxin Zeng
- Laboratory of Medical Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Min Fang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, China
| | - Wentao Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, China
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, China
| | - Gang Huo
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, China.
| |
Collapse
|
10
|
Wang Y, Song J, Sun H, Xu F, Li K, Nie C, Zhang X, Peng X, Xia L, Shen Z, Yuan X, Zhang S, Ding X, Zhang Y, Kang W, Qian L, Zhou W, Wang X, Cheng X, Zhu C. Erythropoietin prevents necrotizing enterocolitis in very preterm infants: a randomized controlled trial. J Transl Med 2020; 18:308. [PMID: 32771013 PMCID: PMC7414749 DOI: 10.1186/s12967-020-02459-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
Abstract
Background Necrotizing enterocolitis (NEC) is one of the most severe complications in very preterm infants, but there are currently no accepted methods to prevent NEC. Studies have shown that erythropoietin (EPO) has the potential to prevent NEC or improve outcomes of preterm NEC. This study aimed to determine whether recombinant human EPO (rhEPO) could protect against NEC in very preterm infants. Methods The study was a prospective randomized clinical trial performed among four NICU centers. A total of 1327 preterm infants with gestational age ≤ 32 weeks were admitted to the centers, and 42 infants were excluded leaving 1285 eligible infants to be randomized to the rhEPO or control group. Infants in the rhEPO group were given 500 IU/kg rhEPO intravenously every other day for 2 weeks, while the control group was given the same volume of saline. The primary outcome was the incidence of NEC in very preterm infants at 36 weeks of corrected gestational age. Results A total of 1285 infants were analyzed at 36 weeks of corrected age for the incidence of NEC. rhEPO treatment significantly decreased the incidence of NEC (stage I, II and III) (12.0% vs. 17.1%, p = 0.010), especially confirmed NEC (stage II and III) (3.0% vs. 5.4%, p = 0.027). Meanwhile, rhEPO treatment significantly reduced the number of red blood cells transfusion in the confirmed NEC cases (1.2 ± 0.4 vs. 2.7 ± 1.0, p = 0.004). Subgroup analyses showed that rhEPO treatment significantly decreased the incidence of confirmed NEC at gestational age < 28 weeks (p = 0.019), and the incidence of all stages NEC in preterm infants with hemoglobin < 90 g/l (p = 0.000) and 5 min Apgar score > 5 (p = 0.028). Conclusion Repeated low-dose rhEPO treatment is beneficial against NEC in very preterm infants. Trial registration The protocol was registered retrospectively at ClinicalTrials.gov (NCT03919500) on April 18, 2019. https://clinicaltrials.gov/ct2/show/NCT03919500
Collapse
Affiliation(s)
- Yong Wang
- Henan Key Laboratory of Child Brain Injury, Department of Neonatology, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Juan Song
- Henan Key Laboratory of Child Brain Injury, Department of Neonatology, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Huiqing Sun
- Department of Neonatology, Children's Hospital of Zhengzhou University, Zhengzhou, 450018, China
| | - Falin Xu
- Henan Key Laboratory of Child Brain Injury, Department of Neonatology, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Kenan Li
- Henan Key Laboratory of Child Brain Injury, Department of Neonatology, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chunxia Nie
- Department of Neonatology, Women and Children Health Care Center of Luoyang, Luoyang, 471000, China
| | - Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury, Department of Neonatology, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xirui Peng
- Henan Key Laboratory of Child Brain Injury, Department of Neonatology, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lei Xia
- Henan Key Laboratory of Child Brain Injury, Department of Neonatology, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ziyun Shen
- Department of Neonatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiao Yuan
- Henan Key Laboratory of Child Brain Injury, Department of Neonatology, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shan Zhang
- Henan Key Laboratory of Child Brain Injury, Department of Neonatology, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xue Ding
- Henan Key Laboratory of Child Brain Injury, Department of Neonatology, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yaodong Zhang
- Department of Neonatology, Children's Hospital of Zhengzhou University, Zhengzhou, 450018, China
| | - Wenqing Kang
- Department of Neonatology, Children's Hospital of Zhengzhou University, Zhengzhou, 450018, China
| | - Liling Qian
- Department of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Wenhao Zhou
- Department of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury, Department of Neonatology, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Center of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Xiuyong Cheng
- Department of Neonatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury, Department of Neonatology, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden. .,Department of Women's and Children's Health, Karolinska Institutet, 17176, Stockholm, Sweden.
| |
Collapse
|
11
|
The Effect of Size, Maturation, Global Asphyxia, Cerebral Ischemia, and Therapeutic Hypothermia on the Pharmacokinetics of High-Dose Recombinant Erythropoietin in Fetal Sheep. Int J Mol Sci 2020; 21:ijms21093042. [PMID: 32344930 PMCID: PMC7247678 DOI: 10.3390/ijms21093042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022] Open
Abstract
High-dose human recombinant erythropoietin (rEPO) is a promising potential neuroprotective treatment in preterm and full-term neonates with hypoxic-ischemic encephalopathy (HIE). There are limited data on the pharmacokinetics of high-dose rEPO in neonates. We examined the effects of body weight, gestation age, global asphyxia, cerebral ischemia, hypothermia and exogenous rEPO on the pharmacokinetics of high-dose rEPO in fetal sheep. Near-term fetal sheep on gestation day 129 (0.87 gestation) (full term 147 days) received sham-ischemia (n = 5) or cerebral ischemia for 30 min followed by treatment with vehicle (n = 4), rEPO (n = 8) or combined treatment with rEPO and hypothermia (n = 8). Preterm fetal sheep on gestation day 104 (0.7 gestation) received sham-asphyxia (n = 1) or complete umbilical cord occlusion for 25 min followed by i.v. infusion of vehicle (n = 8) or rEPO (n = 27) treatment. rEPO was given as a loading bolus, followed by a prolonged continuous infusion for 66 to 71.5 h in preterm and near-term fetuses. A further group of preterm fetal sheep received repeated bolus injections of rEPO (n = 8). The plasma concentrations of rEPO were best described by a pharmacokinetic model that included first-order and mixed-order elimination with linear maturation of elimination with gestation age. There were no detectable effects of therapeutic hypothermia, cerebral ischemia, global asphyxia or exogenous treatment on rEPO pharmacokinetics. The increase in rEPO elimination with gestation age suggests that to maintain target exposure levels during prolonged treatment, the dose of rEPO may have to be adjusted to match the increase in size and growth. These results are important for designing and understanding future studies of neuroprotection with high-dose rEPO.
Collapse
|
12
|
Pignataro G, Brancaccio P, Laudati G, Valsecchi V, Anzilotti S, Casamassa A, Cuomo O, Vinciguerra A. Sodium/calcium exchanger as main effector of endogenous neuroprotection elicited by ischemic tolerance. Cell Calcium 2020; 87:102183. [PMID: 32120196 DOI: 10.1016/j.ceca.2020.102183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/12/2020] [Accepted: 02/16/2020] [Indexed: 12/13/2022]
Abstract
The ischemic tolerance (IT) paradigm represents a fundamental cell response to certain types or injury able to render an organ more "tolerant" to a subsequent, stronger, insult. During the 16th century, the toxicologist Paracelsus described for the first time the possibility that a noxious event might determine a state of tolerance. This finding was summarized in one of his most important mentions: "The dose makes the poison". In more recent years, ischemic tolerance in the brain was first described in 1991, when it was demonstrated by Kirino and collaborators that two minutes of subthreshold brain ischemia in gerbils produced tolerance against global brain ischemia. Based on the time in which the conditioning stimulus is applied, it is possible to define preconditioning, perconditioning and postconditioning, when the subthreshold insult is applied before, during or after the ischemic event, respectively. Furthermore, depending on the temporal delay from the ischemic event, two different modalities are distinguished: rapid or delayed preconditioning and postconditioning. Finally, the circumstance in which the conditioning stimulus is applied on an organ distant from the brain is referred as remote conditioning. Over the years the "conditioning" paradigm has been applied to several brain disorders and a number of molecular mechanisms taking part to these protective processes have been described. The mechanisms are usually classified in three distinct categories identified as triggers, mediators and effectors. As concerns the putative effectors, it has been hypothesized that brain cells appear to have the ability to adapt to hypoxia by reducing their energy demand through modulation of ion channels and transporters, which delays anoxic depolarization. The purpose of the present review is to summarize the role played by plasmamembrane proteins able to control ionic homeostasis in mediating protection elicited by brain conditioning, particular attention will be deserved to the role played by Na+/Ca2+ exchanger.
Collapse
Affiliation(s)
- G Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy.
| | - P Brancaccio
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - G Laudati
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - V Valsecchi
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | | | - A Casamassa
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - O Cuomo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - A Vinciguerra
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| |
Collapse
|
13
|
Wassink G, Davidson JO, Fraser M, Yuill CA, Bennet L, Gunn AJ. Non-additive effects of adjunct erythropoietin therapy with therapeutic hypothermia after global cerebral ischaemia in near-term fetal sheep. J Physiol 2020; 598:999-1015. [PMID: 31912503 DOI: 10.1113/jp279131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/02/2020] [Indexed: 01/26/2023] Open
Abstract
KEY POINTS Recombinant human erythropoietin (rEpo) is neuroprotective in immature animals, but it is unclear whether the combination of high-dose rEpo therapy with therapeutic hypothermia can further improve outcomes. Hypothermia and rEpo independently improved neuronal survival, with greater improvement with hypothermia, and similarly reduced numbers of caspase-3 positive cells and reactive microglia after 7 days recovery. Hypothermia, but not rEpo, was associated with markedly improved EEG power, whereas both interventions improved recovery of EEG frequency. There was no significant improvement in any outcome after combined rEpo and hypothermia compared with hypothermia alone, and of concern, the combination was associated with increased numbers of cortical caspase-3-positive cells compared with ischaemia-hypothermia. These data suggest that the mechanisms of neuroprotection with hypothermia and rEpo overlap and, thus, high-dose rEpo infusion does not appear to be an effective adjunct therapy for therapeutic hypothermia. ABSTRACT Therapeutic hypothermia for hypoxic-ischaemic encephalopathy (HIE) provides incomplete neuroprotection. Recombinant human erythropoietin (rEpo) is neuroprotective in immature animals, but it is unclear whether adjunct rEpo therapy with therapeutic hypothermia can further improve outcomes. Near-term fetal sheep received sham-ischaemia (n = 9) or global cerebral ischaemia for 30 min (ischaemia-vehicle, n = 8), followed by intravenous infusion of rEpo (ischaemia-Epo, n = 8; 5000 U/kg loading dose, then 833.3 U/kg/h), cerebral hypothermia (ischaemia-hypothermia, n = 8), or rEpo plus hypothermia (ischaemia-Epo-hypothermia, n = 8), from 3 to 72 h post ischaemia. Fetal brains were collected 7 days after cerebral ischaemia. Cerebral ischaemia was associated with severe neuronal loss and microglial induction in the parasagittal cortex and subcortical regions. Hypothermia reduced overall neuronal loss, cortical caspase-3 and reactive microglia in the striatum and cortex, with greater recovery of electroencephalographic (EEG) power and spectral edge (SEF) from 48 h onwards. rEpo independently improved neuronal survival in the parasagittal cortex, hippocampal CA4 and thalamus, and reduced cortical caspase-3 and activated microglia in striatal and cortical areas, with greater SEF from 120 h onwards. However, ischaemia-Epo-hypothermia did not further improve outcomes compared with ischaemia-hypothermia and was associated with increased numbers of cortical caspase-3-positive cells. These findings suggest that although delayed, prolonged treatment with both hypothermia and rEpo are independently neuroprotective, they have overlapping anti-inflammatory and anti-apoptotic mechanisms, such that the delayed, high-dose rEpo infusion for 3 days did not materially augment neuroprotection with therapeutic hypothermia.
Collapse
Affiliation(s)
- Guido Wassink
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, New Zealand
| | - Joanne O Davidson
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, New Zealand
| | - Mhoyra Fraser
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, New Zealand
| | - Caroline A Yuill
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, New Zealand
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, New Zealand
| |
Collapse
|
14
|
Suresh S, Rajvanshi PK, Noguchi CT. The Many Facets of Erythropoietin Physiologic and Metabolic Response. Front Physiol 2020; 10:1534. [PMID: 32038269 PMCID: PMC6984352 DOI: 10.3389/fphys.2019.01534] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/05/2019] [Indexed: 12/30/2022] Open
Abstract
In mammals, erythropoietin (EPO), produced in the kidney, is essential for bone marrow erythropoiesis, and hypoxia induction of EPO production provides for the important erythropoietic response to ischemic stress, such as during blood loss and at high altitude. Erythropoietin acts by binding to its cell surface receptor which is expressed at the highest level on erythroid progenitor cells to promote cell survival, proliferation, and differentiation in production of mature red blood cells. In addition to bone marrow erythropoiesis, EPO causes multi-tissue responses associated with erythropoietin receptor (EPOR) expression in non-erythroid cells such neural cells, endothelial cells, and skeletal muscle myoblasts. Animal and cell models of ischemic stress have been useful in elucidating the potential benefit of EPO affecting maintenance and repair of several non-hematopoietic organs including brain, heart and skeletal muscle. Metabolic and glucose homeostasis are affected by endogenous EPO and erythropoietin administration affect, in part via EPOR expression in white adipose tissue. In diet-induced obese mice, EPO is protective for white adipose tissue inflammation and gives rise to a gender specific response in weight control associated with white fat mass accumulation. Erythropoietin regulation of fat mass is masked in female mice due to estrogen production. EPOR is also expressed in bone marrow stromal cells (BMSC) and EPO administration in mice results in reduced bone independent of the increase in hematocrit. Concomitant reduction in bone marrow adipocytes and bone morphogenic protein suggests that high EPO inhibits adipogenesis and osteogenesis. These multi-tissue responses underscore the pleiotropic potential of the EPO response and may contribute to various physiological manifestations accompanying anemia or ischemic response and pharmacological uses of EPO.
Collapse
Affiliation(s)
- Sukanya Suresh
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Praveen Kumar Rajvanshi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Constance T Noguchi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
15
|
Christensen RD. Medicinal Uses of Hematopoietic Growth Factors in Neonatal Medicine. Handb Exp Pharmacol 2019; 261:257-283. [PMID: 31451971 DOI: 10.1007/164_2019_261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
This review focuses on certain hematopoietic growth factors that are used as medications in clinical neonatology. It is important to note at the chapter onset that although all of the pharmacological agents mentioned in this review have been approved by the US Food and Drug administration for use in humans, none have been granted a specific FDA indication for neonates. Thus, in a sense, all of the agents mentioned in this chapter could be considered experimental, when used in neonates. However, a great many of the pharmacological agents utilized routinely in neonatology practice do not have a specific FDA indication for this population of patients. Consequently, many of the agents reviewed in this chapter are considered by some practitioners to be nonexperimental and are used when they judge such use to be "best practice" for the disorders under treatment.The medicinal uses of the agents in this chapter vary considerably, between geographic locations, and sometimes even within an institutions. "Consistent approaches" aimed at using these agents in uniform ways in the practice of neonatology are encouraged. Indeed some healthcare systems, and some individual NICUs, have developed written guidelines for using these agents within the practice group. Some such guidelines are provided in this review. It should be noted that these guidelines, or "consistent approaches," must be viewed as dynamic and changing, requiring adjustment and refinement as additional evidence accrues.
Collapse
Affiliation(s)
- Robert D Christensen
- Divisions of Neonatology and Hematology/Oncology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA. .,Intermountain Healthcare, Salt Lake City, UT, USA.
| |
Collapse
|
16
|
Dietary gelatin enhances non-heme iron absorption possibly via regulation of systemic iron homeostasis in rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
17
|
Schneider Gasser EM, Elliot-Portal E, Arias-Reyes C, Losantos-Ramos K, Khalid K, Ogunshola O, Soliz J. Developmental expression patterns of erythropoietin and its receptor in mouse brainstem respiratory regions. Respir Physiol Neurobiol 2019; 267:12-19. [PMID: 31154093 DOI: 10.1016/j.resp.2019.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/23/2019] [Accepted: 05/20/2019] [Indexed: 12/14/2022]
Abstract
Erythropoietin (EPO) is a hypoxia-inducible hormone, classically known to enhance red blood cell production upon binding its receptor (EPOR) present on the surface of the erythroid progenitor cells. EPO and its receptor are also expressed in the central nervous system (CNS), exerting several non-hematopoietic actions. EPO also plays an important role in the control of breathing. In this review, we summarize the known physiological actions of EPO in the neural control of ventilation during postnatal development and at adulthood in rodents under normoxic and hypoxic conditions. Furthermore, we present the developmental expression patterns of EPO and EPORs in the brainstem, and with the use of in situ hybridization (ISH) and immunofluorescence techniques we provide original data showing that EPOR is abundantly present in specific brainstem nuclei associated with central chemosensitivity and control of ventilation in the ventrolateral medulla, mainly on somatostatin negative cells. Thus, we conclude that EPO signaling may act through glutamatergic neuron populations that are the primary source of rhythmic inspiratory excitatory drive. This work underlies the importance of EPO signaling in the central control of ventilation across development and adulthood and provides new insights on the expression of EPOR at the cellular level.
Collapse
Affiliation(s)
- Edith M Schneider Gasser
- Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Elizabeth Elliot-Portal
- Institut universitaire de cardiologie et de pneumologie de Québec, Centre Hospitalier Universitaire de Québec (CHUQ), Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Christian Arias-Reyes
- Institut universitaire de cardiologie et de pneumologie de Québec, Centre Hospitalier Universitaire de Québec (CHUQ), Faculty of Medicine, Université Laval, Québec, QC, Canada; Instituto de Biología Molecular y Biotecnología, Facultad de Ciencias Puras y Naturales, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Karen Losantos-Ramos
- Institut universitaire de cardiologie et de pneumologie de Québec, Centre Hospitalier Universitaire de Québec (CHUQ), Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Kasifa Khalid
- Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Omolara Ogunshola
- Institute of Veterinary Physiology and Zurich Center of Integrative Human Physiology (ZIHP), Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland
| | - Jorge Soliz
- Institut universitaire de cardiologie et de pneumologie de Québec, Centre Hospitalier Universitaire de Québec (CHUQ), Faculty of Medicine, Université Laval, Québec, QC, Canada; Instituto de Biología Molecular y Biotecnología, Facultad de Ciencias Puras y Naturales, Universidad Mayor de San Andrés, La Paz, Bolivia.
| |
Collapse
|
18
|
Abstract
Erythropoietin (EPO) has been linked to cardioprotective effects. However, its effects during the aging process are little known. We investigated the effect of EPO administration on hemodynamic parameters, cardiac function, oxidative damage, and erythropoietin receptor (EPOR) expression pattern in the hypovolemic state. EPO was administered (1000 IU/kg/3 days) and then acute hemorrhage (20% blood loss) was induced in young and adult rats. There was no difference in plasmatic EPO in either age group. The hemodynamic basal condition was similar, without alterations in renal function and hematocrit, in both age groups. After bleeding, both EPO-treated age groups had increased blood pressure at the end of the experimental protocol, being greater in adult animals. EPO attenuated the tachycardic effect. Ejection fraction and fractional shortening were higher in adult EPO-treated rats subjected to hemorrhage. In the left ventricle, young and adult EPO-treated rats subjected to bleeding showed an increased EPOR expression. A different EPOR expression pattern was observed in the adult right atrial tissue, compared with young animals. EPO treatment decreased oxidative damage to lipids in both age groups. EPO treatment before acute hemorrhage improves cardiovascular function during the aging process, which is mediated by different EPOR pattern expression in the heart tissue.
Collapse
|
19
|
Pacora P, Romero R, Jaiman S, Erez O, Bhatti G, Panaitescu B, Benshalom-Tirosh N, Jung Jung E, Hsu CD, Hassan SS, Yeo L, Kadar N. Mechanisms of death in structurally normal stillbirths. J Perinat Med 2019; 47:222-240. [PMID: 30231013 PMCID: PMC6349478 DOI: 10.1515/jpm-2018-0216] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 07/20/2018] [Indexed: 01/05/2023]
Abstract
Objectives To investigate mechanisms of in utero death in normally formed fetuses by measuring amniotic fluid (AF) biomarkers for hypoxia (erythropoietin [EPO]), myocardial damage (cardiac troponin I [cTnI]) and brain injury (glial fibrillary acidic protein [GFAP]), correlated with risk factors for fetal death and placental histopathology. Methods This retrospective, observational cohort study included intrauterine deaths with transabdominal amniocentesis prior to induction of labor. Women with a normal pregnancy and an indicated amniocentesis at term were randomly selected as controls. AF was assayed for EPO, cTnI and GFAP using commercial immunoassays. Placental histopathology was reviewed, and CD15-immunohistochemistry was used. Analyte concentrations >90th centile for controls were considered "raised". Raised AF EPO, AF cTnI and AF GFAP concentrations were considered evidence of hypoxia, myocardial and brain injury, respectively. Results There were 60 cases and 60 controls. Hypoxia was present in 88% (53/60), myocardial damage in 70% (42/60) and brain injury in 45% (27/60) of fetal deaths. Hypoxic fetuses had evidence of myocardial injury, brain injury or both in 77% (41/53), 49% (26/53) and 13% (7/53) of cases, respectively. Histopathological evidence for placental dysfunction was found in 74% (43/58) of these cases. Conclusion Hypoxia, secondary to placental dysfunction, was found to be the mechanism of death in the majority of fetal deaths among structurally normal fetuses. Ninety-one percent of hypoxic fetal deaths sustained brain, myocardial or both brain and myocardial injuries in utero. Hypoxic myocardial injury was an attributable mechanism of death in 70% of the cases. Non-hypoxic cases may be caused by cardiac arrhythmia secondary to a cardiac conduction defect.
Collapse
Affiliation(s)
- Percy Pacora
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan
| | - Sunil Jaiman
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Offer Erez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan,Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Gaurav Bhatti
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Bogdan Panaitescu
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Neta Benshalom-Tirosh
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan,Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Eun Jung Jung
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Chaur-Dong Hsu
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Sonia S. Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Lami Yeo
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Nicholas Kadar
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
20
|
Teresa C, Antonella D, de Ville de Goyet Jean. New Nutritional and Therapeutical Strategies of NEC. Curr Pediatr Rev 2019; 15:92-105. [PMID: 30868956 DOI: 10.2174/1573396315666190313164753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/09/2018] [Accepted: 03/06/2019] [Indexed: 11/22/2022]
Abstract
Necrotizing enterocolitis (NEC) is an acquired severe disease of the digestive system affecting mostly premature babies, possibly fatal and frequently associated to systemic complications. Because of the severity of this condition and the possible long-term consequences on the child's development, many studies have aimed at preventing the occurrence of the primary events at the level of the bowel wall (ischemia and necrosis followed by sepsis) by modifying or manipulating the diet (breast milk versus formula) and/or the feeding pattern (time for initiation after birth, continuous versus bolus feeding, modulation of intake according clinical events). Feeding have been investigated so far in order to prevent NEC. However, currently well-established and shared clinical nutritional practices are not available in preventing NEC. Nutritional and surgical treatments of NEC are instead well defined. In selected cases surgery is a therapeutic option of NEC, requiring sometimes partial intestinal resection responsible for short bowel syndrome. In this paper we will investigate the available options for treating NEC according to the Walsh and Kliegman classification, focusing on feeding practices in managing short bowel syndrome that can complicate NEC. We will also analyze the proposed ways of preventing NEC.
Collapse
Affiliation(s)
- Capriati Teresa
- Artificial Nutrition in Pediatric Children's Hospital, Bambino Gesu, Rome, Italy
| | - Diamanti Antonella
- Artificial Nutrition in Pediatric Children's Hospital, Bambino Gesu, Rome, Italy
| | - de Ville de Goyet Jean
- Pediatric Department for the Treatment and Study of abdominal Disease and Abdominal Transplants, ISMETT-UPMC, Palermo, Italy
| |
Collapse
|
21
|
Ananthan A, Balasubramanian H, Rao S, Patole S. Clinical Outcomes Related to the Gastrointestinal Trophic Effects of Erythropoietin in Preterm Neonates: A Systematic Review and Meta-Analysis. Adv Nutr 2018; 9:238-246. [PMID: 29767696 PMCID: PMC5952937 DOI: 10.1093/advances/nmy005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 01/11/2018] [Indexed: 01/01/2023] Open
Abstract
Erythropoietin (EPO) plays an important role in the development and maturation of the gastrointestinal tract. Recombinant EPO (rEPO) has been used to prevent anemia of prematurity. The gastrointestinal trophic effects of EPO may reduce feeding intolerance and necrotizing enterocolitis (NEC) in preterm neonates. The aim of this systematic review of randomized controlled trials (RCTs) was to evaluate the effects of rEPO on clinical outcomes such as feeding intolerance, stage II or higher NEC, any stage NEC, sepsis, retinopathy of prematurity, and bronchopulmonary dysplasia in preterm neonates. Twenty-five RCTs (intravenous: 13; subcutaneous: 10; enteral: 2; n = 4025) were eligible for inclusion. Meta-analysis of data from 17 RCTs (rEPO compared with placebo) with the use of a fixed-effects model showed no significant effect of rEPO on stage II or higher NEC (RR: 0.87; 95% CI: 0.64, 1.19; P = 0.39). Meta-analysis of data from 25 RCTs (rEPO compared with placebo) showed that rEPO significantly decreased the risk of any stage NEC [cases/total sample: 120/2058 (5.83%) compared with 146/1967 (7.42%); RR: 0.77; 95% CI: 0.61, 0.97; P = 0.03]. Only one RCT reported on time to full feedings. Meta-analysis of data from 15 RCTs showed a significant reduction in late-onset sepsis after rEPO administration (RR: 0.81; 95% CI: 0.71, 0.94; P = 0.004). Meta-analysis of 13 RCTs showed no significant effect of rEPO on mortality, retinopathy of prematurity, and bronchopulmonary dysplasia. Prophylactic rEPO had no effect on stage II or higher NEC, but it reduced any stage NEC, probably by reducing feeding intolerance, which is often labeled as stage I NEC. Adequately powered RCTs are required to confirm these findings.
Collapse
Affiliation(s)
- Anitha Ananthan
- Department of Neonatology, Seth GS Medical College and King Edward Memorial Hospital, Mumbai, India,Address correspondence to AA (e-mail: )
| | | | - Shripada Rao
- Department of Neonatal Pediatrics, Princess Margaret Hospital for Children, Perth, Western Australia, Australia,Center for Neonatal Research and Education, University of Western Australia, Perth, Australia
| | - Sanjay Patole
- Center for Neonatal Research and Education, University of Western Australia, Perth, Australia,Department of Neonatal Pediatrics, King Edward Memorial Hospital for Women, Perth, Western Australia, Australia
| |
Collapse
|
22
|
Ostrowski D, Heinrich R. Alternative Erythropoietin Receptors in the Nervous System. J Clin Med 2018; 7:E24. [PMID: 29393890 PMCID: PMC5852440 DOI: 10.3390/jcm7020024] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 12/18/2022] Open
Abstract
In addition to its regulatory function in the formation of red blood cells (erythropoiesis) in vertebrates, Erythropoietin (Epo) contributes to beneficial functions in a variety of non-hematopoietic tissues including the nervous system. Epo protects cells from apoptosis, reduces inflammatory responses and supports re-establishment of compromised functions by stimulating proliferation, migration and differentiation to compensate for lost or injured cells. Similar neuroprotective and regenerative functions of Epo have been described in the nervous systems of both vertebrates and invertebrates, indicating that tissue-protective Epo-like signaling has evolved prior to its erythropoietic function in the vertebrate lineage. Epo mediates its erythropoietic function through a homodimeric Epo receptor (EpoR) that is also widely expressed in the nervous system. However, identification of neuroprotective but non-erythropoietic Epo splice variants and Epo derivatives indicated the existence of other types of Epo receptors. In this review, we summarize evidence for potential Epo receptors that might mediate Epo's tissue-protective function in non-hematopoietic tissue, with focus on the nervous system. In particular, besides EpoR, we discuss three other potential neuroprotective Epo receptors: (1) a heteroreceptor consisting of EpoR and common beta receptor (βcR), (2) the Ephrin (Eph) B4 receptor and (3) the human orphan cytokine receptor-like factor 3 (CRLF3).
Collapse
Affiliation(s)
- Daniela Ostrowski
- Department of Biology, Truman State University, Kirksville, MO 63501, USA.
| | - Ralf Heinrich
- Department of Cellular Neurobiology, Institute for Zoology, Georg-August-University Göttingen, 37073 Göttingen, Germany.
| |
Collapse
|
23
|
Sollinger C, Lillis J, Malik J, Getman M, Proschel C, Steiner L. Erythropoietin Signaling Regulates Key Epigenetic and Transcription Networks in Fetal Neural Progenitor Cells. Sci Rep 2017; 7:14381. [PMID: 29084993 PMCID: PMC5662632 DOI: 10.1038/s41598-017-14366-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022] Open
Abstract
Erythropoietin (EPO) and its receptor are highly expressed in the developing nervous system, and exogenous EPO therapy is potentially neuroprotective, however the epigenetic and transcriptional changes downstream of EPO signaling in neural cells are not well understood. To delineate epigenetic changes associated with EPO signaling, we compared histone H3 lysine 4 dimethylation (H3K4me2) in EPO treated and control fetal neural progenitor cells, identifying 1,150 differentially bound regions. These regions were highly enriched near protein coding genes and had significant overlap with H4Acetylation, a mark of active regulatory elements. Motif analyses and co-occupancy studies revealed a complex regulatory network underlying the differentially bound regions, including previously identified mediators of EPO signaling (STAT5, STAT3), and novel factors such as REST, an epigenetic modifier central to neural differentiation and plasticity, and NRF1, a key regulator of antioxidant response and mitochondrial biogenesis. Global transcriptome analyses on neural tubes isolated from E9.0 EpoR-null and littermate control embryos validated our in vitro findings, further suggesting a role for REST and NRF1 downstream of EPO signaling. These data support a role for EPO in regulating the survival, proliferation, and differentiation of neural progenitor cells, and suggest a basis for its function in neural development and neuroprotection.
Collapse
Affiliation(s)
| | - Jacquelyn Lillis
- Functional Genomic Center, University of Rochester, Rochester, New York, USA
| | - Jeffrey Malik
- Department of Pediatrics, University of Rochester, Rochester, New York, USA
| | - Michael Getman
- Department of Pediatrics, University of Rochester, Rochester, New York, USA
| | - Chris Proschel
- Department of Pediatrics, University of Rochester, Rochester, New York, USA.,Department of Biomedical Genetics, University of Rochester, Rochester, New York, USA
| | - Laurie Steiner
- Department of Pediatrics, University of Rochester, Rochester, New York, USA.
| |
Collapse
|
24
|
Garg B, Sharma D, Bansal A. Systematic review seeking erythropoietin role for neuroprotection in neonates with hypoxic ischemic encephalopathy: presently where do we stand. J Matern Fetal Neonatal Med 2017; 31:3214-3224. [PMID: 28797191 DOI: 10.1080/14767058.2017.1366982] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Hypoxic ischemic encephalopathy (HIE) is one of the leading causes of neonatal mortality in developing countries and leads to some form of neuro-developmental disability in latter part of life. AIMS The aim of this study is to evaluate the role of erythropoietin (EPO) in neuroprotection for term newborn having HIE. METHOD The literature search was done for various trials by searching the Cochrane Central Register of Controlled Trials (CENTRAL), PubMed, EMBASE, Web of science, Scopus, Index Copernicus, and other database. RESULTS A total of nine studies fulfilled inclusion criteria. EPO has shown to cause reduction in death and disability, better long-term neuro-developmental outcome, improvement in EEG, and reduction in risk of cerebral palsy. CONCLUSION EPO treatment has neuroprotective effects against moderate/severe HIE and improves long-term behavioral neurological developments in neonates.
Collapse
Affiliation(s)
- Bhawandeep Garg
- a Department of Neonatology , Surya Children's Medicare Pvt. Ltd , Mumbai , India
| | - Deepak Sharma
- b Department of Neonatology , National Institute of Medical and Sciences , Jaipur , India
| | - Anju Bansal
- c Department of Surgery , Adarsh Hospital , Sri Ganganagar , India
| |
Collapse
|
25
|
Pathipati P, Ferriero DM. The Differential Effects of Erythropoietin Exposure to Oxidative Stress on Microglia and Astrocytes in vitro. Dev Neurosci 2017; 39:310-322. [PMID: 28511187 DOI: 10.1159/000467391] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 02/28/2017] [Indexed: 12/15/2022] Open
Abstract
The neonatal brain is especially susceptible to oxidative stress owing to its reduced antioxidant capacity. Following hypoxic-ischemic (HI) injury, for example, there is a prolonged elevation in levels of hydrogen peroxide (H2O2) in the immature brain compared to the adult brain, resulting in lasting injury that can lead to life-long disability or morbidity. Erythropoietin (Epo) is one of few multifaceted treatment options that have been promising enough to trial in the clinic for both term and preterm brain injury. Despite this, there is a lack of clear understanding of how Epo modulates glial cell activity following oxidative injury, specifically, whether it affects microglia (Mg) and astrocytes (Ast) differently. Using an in vitro approach using primary murine Mg and Ast subjected to H2O2 injury, we studied the oxidative and inflammatory responses of Mg and Ast to recombinant murine (rm)Epo treatment. We found that Epo protects Ast from H2O2 injury (p < 0.05) and increases secreted nitric oxide levels in these cells (p < 0.05) while suppressing intracellular reactive oxygen species (p < 0.05) and superoxide ion (p < 0.05) levels only in Mg. Using a multiplex analysis, we noted that although H2O2 induced the levels of several chemokines, rmEpo did not have any significant specific effects on their levels, either with or without the presence of conditioned medium from injured neurons (NCM). Ultimately, it appears that rmEpo has pleiotropic effects based on the cell type; it has a protective effect on Ast but an antioxidative effect only on Mg without any significant modulation of chemokine and cytokine levels in either cell type. These findings highlight the importance of considering all cell types when assessing the benefits and pitfalls of Epo use.
Collapse
Affiliation(s)
- Praneeti Pathipati
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
26
|
Takayasu H, Hagiwara K, Masumoto K. Suppressed erythropoietin expression in a nitrofen-induced congenital diaphragmatic hernia. Pediatr Pulmonol 2017; 52:606-615. [PMID: 27880037 DOI: 10.1002/ppul.23640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 10/16/2016] [Accepted: 10/30/2016] [Indexed: 11/11/2022]
Abstract
BACKGROUND Erythropoietin (EPO), an essential stimulator of erythropoiesis produced by the fetal liver, is important both in vascular remodeling and modulation of the endothelial response in the pulmonary vasculature. In addition, EPO guides alveolar development, along with retinoic acid (RA). EPO is a direct target of RA, and the retinoid pathway is altered in the nitrofen-induced congenital diaphragmatic hernia (CDH) model. In the present study, we tested the hypothesis that the synthesis of EPO is suppressed in a rat model of CDH. MATERIALS AND METHODS Pregnant rats were treated with either nitrofen or vehicle on gestational day 9 (D9). Fetuses were sacrificed on D19 and D21 and divided into control and CDH groups. Immunohistochemistry and quantitative real-time polymerase chain reaction (RT-PCR) were performed to determine the expression of EPO in the fetal liver and kidney. We also estimated the expression of EPO receptor in the fetal lung. RESULTS The relative EPO mRNA expression in the liver on D19 and in the kidney on D21 were significantly lower in the CDH group than in the controls (P = 0.0008 and P = 0.0064, respectively). In addition, the results of immunohistochemistry supported the findings from the RT-PCR analysis. No significant changes were noted in the expression pattern or EPO receptor levels in the fetal lungs of the CDH group compared to the controls. CONCLUSIONS Our results reveal the suppressed EPO synthesis in the CDH fetus, which may contribute to the pathogenesis of lung hypoplasia and modification of pulmonary vasculature in the CDH rat model. Pediatr Pulmonol. 2017;52:606-615. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hajime Takayasu
- Department of Pediatric Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Koki Hagiwara
- Department of Pediatric Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kouji Masumoto
- Department of Pediatric Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
27
|
Erythropoietin Modification Enhances the Protection of Mesenchymal Stem Cells on Diabetic Rat-Derived Schwann Cells: Implications for Diabetic Neuropathy. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6352858. [PMID: 28299330 PMCID: PMC5337339 DOI: 10.1155/2017/6352858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 01/05/2017] [Indexed: 11/18/2022]
Abstract
Diabetes-triggered apoptosis of Schwann cells (SC) contributes to the degradation of diabetic peripheral neuropathy (DNP). In recent years, mesenchymal stem cells (MSC) were applied to DPN repair and it was demonstrated that paracrine secretion played a key role in neuroprotection exerted by MSC. Erythropoietin (EPO) is a potent cytokine capable of reducing apoptosis of SC. However, the expression of EPO in MSC is limited. In this study, we hypothesized that overexpression of EPO in MSC (EPO-MSC) may significantly improve their neuroprotective potentials. The EPO overexpression in MSC was achieved by lentivirus transduction. SC derived from the periphery nerve of diabetic rats were cocultured with MSC or EPO-MSC in normal or high glucose culture condition, respectively. In normal glucose culture condition, the overexpression of EPO in MSC promoted the MSC-induced restoration of SC from diabetic rats, including increases in GSH level and cell viability, decrease in TUNEL apoptosis, upregulation of antiapoptotic proteins, p-Akt, and Bcl-2, and downregulation of proapoptotic proteins, cleaved caspase-3, and Bax. The subsequent results in high glucose culture condition showed similar promotions achieved by EPO-MSC. Thus, it could be concluded that EPO-MSC possessed a potent potential in hampering apoptosis of SC, and the suppression was probably attributed to attenuating oxidative stress and regulating apoptosis related protein factors.
Collapse
|
28
|
Erythropoietin-induced cytoprotection in intestinal epithelial cells is linked to system Xc<sup/>. Exp Cell Res 2017; 352:202-206. [PMID: 28167131 DOI: 10.1016/j.yexcr.2017.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/28/2017] [Accepted: 02/03/2017] [Indexed: 02/06/2023]
Abstract
Necrotizing enterocolitis is a common but serious complication among premature babies. Currently, there are limited treatment options. These include intensive supportive care and surgical intervention. In this study, we hypothesize that erythropoietin (Epo) could be protective against cell necrosis by increasing the levels of glutathione. This can be regulated by increasing the activity of system xC-. This was demonstrated using intestinal epithelial cells (IEC-6) as a model system. S4-CPG and sulfasalazine pharmacologically inhibit xCT, which induced cell death. Our data showed a dose dependent decrease in cell viability when treated with both inhibitors. In addition, the IEC-6 cells displayed a dose dependent increase when treated with Epo. In conclusion, Epo can be protective against cell death and ultimately be considered as a treatment option for intestinal epithelial cell death.
Collapse
|
29
|
|
30
|
Calhoun DA, Murthy SN, Bryant BG, Luedtke SA, Bhatt-Mehta V. Recent Advances in Neonatal Pharmacotherapy. Ann Pharmacother 2016; 40:710-9. [PMID: 16569801 DOI: 10.1345/aph.1g212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Objective: To provide commentary and reviews and brief discussions in controversial or innovative recent advances in neonatal pharmacotherapy. To discuss cutting edge drug delivery systems that may become useful in neonatal drug delivery in the future. Data Sources: Articles were identified through searches of MEDLINE (1990–October 2005), key articles in the authors' files, and in some cases, through data generated and/or published by the author of a particular topic. Data Selection: Article selection and relevance to the topics under discussion was determined by individual authors. Data Synthesis: Therapeutic strategies addressed in this review include the use of hematopoietic growth factors including a simulated amniotic fluid preparation containing these growth factors for neonates with selected gastrointestinal problems, erythropoietin for neuroprotection following perinatal asphyxia, drug therapy advances in treatment of patent ductus arteriosus (PDA), evaluation of advances in transdermal drug delivery, and its potential application to neonates and advances in the treatment of persistent pulmonary hypertension (PPHN) of the newborn. Conclusions: Despite being over 30 years old, the practice of neonatology is as much of an art as a science. Advances in the basic science research have improved our understanding of use of pharmacologic agents in the premature and full-term neonate including drug disposition pathways. Expanding our knowledge on issues such as physiology of hematopoietic factors, the pharmacologic responses of conditions such as PDA and PPHN, and newer technologies for drug administration, as well as other pharmacologic reponses in the neonate are vital in the development of safe and efficacious treatments for neonates. Many questions remain unanswered, and every clinician must make an effort to contribute to the knowledge and understanding of pharmacotherapy in this patient population.
Collapse
Affiliation(s)
- Darlene A Calhoun
- Sarasota Memorial Hospital, All Children's Hospital/West Coast Neonatology, Sarasota, FL, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
Recombinant erythropoietin (EPO) is used to correct for anaemia caused by chronic renal failure or cancer therapy. Improvement of the quality of life of anaemic patients treated with EPO was recently demonstrated and preliminary clinical results suggest an improvement of cognitive functions in patients receiving EPO. High expression of EPO and its receptor in the brain during embryonic development has led to the investigation of not only the neurotrophic role of EPO but also its neuroprotective properties. The neuroprotective effects of EPO have various complementary actions including antagonism of the effects of glutamate, increased expression of antioxidant enzymes, changes in production of neurotransmitters and induction of neuroglobin. Convincing experimental results suggest a blood-brain transport of EPO whereas clinical pharmacokinetic data do not as yet support this. The neuroprotective effects of EPO and its therapeutic promise need to be underlined.
Collapse
Affiliation(s)
- M Milano
- Centre de convalescence du CHU de Nice, Tende, France.
| | | |
Collapse
|
32
|
Effects of Erythropoietin Administration on Adrenal Glands of Landrace/Large White Pigs after Ventricular Fibrillation. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7261960. [PMID: 27504455 PMCID: PMC4967690 DOI: 10.1155/2016/7261960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/13/2016] [Accepted: 06/21/2016] [Indexed: 11/17/2022]
Abstract
Aim. To evaluate the effects of erythropoietin administration on the adrenal glands in a swine model of ventricular fibrillation and resuscitation. Methods. Ventricular fibrillation was induced via pacing wire forwarded into the right ventricle in 20 female Landrace/Large White pigs, allocated into 2 groups: experimental group treated with bolus dose of erythropoietin (EPO) and control group which received normal saline. Cardiopulmonary resuscitation (CPR) was performed immediately after drug administration as per the 2010 European Resuscitation Council (ERC) guidelines for Advanced Life Support (ALS) until return of spontaneous circulation (ROSC) or death. Animals who achieved ROSC were monitored, mechanically ventilated, extubated, observed, and euthanized. At necroscopy, adrenal glands samples were formalin-fixed, paraffin-embedded, and routinely processed. Sections were stained with hematoxylin-eosin. Results. Oedema and apoptosis were the most frequent histological changes and were detected in all animals in the adrenal cortex and in the medulla. Mild and focal endothelial lesions were also detected. A marked interindividual variability in the degree of the intensity of apoptosis and oedema at cortical and medullary level was observed within groups. Comparing the two groups, higher levels of pathological changes were detected in the control group. No significant difference between the two groups was observed regarding the endothelial changes. Conclusions. In animals exposed to ventricular fibrillation, EPO treatment has protective effects on the adrenal gland.
Collapse
|
33
|
Calhoun DA, Richards BE, Gersting JA, Sullivan SE, Christensen RD. G-CSF and Erythropoietin Stability in Amniotic Fluid during Simulated in vitro Digestion Conditions. J Pharm Technol 2016. [DOI: 10.1177/875512250201800603] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective: To determine the stability of granulocyte colony-stimulating factor (G-CSF) and erythropoietin (Epo) in human amniotic fluid and recombinant G-CSF (Neupogen) and Epo (Epogen) in simulated amniotic fluid to digestions at pH concentrations of 3.2, 4.5, and 5.8 to assess their bioavailability to the neonate. Design: A simulated amniotic fluid containing Neupogen and Epogen was subjected to in vitro conditions that mimicked preprandial and postprandial neonatal intestinal digestion. Human amniotic fluid was tested using identical digestion conditions as well as human amniotic fluid to which Epogen and Neupogen had been added. Main Outcome Measures: The percentages of G-CSF/Epo and Neupogen/Epogen remaining after 1 and 2 hours of simulated digestions were compared with those at time zero, and concentrations at 2 hours were compared with those at 1 hour and time zero. Results: In simulated amniotic fluid at pH 3.2, significant degradation of G-CSF was observed at 1 hour (p = 0.03). No differences were observed at 1 or 2 hours for either pH 4.5 (p = 0.30 and 0.11, respectively) or pH 5.8 (p = 0.20 and 0.49, respectively). Human amniotic fluid exhibited significant degradation pH 3.2 (p = 0.04) and pH 4.5 (p < 0.05) at 1 hour; no difference was noted at pH 5.8 at 1 hour (p = 0.34). When additional Neupogen was added to human amniotic fluid, significant degradation was observed at pH 3.2 (p < 0.05) and pH 4.5 (p = 0.03) at 1 hour; no difference was noted at 1 hour at pH 5.8 (p = 0.11). In simulated amniotic fluid at pH 3.2, significant degradation of Epo occurred at 1 hour (p < 0.05). There were no differences at 1 hour for pH 4.5 (p = 0.50) or pH 5.8 (p = 0.17). Human amniotic fluid exhibited significant degradation at pH 3.2 (p < 0.05) and pH 4.5 (p < 0.05) at 1 hour; no difference was noted at 1 hour at pH 5.8 (p = 0.34). When additional Epogen was added to human amniotic fluid, significant degradation was observed at pH 3.2 (p = 0.001) and pH 4.5 (p = 0.003); no difference was noted at 1 hour at pH 5.8 (p = 0.31). Conclusions: G-CSF/Epo in human amniotic fluid and Neupogen/Epogen in simulated amniotic fluid are preserved to varying degrees during simulated digestion conditions. The degree of degradation of both cytokines was time- and pH-dependent. Measurable quantities of G-CSF and Epo are biologically available when swallowed by the fetus or a preterm neonate.
Collapse
Affiliation(s)
- Darlene A Calhoun
- DARLENE A CALHOUN DO, Rothman Associate Professor, Children's
Research Institute, University of South Florida/All Children's Hospital, St.
Petersburg, FL
| | - Brooke E Richards
- BROOKE E RICHARDS, Department of Pediatrics, University of Florida
College of Medicine, Gainesville, FL
| | - Jason A Gersting
- JASON A GERSTING MS, Research Assistant, Department of Pediatrics,
University of Florida College of Medicine
| | - Sandra E Sullivan
- SANDRA E SULLIVAN MD, Neonatology Fellow, Department of Pediatrics,
University of Florida College of Medicine
| | - Robert D Christensen
- ROBERT D CHRISTENSEN MD, Barness Professor and Chairman Department of
Pediatrics, University of South Florida/All Children's Hospital
| |
Collapse
|
34
|
Nakamura S, Sho M, Koyama F, Ueda T, Nishigori N, Inoue T, Nakamoto T, Fujii H, Yoshikawa S, Inatsugi N, Nakajima Y. Erythropoietin attenuates intestinal inflammation and promotes tissue regeneration. Scand J Gastroenterol 2016; 50:1094-102. [PMID: 25861881 DOI: 10.3109/00365521.2015.1020861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The prevalence of inflammatory bowel disease (IBD) is increasing. Since patients usually need long-term treatment and suffer from reduced quality of life, there is a need to develop new therapeutic strategy. The aim of this study was to investigate the therapeutic potential of erythropoietin (EPO) for the treatment of IBD. METHODS Murine colitis was induced by 3.0% Dextran Sulfate Sodium (DSS). Recombinant human EPO (rhEPO) was given to evaluate the anti-inflammatory and regenerative effects on intestinal inflammation. The effect of rhEPO on human colon epithelial cells was also evaluated. Immunohistochemical analysis of EPO receptor was performed in human IBD tissues. RESULTS While about 62% of control mice with severe colitis induced by 5-day DSS died, 85% of mice treated with rhEPO survived. Histological analysis confirmed that EPO treatment reduced the colonic inflammation. Furthermore, EPO treatment significantly downregulated the local expressions of IFN-γ, TNF-α and E-selectin in the colon, suggesting that the effect was associated with inhibiting local immune activation. In a 4-day DSS-induced colitis model, rhEPO significantly improved the recovery of body weight loss compared to controls. Furthermore, proliferating cell nuclear antigen expression was significantly upregulated in the colon tissue from mice treated with rhEPO compared to controls. In addition, rhEPO increased the growth of cultured human colon epithelial cells in a dose-dependent manner. Furthermore, EPO-receptor expression was confirmed in human IBD colon tissues. CONCLUSION Three major functions of EPO, hematopoiesis, anti-inflammation and regeneration, may produce significant effects on intestinal inflammation, therefore suggesting that rhEPO might be useful for IBD.
Collapse
Affiliation(s)
- Shinji Nakamura
- Department of Surgery, Nara Medical University , Nara , Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mitchell DM, Stevens CB, Frey RA, Hunter SS, Ashino R, Kawamura S, Stenkamp DL. Retinoic Acid Signaling Regulates Differential Expression of the Tandemly-Duplicated Long Wavelength-Sensitive Cone Opsin Genes in Zebrafish. PLoS Genet 2015; 11:e1005483. [PMID: 26296154 PMCID: PMC4546582 DOI: 10.1371/journal.pgen.1005483] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 08/05/2015] [Indexed: 12/12/2022] Open
Abstract
The signaling molecule retinoic acid (RA) regulates rod and cone photoreceptor fate, differentiation, and survival. Here we elucidate the role of RA in differential regulation of the tandemly-duplicated long wavelength-sensitive (LWS) cone opsin genes. Zebrafish embryos were treated with RA from 48 hours post-fertilization (hpf) to 75 hpf, and RNA was isolated from eyes for microarray analysis. ~170 genes showed significantly altered expression, including several transcription factors and components of cellular signaling pathways. Of interest, the LWS1 opsin gene was strongly upregulated by RA. LWS1 is the upstream member of the tandemly duplicated LWS opsin array and is normally not expressed embryonically. Embryos treated with RA 48 hpf to 100 hpf or beyond showed significant reductions in LWS2-expressing cones in favor of LWS1-expressing cones. The LWS reporter line, LWS-PAC(H) provided evidence that individual LWS cones switched from LWS2 to LWS1 expression in response to RA. The RA signaling reporter line, RARE:YFP indicated that increased RA signaling in cones was associated with this opsin switch, and experimental reduction of RA signaling in larvae at the normal time of onset of LWS1 expression significantly inhibited LWS1 expression. A role for endogenous RA signaling in regulating differential expression of the LWS genes in postmitotic cones was further supported by the presence of an RA signaling domain in ventral retina of juvenile zebrafish that coincided with a ventral zone of LWS1 expression. This is the first evidence that an extracellular signal may regulate differential expression of opsin genes in a tandemly duplicated array.
Collapse
Affiliation(s)
- Diana M. Mitchell
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Craig B. Stevens
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Ruth A. Frey
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Samuel S. Hunter
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Bioinformatics and Computational Biology Graduate Program, University of Idaho, Moscow, Idaho, United States of America
| | - Ryuichi Ashino
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Shoji Kawamura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Deborah L. Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Bioinformatics and Computational Biology Graduate Program, University of Idaho, Moscow, Idaho, United States of America
- Neuroscience Graduate Program, University of Idaho, Moscow, Idaho, United States of America
- * E-mail:
| |
Collapse
|
36
|
Chen X, Wang CC, Song SM, Wei SY, Li JS, Zhao SL, Li B. The administration of erythropoietin attenuates kidney injury induced by ischemia/reperfusion with increased activation of Wnt/β-catenin signaling. J Formos Med Assoc 2015; 114:430-7. [PMID: 25682558 DOI: 10.1016/j.jfma.2015.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND/PURPOSE Understanding the mechanisms of protecting the kidneys from injury is of great importance because there are no effective therapies that promote repair and the kidneys frequently do not repair adequately. Evidence has shown that erythropoietin (EPO) has a vital renoprotective role, independent of its erythropoietic effect. However, whether EPO can contribute to kidney repair after injury and the potential mechanisms are not fully understood. METHODS To investigate the renoprotective mechanism of EPO, a kidney ischemia/reperfusion injury (IRI) model was induced in adult male Sprague-Dawley rats. The rats were subsequently randomly treated with EPO or a vehicle 6 hours after the kidney IRI. The rats were sacrificed on Day 3, Day 5, and Day 7 post kidney IRI. Renal function and histological alterations were examined. Renal interstitial macrophage infiltration, cell proliferation, apoptosis, and angiogenesis were evaluated by immunostaining. Furthermore, the effects of EPO on the Wnt/β-catenin pathway and IRI-related micro-RNAs were investigated. RESULTS The administration of EPO significantly improved renal function and reduced tubular injury. Furthermore, EPO treatment significantly prevented tubular cell apoptosis and promoted cell proliferation after IRI. Erythropoietin significantly suppressed macrophage infiltration, compared to the vehicle. In addition, treatment with EPO markedly prevented the loss of microvasculature. We have also demonstrated that, compared to the vehicle, EPO administration enhanced the expression of Wnt7b and β-catenin, and downregulated miR-21, -214, -210, and -199a. CONCLUSION Erythropoietin protects the kidneys against IRI by attenuating injury of the renal microvasculature and tubule epithelial cells, by promoting Wnt/β-catenin pathway activation, and by regulating miRNA expression.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Nephrology, Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Cen-Cen Wang
- Department of Nephrology, Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Shu-Min Song
- Department of Nephrology, Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Shi-Yao Wei
- Department of Nephrology, Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jian-Si Li
- Department of Nephrology, Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Shi-Lei Zhao
- Department of Nephrology, Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Bing Li
- Department of Nephrology, Second Affiliated Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
37
|
Zhang X, Dong S, Qin Y, Bian X. Protective effect of erythropoietin against myocardial injury in rats with sepsis and its underlying mechanisms. Mol Med Rep 2015; 11:3317-29. [PMID: 25572660 PMCID: PMC4368091 DOI: 10.3892/mmr.2015.3155] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 06/05/2014] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to investigate the protective effect of erythropoietin (EPO) against acute myocardial injury and its underlying mechanisms. Mice (n=146) were randomly divided in a double-blind manner into four groups, sham, Rocephin, EPO and sepsis, and mortality was observed on the seventh day after cecal ligation and puncture. In addition, a total of 252 rats were randomly divided into three groups, sham, EPO and sepsis, and indicators of cardiac function, inflammatory mediators and serum creatine kinase levels were assessed. Mitochondrial membrane potential, cell apoptosis and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) p65 expression levels were detected using flow cytometry. Following intervention with EPO, the mortality rate in mice with sepsis was significantly reduced and the cardiac function of septic rats was significantly improved. In addition, the levels of inflammatory mediators, serum creatine kinase and apoptosis and the myocardial mitochondrial membrane potential and expression of NF-κB p65 in cardiac tissue were all improved following EPO treatment, and the differences between the results for the sepsis and EPO groups were statistically significant (P<0.05). These findings suggest that EPO reduces the myocardial inflammatory response in septic rats, attenuates the reduction in mitochondrial membrane potential and inhibits myocardial cell apoptosis by reducing NF-κB p65 expression, and therefore exerts a protective effect in the myocardium.
Collapse
Affiliation(s)
- Xinliang Zhang
- Department of Emergency, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Shimin Dong
- Department of Critical Care Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Yanjun Qin
- Department of Emergency, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Xiaohua Bian
- Department of Emergency, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
38
|
Lei DM, Piao SG, Jin YS, Jin H, Cui ZH, Jin HF, Jin JZ, Zheng HL, Li JJ, Jiang YJ, Yang CW, Li C. Expression of erythropoietin and its receptor in kidneys from normal and cyclosporine-treated rats. Transplant Proc 2014; 46:521-8. [PMID: 24656003 DOI: 10.1016/j.transproceed.2013.12.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/07/2013] [Accepted: 12/16/2013] [Indexed: 01/08/2023]
Abstract
Long-term treatment with cyclosporine A (CsA) is associated with various types of complications; however, CsA-induced anemia has not been reported. The present study examined the impact of CsA on hematopoietic parameters and intrarenal expression of erythropoietin (EPO) and the EPO receptor (EPOR) in a rat model of chronic CsA nephrotoxicity. Sprague-Dawley rats were fed a low-salt diet (0.05% sodium) and were treated daily for 4 weeks with vehicle (olive oil 1 mL/kg subcutaneously) or CsA (15 mg/kg subcutaneously). The expression of EPO and EPOR was evaluated by immunohistochemistry and immunoblotting, and hematopoietic parameters were assessed by measuring blood hemoglobin and hematocrit levels, and these variables were compared between treatment groups. Renal function, oxidative stress, histopathology (tubulointerstitial fibrosis), apoptotic cell death, and expression of transforming growth factor β-inducible gene-h3 (βig-h3) were also compared between treatment groups. In kidneys from vehicle-treated rats, endogenous EPO and EPOR protein were expressed constitutively in the outer stripe of the outer medulla and the cortex. EPO protein expression decreased significantly in kidneys from CsA-treated rats. By contrast, EPOR expression was higher in kidneys from CsA-treated rats than in vehicle-treated rats. These changes were accompanied by decreases in serum hemoglobin and hematocrit levels and correlated with the number of cells positive for terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (r = -0.769, P = .003) and βig-h3 protein expression (r = -0.910, P < .001). Long-term treatment with CsA suppresses renal endogenous EPO expression, resulting in anemia. Increases in apoptotic cell death and βig-h3 expression are closely associated with inhibition of EPO expression in chronic CsA nephrotoxicity.
Collapse
Affiliation(s)
- D M Lei
- Nephrology and Dialysis Unit, Department of Internal Medicine, YanBian University Hospital, Jilin, China
| | - S G Piao
- Nephrology and Dialysis Unit, Department of Internal Medicine, YanBian University Hospital, Jilin, China; Transplant Research Center, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, Catholic University of Korea, Seoul, Korea
| | - Y S Jin
- Nephrology and Dialysis Unit, Department of Internal Medicine, YanBian University Hospital, Jilin, China
| | - H Jin
- Nephrology and Dialysis Unit, Department of Internal Medicine, YanBian University Hospital, Jilin, China
| | - Z H Cui
- Nephrology and Dialysis Unit, Department of Internal Medicine, YanBian University Hospital, Jilin, China
| | - H F Jin
- Nephrology and Dialysis Unit, Department of Internal Medicine, YanBian University Hospital, Jilin, China
| | - J Z Jin
- Nephrology and Dialysis Unit, Department of Internal Medicine, YanBian University Hospital, Jilin, China
| | - H L Zheng
- Nephrology and Dialysis Unit, Department of Internal Medicine, YanBian University Hospital, Jilin, China
| | - J J Li
- Nephrology and Dialysis Unit, Department of Internal Medicine, YanBian University Hospital, Jilin, China
| | - Y J Jiang
- Nephrology and Dialysis Unit, Department of Internal Medicine, YanBian University Hospital, Jilin, China
| | - C W Yang
- Transplant Research Center, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, Catholic University of Korea, Seoul, Korea
| | - C Li
- Nephrology and Dialysis Unit, Department of Internal Medicine, YanBian University Hospital, Jilin, China.
| |
Collapse
|
39
|
Enteral granulocyte-colony stimulating factor and erythropoietin early in life improves feeding tolerance in preterm infants: a randomized controlled trial. J Pediatr 2014; 165:1140-1145.e1. [PMID: 25155966 DOI: 10.1016/j.jpeds.2014.07.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/01/2014] [Accepted: 07/17/2014] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To evaluate the efficacy and safety of enteral recombinant human granulocyte colony-stimulating factor (rhG-CSF) and recombinant human erythropoietin (rhEPO) in preventing feeding intolerance. STUDY DESIGN An interventional randomized control trial was conducted in 90 preterm infants born at ≤33 weeks gestational age. The neonates were assigned to 4 groups; 20 received rhG-CSF, 20 received rhEPO, 20 received both, and 30 received distilled water (placebo control). The test solution was given at the beginning of enteral feeding and was discontinued when enteral intake reached 100 mL/kg/day or after a maximum of 7 days, whichever came first. Feeding tolerance and adverse effects of treatment were assessed. Serum granulocyte colony-stimulating factor and erythropoietin levels were measured on days 0 and 7 of treatment. RESULTS All neonates tolerated the treatment without side effects. Neonates who received rhG-CSF and/or rhEPO had better feeding tolerance, as reflected by earlier achievement of 75 mL/kg/day, 100 mL/kg/day, and full enteral feeding of 150 mL/kg/day with earlier weight gain and a shorter hospital stay (P < .05). The risk of necrotizing enterocolitis was reduced from 10% to 0% in all treatment groups (P < .05). There was a shorter duration of withholding of feeding secondary to feeding intolerance among neonates receiving both rhG-CSF and rhEPO compared with those receiving placebo (P < .05). Serum levels of granulocyte colony-stimulating factor and erythropoietin at 0 and 7 days did not differ across the treatment groups. CONCLUSIONS Enteral administration of rhG-CSF and/or rhEPO improves feeding outcome and decreases the risk of necrotizing enterocolitis in preterm neonates. The mechanism may involve the prevention of villous atrophy.
Collapse
|
40
|
Debeljak N, Solár P, Sytkowski AJ. Erythropoietin and cancer: the unintended consequences of anemia correction. Front Immunol 2014; 5:563. [PMID: 25426117 PMCID: PMC4227521 DOI: 10.3389/fimmu.2014.00563] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/22/2014] [Indexed: 01/12/2023] Open
Abstract
Until 1990, erythropoietin (EPO) was considered to have a single biological purpose and action, the stimulation of red blood cell growth and differentiation. Slowly, scientific and medical opinion evolved, beginning with the discovery of an effect on endothelial cell growth in vitro and the identification of EPO receptors (EPORs) on neuronal cells. We now know that EPO is a pleiotropic growth factor that exhibits an anti-apoptotic action on numerous cells and tissues, including malignant ones. In this article, we present a short discussion of EPO, receptors involved in EPO signal transduction, and their action on non-hematopoietic cells. This is followed by a more detailed presentation of both pre-clinical and clinical data that demonstrate EPO’s action on cancer cells, as well as tumor angiogenesis and lymphangiogenesis. Clinical trials with reported adverse effects of chronic erythropoiesis-stimulating agents (ESAs) treatment as well as clinical studies exploring the prognostic significance of EPO and EPOR expression in cancer patients are reviewed. Finally, we address the use of EPO and other ESAs in cancer patients.
Collapse
Affiliation(s)
- Nataša Debeljak
- Faculty of Medicine, Institute of Biochemistry, University of Ljubljana , Ljubljana , Slovenia
| | - Peter Solár
- Department of Cell and Molecular Biology, Institute of Biology and Ecology, Faculty of Sciences, Pavol Jozef Šafárik University , Košice , Slovakia
| | - Arthur J Sytkowski
- Oncology Therapeutic Area, Quintiles Transnational , Arlington, MA , USA
| |
Collapse
|
41
|
Rangarajan V, Juul SE. Erythropoietin: emerging role of erythropoietin in neonatal neuroprotection. Pediatr Neurol 2014; 51:481-8. [PMID: 25266611 PMCID: PMC4180944 DOI: 10.1016/j.pediatrneurol.2014.06.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 01/27/2023]
Abstract
BACKGROUND In the last two decades, there has been considerable evolution in understanding the role of erythropoietin in neuroprotection. Erythropoietin has both paracrine and autocrine functions in the brain. Erythropoietin binding results in neurogenesis, oligodendrogenesis, and angiogenesis. Erythropoietin and its receptor are upregulated by exposure to hypoxia and proinflammatory cytokines after brain injury. While erythropoietin aids in recovery of locally injured neuronal cells, it provides negative feedback to glial cells in the penumbra, thereby limiting extension of injury. This forms the rationale for use of recombinant erythropoietin and erythropoietin mimetics in neonatal and adult injury models of stroke, traumatic brain injury, spinal cord injury, intracerebral hemorrhage, and neonatal hypoxic ischemia. METHOD Review of published literature (Pubmed, Medline, and Google scholar). RESULTS Preclinical neuroprotective data are reviewed, and the rationale for proceeding to clinical trials is discussed. Results from phase I/II trials are presented, as are updates on ongoing and upcoming clinical trials of erythropoietin neuroprotection in neonatal populations. CONCLUSIONS The scientific rationale and preclinical data for erythropoietin neuroprotection are promising. Phase II and III clinical trials are currently in process to determine the safety and efficacy of neuroprotective dosing of erythropoietin for extreme prematurity and hypoxic-ischemic encephalopathy in neonates.
Collapse
Affiliation(s)
- Vijayeta Rangarajan
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, Washington
| | - Sandra E Juul
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, Washington.
| |
Collapse
|
42
|
Germ-line PHD1 and PHD2 mutations detected in patients with pheochromocytoma/paraganglioma-polycythemia. J Mol Med (Berl) 2014; 93:93-104. [PMID: 25263965 DOI: 10.1007/s00109-014-1205-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/27/2014] [Accepted: 09/02/2014] [Indexed: 10/24/2022]
Abstract
UNLABELLED We have investigated genetic/pathogenetic factors associated with a new clinical entity in patients presenting with pheochromocytoma/paraganglioma (PHEO/PGL) and polycythemia. Two patients without hypoxia-inducible factor 2α (HIF2A) mutations, who presented with similar clinical manifestations, were analyzed for other gene mutations, including prolyl hydroxylase (PHD) mutations. We have found for the first time a germ-line mutation in PHD1 in one patient and a novel germ-line PHD2 mutation in a second patient. Both mutants exhibited reduced protein stability with substantial quantitative protein loss and thus compromised catalytic activities. Due to the unique association of patients' polycythemia with borderline or mildly elevated erythropoietin (EPO) levels, we also performed an in vitro sensitivity assay of erythroid progenitors to EPO and for EPO receptor (EPOR) expression. The results show inappropriate hypersensitivity of erythroid progenitors to EPO in these patients, indicating increased EPOR expression/activity. In addition, the present study indicates that HIF dysregulation due to PHD mutations plays an important role in the pathogenesis of these tumors and associated polycythemia. The PHD1 mutation appears to be a new member contributing to the genetic landscape of this novel clinical entity. Our results support the existence of a specific PHD1- and PHD2-associated PHEO/PGL-polycythemia disorder. KEY MESSAGE • A novel germ-l i n e PHD1 mutation causing heochromocytoma/paraganglioma and polycythemia. • Increased EPOR activity and inappropriate hypersensitivity of erythroid progenitors to EPO.
Collapse
|
43
|
Wang L, Di L, Noguchi CT. Erythropoietin, a novel versatile player regulating energy metabolism beyond the erythroid system. Int J Biol Sci 2014; 10:921-39. [PMID: 25170305 PMCID: PMC4147225 DOI: 10.7150/ijbs.9518] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 06/04/2014] [Indexed: 12/12/2022] Open
Abstract
Erythropoietin (EPO), the required cytokine for promoting the proliferation and differentiation of erythroid cells to stimulate erythropoiesis, has been reported to act as a pleiotropic cytokine beyond hematopoietic system. The various activities of EPO are determined by the widespread distribution of its cell surface EPO receptor (EpoR) in multiple tissues including endothelial, neural, myoblasts, adipocytes and other cell types. EPO activity has been linked to angiogenesis, neuroprotection, cardioprotection, stress protection, anti-inflammation and especially the energy metabolism regulation that is recently revealed. The investigations of EPO activity in animals and the expression analysis of EpoR provide more insights on the potential of EPO in regulating energy metabolism and homeostasis. The findings of crosstalk between EPO and some important energy sensors and the regulation of EPO in the cellular respiration and mitochondrial function further provide molecular mechanisms for EPO activity in metabolic activity regulation. In this review, we will summarize the roles of EPO in energy metabolism regulation and the activity of EPO in tissues that are tightly associated with energy metabolism. We will also discuss the effects of EPO in regulating oxidative metabolism and mitochondrial function, the interactions between EPO and important energy regulation factors, and the protective role of EPO from stresses that are related to metabolism, providing a brief overview of previously less appreciated EPO biological function in energy metabolism and homeostasis.
Collapse
Affiliation(s)
- Li Wang
- 1. Faculty of Health Sciences, University of Macau, SAR of People's Republic of China
| | - Lijun Di
- 1. Faculty of Health Sciences, University of Macau, SAR of People's Republic of China
| | - Constance Tom Noguchi
- 2. Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, U.S.A
| |
Collapse
|
44
|
Zhang Y, Wang L, Dey S, Alnaeeli M, Suresh S, Rogers H, Teng R, Noguchi CT. Erythropoietin action in stress response, tissue maintenance and metabolism. Int J Mol Sci 2014; 15:10296-333. [PMID: 24918289 PMCID: PMC4100153 DOI: 10.3390/ijms150610296] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/23/2014] [Accepted: 05/28/2014] [Indexed: 12/20/2022] Open
Abstract
Erythropoietin (EPO) regulation of red blood cell production and its induction at reduced oxygen tension provides for the important erythropoietic response to ischemic stress. The cloning and production of recombinant human EPO has led to its clinical use in patients with anemia for two and half decades and has facilitated studies of EPO action. Reports of animal and cell models of ischemic stress in vitro and injury suggest potential EPO benefit beyond red blood cell production including vascular endothelial response to increase nitric oxide production, which facilitates oxygen delivery to brain, heart and other non-hematopoietic tissues. This review discusses these and other reports of EPO action beyond red blood cell production, including EPO response affecting metabolism and obesity in animal models. Observations of EPO activity in cell and animal model systems, including mice with tissue specific deletion of EPO receptor (EpoR), suggest the potential for EPO response in metabolism and disease.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Li Wang
- Faculty of Health Sciences, University of Macau, Macau SAR, China.
| | - Soumyadeep Dey
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Mawadda Alnaeeli
- Department of Biological Sciences, Ohio University, Zanesville, OH 43701, USA.
| | - Sukanya Suresh
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Heather Rogers
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Ruifeng Teng
- Mouse Metabolism Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Constance Tom Noguchi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
45
|
The effect of erythropoietin on the severity of retinopathy of prematurity. Eye (Lond) 2014; 28:814-8. [PMID: 24763242 DOI: 10.1038/eye.2014.95] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 03/25/2014] [Indexed: 01/18/2023] Open
Abstract
AIMS Exogenous human erythropoietin (EPO) artificially synthesised through recombinant DNA technology (rHuEPO) is currently used as a substitute for blood transfusion in preterm and low birth weight neonates. The objective of this study is to determine whether the use of rHuEPO is associated with an increased severity of retinopathy of prematurity (ROP) in preterm neonates. METHOD This retrospective review studies neonates who were admitted to a tertiary perinatal unit and screened for ROP during the 10-year period from January 2003 to December 2012. RESULTS : During the 10-year period, 688 preterm neonates underwent ROP screening, with 198 identified as having ROP. The incidence of stage 1 ROP was 51.5% (102/198), followed by 35.9% (71/198) for stage 2, and 12.6% (25/198) for stage 3 and greater. Plus disease was seen in 14 neonates (7.1%). Treatment (laser photocoagulation) was administered in 64% of neonates (16/25) with stage 3 of the disease and above because of progression to threshold ROP. Twenty-six (13%) of the neonates received rHuEPO treatment. There were no statistically significant differences in birth weight (910.4 vs 885 g; P=0.71), gestational age (26.5 vs 25.8 weeks; P=0.09), and duration of ventilation (512 vs 501.4 h; P=0.92) between neonates who did not receive rHuEPO compared with those who were treated with rHuEPO. Multivariate regression analysis showed that the use of EPO was associated with increased severity of ROP. CONCLUSIONS EPO therapy appears to increase the risk of development and worsening of ROP.
Collapse
|
46
|
Yu T, Li L, Bi Y, Liu Z, Liu H, Li Z. Erythropoietin attenuates oxidative stress and apoptosis in Schwann cells isolated from streptozotocin-induced diabetic rats. ACTA ACUST UNITED AC 2014; 66:1150-60. [PMID: 24673486 DOI: 10.1111/jphp.12244] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/23/2014] [Indexed: 12/17/2022]
Abstract
OBJECTIVES High glucose-evoked oxidative stress and apoptosis within Schwann cells (SCs) are mechanisms facilitating the procession of diabetic peripheral neuropathy (DPN). Although erythropoietin (EPO) was demonstrated to have neuroprotective effects in neurodegenerative diseases, the effects of EPO on glucose-evoked oxidative stress and apoptosis of SCs remain unknown. METHODS Primary cultured SCs isolated from streptozotocin (STZ)-induced diabetic peripheral neuropathic rats and normal control rats were exposed to high or normal glucose condition with or without EPO incubation for 72 h. Cell viability, apoptotic rate, cellular reactive oxygen species (ROS) level, total glutathione (GSH) level, EPO mRNA and erythropoietin receptor (EPOR) mRNA levels were assayed. KEY FINDINGS SCs from diabetic rats showed a lower cell viability and a higher apoptotic rate. High glucose culture condition elevated ROS level and diminished total GSH level of SCs. EPO improved cell viability and decreased cell apoptotic rate of SCs. EPO also elevated total GSH level and decreased intracellular ROS level. SCs from diabetic rats exhibited higher EPO mRNA and EPOR mRNA levels than SCs from normal control rats. CONCLUSIONS The data of this study offered fresh viewpoints for interpreting the pathogenesis of DPN and novel pharmacological principles implicit in the therapeutic effect of EPO.
Collapse
Affiliation(s)
- Ting Yu
- Department of Anatomy, Shandong University School of Medicine, Shandong, China
| | | | | | | | | | | |
Collapse
|
47
|
Polglase GR, Barton SK, Melville JM, Zahra V, Wallace MJ, Siew ML, Tolcos M, Moss TJM. Prophylactic erythropoietin exacerbates ventilation-induced lung inflammation and injury in preterm lambs. J Physiol 2014; 592:1993-2002. [PMID: 24591575 DOI: 10.1113/jphysiol.2013.270348] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Ventilation-induced lung injury (VILI) of preterm neonates probably contributes to the pathogenesis of bronchopulmonary dysplasia (BPD). Erythropoietin (EPO) has been suggested as a therapy for BPD. The aim of this study was to determine whether prophylactic administration of EPO reduces VILI in preterm newborn lambs. Lambs at 126 days of gestation (term is 147 days) were delivered and ventilated with a high tidal volume strategy for 15 min to cause lung injury, then received gentle ventilation until 2 h of age. Lambs were randomized to receive intravenous EPO (5000 IU kg(-1): Vent+EPO; n = 6) or phosphate-buffered saline (Vent; n = 7) soon after birth: unventilated controls (UVC; n = 8) did not receive ventilation or any treatment. Physiological parameters were recorded throughout the experimental procedure. Samples of lung were collected for histological and molecular assessment of inflammation and injury. Samples of liver were collected to assess the systemic acute phase response. Vent+EPO lambs received higher F IO 2, P aO 2 and oxygenation during the first 10 min than Vent lambs. There were no differences in physiological indices beyond this time. Total lung injury score, airway wall thickness, inflammation and haemorrhage were higher in Vent+EPO lambs than in Vent lambs. Lung inflammation and early markers of lung and systemic injury were elevated in ventilated lambs relative to unventilated lambs; EPO administration further increased lung inflammation and markers of lung and systemic injury. Prophylactic EPO exacerbates VILI, which may increase the incidence and severity of long-term respiratory disease. More studies are required before EPO can be used for lung protection in preterm infants.
Collapse
Affiliation(s)
- Graeme R Polglase
- Ritchie Centre, Monash Institute of Medical Research, PO Box 5418, Clayton, Victoria, 3168, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Maurice T, Mustafa MH, Desrumaux C, Keller E, Naert G, de la C García-Barceló M, Rodríguez Cruz Y, Garcia Rodríguez JC. Intranasal formulation of erythropoietin (EPO) showed potent protective activity against amyloid toxicity in the Aβ₂₅₋₃₅ non-transgenic mouse model of Alzheimer's disease. J Psychopharmacol 2013; 27:1044-57. [PMID: 23813967 DOI: 10.1177/0269881113494939] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Erythropoietin (EPO) promotes neurogenesis and neuroprotection. We here compared the protection induced by two EPO formulations in a rodent model of Alzheimer's disease (AD): rHu-EPO and a low sialic form, Neuro-EPO. We used the intracerebroventricular administration of aggregated Aβ₂₅₋₃₅ peptide, a non-transgenic AD model. rHu-EPO was tested at 125-500 µg/kg intraperitoneally and Neuro-EPO at 62-250 µg/kg intranasally (IN). Behavioural procedures included spontaneous alternation, passive avoidance, water-maze and object recognition, to address spatial and non-spatial, short- and long-term memories. Biochemical markers of Aβ₂₅₋₃₅ toxicity in the mouse hippocampus were examined and cell loss in the CA1 layer was determined. rHu-EPO and Neuro-EPO led to a significant prevention of Aβ₂₅₋₃₅-induced learning deficits. Both EPO formulations prevented the induction of lipid peroxidation in the hippocampus, showing an antioxidant activity. rHu-EPO (250 µg/kg) or Neuro-EPO (125 µg/kg) prevented the Aβ₂₅₋₃₅-induced increase in Bax level, TNFα and IL-1β production and decrease in Akt activation. A significant prevention of the Aβ₂₅₋₃₅-induced cell loss in CA1 was also observed. EPO is neuroprotective in the Aβ₂₅₋₃₅ AD model, confirming its potential as an endogenous neuroprotection system that could be boosted for therapeutic efficacy. We here identified a new IN formulation of EPO showing high neuroprotective activity. Considering its efficacy, ease and safety, IN Neuro-EPO is a new promising therapeutic agent in AD.
Collapse
|
49
|
Erythropoietin protects epithelial cells from excessive autophagy and apoptosis in experimental neonatal necrotizing enterocolitis. PLoS One 2013; 8:e69620. [PMID: 23936061 PMCID: PMC3723879 DOI: 10.1371/journal.pone.0069620] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 06/12/2013] [Indexed: 12/17/2022] Open
Abstract
Neonatal necrotizing enterocolitis (NEC) is a devastating gastrointestinal disease of preterm infants. Increased intestinal epithelium permeability is an early event in NEC pathogenesis. Autophagy and apoptosis are induced by multiple stress pathways which may impact the intestinal barrier, and they have been associated with pathogenesis of diverse gastrointestinal diseases including inflammatory bowel disease. Using both in vitro and in vivo models, this study investigates autophagy and apoptosis under experimental NEC stresses. Furthermore this study evaluates the effect of erythropoietin (Epo), a component of breast milk previously shown to decrease the incidence of NEC and to preserve intestinal barrier function, on intestinal autophagy and apoptosis. It was found that autophagy and apoptosis are both rapidly up regulated in NEC in vivo as indicated by increased expression of the autophagy markers Beclin 1 and LC3II, and by evidence of apoptosis by TUNEL and cleaved caspase-3 staining. In the rat NEC experimental model, autophagy preceded the onset of apoptosis in intestine. In vitro studies suggested that Epo supplementation significantly decreased both autophagy and apoptosis via the Akt/mTOR signaling pathway and the MAPK/ERK pathway respectively. These results suggest that Epo protects intestinal epithelium from excessive autophagy and apoptosis in experimental NEC.
Collapse
|
50
|
Prevention of necrotizing enterocolitis in preterm very low birth weight infants: is it feasible? J Formos Med Assoc 2013; 113:490-7. [PMID: 23701837 DOI: 10.1016/j.jfma.2013.03.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 03/08/2013] [Accepted: 03/29/2013] [Indexed: 01/11/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is still one of the most catastrophic intestinal emergencies in preterm very low-birth weight infants. Primary prevention of NEC should be the priority, since NEC frequently progresses from nonspecific signs, to extensive necrosis within a matter of hours with medical or surgical treatment, making successful treatment and secondary prevention difficult to achieve. Currently available strategies for primary prevention of NEC include antenatal glucocorticosteroids, breast milk feeding, cautious feeding strategy, fluid restriction and probiotics. Nonetheless, based on current research evidence, mixed flora probiotics, and/or breast milk feeding, would appear to be the most effective feasible methods in the prevention of NEC at present.
Collapse
|