1
|
Coelho MM, Lima R, Almeida AS, Fernandes PA, Remião F, Fernandes C, Tiritan ME. Binding studies of promethazine and its metabolites with human serum albumin by high-performance affinity chromatography and molecular docking in the presence of codeine. Anal Bioanal Chem 2024; 416:4605-4618. [PMID: 38965103 PMCID: PMC11294390 DOI: 10.1007/s00216-024-05409-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 07/06/2024]
Abstract
"Purple Drank", a soft drink containing promethazine (PMZ) and codeine (COD), has gained global popularity for its hallucinogenic effects. Consuming large amounts of this combination can lead to potentially fatal events. The binding of these drugs to plasma proteins can exacerbate the issue by increasing the risk of drug interactions, side effects, and/or toxicity. Herein, the binding affinity to human serum albumin (HSA) of PMZ and its primary metabolites [N-desmethyl promethazine (DMPMZ) and promethazine sulphoxide (PMZSO)], along with COD, was investigated by high-performance affinity chromatography (HPAC) though zonal approach. PMZ and its metabolites exhibited a notable binding affinity for HSA (%b values higher than 80%), while COD exhibited a %b value of 65%. To discern the specific sites of HSA to which these compounds were bound, displacement experiments were performed using warfarin and (S)-ibuprofen as probes for sites I and II, respectively, which revealed that all analytes were bound to both sites. Molecular docking studies corroborated the experimental results, reinforcing the insights gained from the empirical data. The in silico data also suggested that competition between PMZ and its metabolites with COD can occur in both sites of HSA, but mainly in site II. As the target compounds are chiral, the enantioselectivity for HSA binding was also explored, showing that the binding for these compounds was not enantioselective.
Collapse
Affiliation(s)
- Maria Miguel Coelho
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy of the University of Porto, 4050-313, Porto, Portugal
- CIIMAR-Interdisciplinary Center for Marine and Environmental Research University of Porto, Porto de Leixões Cruise Terminal, 4450-208, Matosinhos, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Rita Lima
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy of the University of Porto, 4050-313, Porto, Portugal
- CIIMAR-Interdisciplinary Center for Marine and Environmental Research University of Porto, Porto de Leixões Cruise Terminal, 4450-208, Matosinhos, Portugal
| | - Ana Sofia Almeida
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy of the University of Porto, 4050-313, Porto, Portugal
- CIIMAR-Interdisciplinary Center for Marine and Environmental Research University of Porto, Porto de Leixões Cruise Terminal, 4450-208, Matosinhos, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Pedro Alexandrino Fernandes
- LAQV, REQUIMTE, Departamento de Química E Bioquímica, Faculdade de Ciências, Universidade Do Porto, Rua Do Campo Alegre, S/N, 4169-007, Porto, Portugal
| | - Fernando Remião
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Carla Fernandes
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy of the University of Porto, 4050-313, Porto, Portugal.
- CIIMAR-Interdisciplinary Center for Marine and Environmental Research University of Porto, Porto de Leixões Cruise Terminal, 4450-208, Matosinhos, Portugal.
| | - Maria Elizabeth Tiritan
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy of the University of Porto, 4050-313, Porto, Portugal.
- CIIMAR-Interdisciplinary Center for Marine and Environmental Research University of Porto, Porto de Leixões Cruise Terminal, 4450-208, Matosinhos, Portugal.
- 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116, Gandra, Portugal.
| |
Collapse
|
2
|
Sofia Almeida A, Cardoso T, Cravo S, Elizabeth Tiritan M, Remião F, Fernandes C. Binding studies of synthetic cathinones to human serum albumin by high-performance affinity chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1227:123836. [PMID: 37494753 DOI: 10.1016/j.jchromb.2023.123836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/05/2023] [Accepted: 07/16/2023] [Indexed: 07/28/2023]
Abstract
The binding affinity to human serum albumin (HSA) of a series of fourteen synthetic cathinones, new psychoactive substances widely abused, was investigated by high-performance affinity chromatography (HPAC). Zonal elution experiments were conducted to measure the retention times of each synthetic cathinone on an HSA column, which enabled the calculation of the percentage of the drug bound. For some synthetic cathinones, enantioselectivity on HSA was found. To gather information on the HSA binding sites and better understand the chiral recognition mechanisms, enantioresolution of selected cathinones was carried out at a milligram scale through liquid chromatography (LC) with carbamate polysaccharide-based columns. This work was followed by zonal displacement chromatography using known competitors with specific binding sites on HSA, namely (S)-ibuprofen and warfarin. Competition was observed between the tested drugs and both competitors (except for pentedrone with warfarin), which is consistent with an allosteric competition involving a non-cooperative binding mechanism.
Collapse
Affiliation(s)
- Ana Sofia Almeida
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; TOXRUN-Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra 4585-116, Portugal; UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal
| | - Tony Cardoso
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Sara Cravo
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Maria Elizabeth Tiritan
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; TOXRUN-Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra 4585-116, Portugal
| | - Fernando Remião
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
3
|
Enantioresolution and Binding Affinity Studies on Human Serum Albumin: Recent Applications and Trends. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9110304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interaction between proteins and drugs or other bioactive compounds has been widely explored over the past years. Several methods for analysis of this phenomenon have been developed and improved. Nowadays, increasing attention is paid to innovative methods, such as high performance affinity liquid chromatography (HPALC) and affinity capillary electrophoresis (ACE), taking into account various advantages. Moreover, the development of separation methods for the analysis and resolution of chiral drugs has been an area of ongoing interest in analytical and medicinal chemistry research. In addition to bioaffinity binding studies, both HPALC and ACE al-low one to perform other type of analyses, namely, displacement studies and enantioseparation of racemic or enantiomeric mixtures. Actually, proteins used as chiral selectors in chromatographic and electrophoretic methods have unique enantioselective properties demonstrating suitability for the enantioseparation of a large variety of chiral drugs or other bioactive compounds. This review is mainly focused in chromatographic and electrophoretic methods using human serum albumin (HSA), the most abundant plasma protein, as chiral selector for binding affinity analysis and enantioresolution of drugs. For both analytical purposes, updated examples are presented to highlight recent applications and current trends.
Collapse
|
4
|
Li Z, Hage DS. Analysis of stereoselective drug interactions with serum proteins by high-performance affinity chromatography: A historical perspective. J Pharm Biomed Anal 2017; 144:12-24. [PMID: 28094095 PMCID: PMC5505820 DOI: 10.1016/j.jpba.2017.01.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/06/2017] [Accepted: 01/10/2017] [Indexed: 01/09/2023]
Abstract
The interactions of drugs with serum proteins are often stereoselective and can affect the distribution, activity, toxicity and rate of excretion of these drugs in the body. A number of approaches based on affinity chromatography, and particularly high-performance affinity chromatography (HPAC), have been used as tools to study these interactions. This review describes the general principles of affinity chromatography and HPAC as related to their use in drug binding studies. The types of serum agents that have been examined with these methods are also discussed, including human serum albumin, α1-acid glycoprotein, and lipoproteins. This is followed by a description of the various formats based on affinity chromatography and HPAC that have been used to investigate drug interactions with serum proteins and the historical development for each of these formats. Specific techniques that are discussed include zonal elution, frontal analysis, and kinetic methods such as those that make use of band-broadening measurements, peak decay analysis, or ultrafast affinity extraction.
Collapse
Affiliation(s)
- Zhao Li
- Department of Chemistry, University of Nebraska, Lincoln, NE, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE, USA.
| |
Collapse
|
5
|
Shen Q, Wang L, Zhou H, Jiang HD, Yu LS, Zeng S. Stereoselective binding of chiral drugs to plasma proteins. Acta Pharmacol Sin 2013; 34:998-1006. [PMID: 23852086 PMCID: PMC3733166 DOI: 10.1038/aps.2013.78] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/17/2013] [Indexed: 12/15/2022]
Abstract
Chiral drugs show distinct biochemical and pharmacological behaviors in the human body. The binding of chiral drugs to plasma proteins usually exhibits stereoselectivity, which has a far-reaching influence on their pharmacological activities and pharmacokinetic profiles. In this review, the stereoselective binding of chiral drugs to human serum albumin (HSA), α1-acid glycoprotein (AGP) and lipoprotein, three most important proteins in human plasma, are detailed. Furthermore, the application of AGP variants and recombinant fragments of HSA for studying enantiomer binding properties is also discussed. Apart from the stereoselectivity of enantiomer-protein binding, enantiomer-enantiomer interactions that may induce allosteric effects are also described. Additionally, the techniques and methods used to determine drug-protein binding parameters are briefly reviewed.
Collapse
|
6
|
Del Rio A. Exploring enantioselective molecular recognition mechanisms with chemoinformatic techniques. J Sep Sci 2009; 32:1566-84. [DOI: 10.1002/jssc.200800693] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Hage DS, Jackson A, Sobansky MR, Schiel JE, Yoo MJ, Joseph KS. Characterization of drug-protein interactions in blood using high-performance affinity chromatography. J Sep Sci 2009; 32:835-53. [PMID: 19278006 PMCID: PMC2771590 DOI: 10.1002/jssc.200800640] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The binding of drugs with proteins in blood, serum, or plasma is an important process in determining the activity, distribution, rate of excretion, and toxicity of drugs in the body. High-performance affinity chromatography (HPAC) has received a great deal of interest as a means for studying these interactions. This review examines the various techniques that have been used in HPAC to examine drug-protein binding and discusses the types of information that can be obtained through this approach. A comparison of these techniques with traditional methods for binding studies (e.g., equilibrium dialysis and ultrafiltration) will also be presented. The use of HPAC with specific serum proteins and binding agents will then be discussed, including HSA and alpha(1)-acid glycoprotein (AGP). Several examples from the literature are provided to illustrate the applications of such research. Recent developments in this field are also described, such as the use of improved immobilization techniques, new data analysis methods, techniques for working directly with complex biological samples, and work with immobilized lipoproteins. The relative advantages and limitations of the methods that are described will be considered and the possible use of these techniques in the high-throughput screening or characterization of drug-protein binding will be discussed.
Collapse
Affiliation(s)
- David S Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Soskić M, Magnus V. Binding of ring-substituted indole-3-acetic acids to human serum albumin. Bioorg Med Chem 2007; 15:4595-600. [PMID: 17481907 DOI: 10.1016/j.bmc.2007.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 04/03/2007] [Accepted: 04/05/2007] [Indexed: 12/20/2022]
Abstract
The plant hormone, indole-3-acetic acid (IAA), and its ring-substituted derivatives have recently attracted attention as promising pro-drugs in cancer therapy. Here we present relative binding constants to human serum albumin for IAA and 34 of its derivatives, as obtained using the immobilized protein bound to a support suitable for high-performance liquid chromatography. We also report their octanol-water partition coefficients (logK(ow)) computed from retention data on a C(18) coated silica gel column. A four-parameter QSPR (quantitative structure-property relationships) model, based on physico-chemical properties, is put forward, which accounts for more than 96% of the variations in the binding affinities of these compounds. The model confirms the importance of lipophilicity as a global parameter governing interaction with serum albumin, but also assigns significant roles to parameters specifically related to the molecular topology of ring-substituted IAAs. Bulky substituents at ring-position 6 increase affinity, those at position 2 obstruct binding, while no steric effects were noted at other ring-positions. Electron-withdrawing substituents at position 5 enhance binding, but have no obvious effect at other ring positions.
Collapse
Affiliation(s)
- Milan Soskić
- Department of Chemistry, Faculty of Agriculture, University of Zagreb, Svetosimunska cesta 25, 10000 Zagreb, Croatia.
| | | |
Collapse
|
9
|
Affiliation(s)
- Roman Kaliszan
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gen. J. Hallera 107, 80416 Gdańsk, Poland.
| |
Collapse
|
10
|
Affiliation(s)
- Timothy J Ward
- Department of Chemistry, Millsaps College, 1701 North State Street, Box 150306, Jackson, Mississippi 39210, USA.
| | | |
Collapse
|
11
|
Millot MC. Separation of drug enantiomers by liquid chromatography and capillary electrophoresis, using immobilized proteins as chiral selectors. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 797:131-59. [PMID: 14630147 DOI: 10.1016/j.jchromb.2003.08.035] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Proteins display interesting chiral discrimination properties owing to multiple possibilities of intermolecular interactions with chiral compounds. This review deals with proteins which have been used as immobilized chiral selectors for the enantioseparation of drugs in liquid chromatography and capillary electrophoresis. The main procedures allowing the immobilization of proteins onto matrices, such as silica and zirconia particles, membranes and capillaries are first presented. Then the factors affecting the enantioseparation of drugs in liquid chromatography, using various protein-based chiral stationary phases (CSPs), are reviewed and discussed. Last, chiral separations already achieved using immobilized protein selectors in affinity capillary electrochromatography (ACEC) are presented and compared in terms of efficiency, stability and reproducibility.
Collapse
Affiliation(s)
- M C Millot
- Laboratoire de Recherche sur les Polymères, CNRS-Université Paris 12, UMR 7581, 2 à 8 rue Henri Dunant, Thiais 94320, France.
| |
Collapse
|
12
|
Abstract
Drug binding to Human Serum Albumin (HSA) is an area of intense research. The pharmacokinetics and pharmacodynamics of drugs are strongly affected by their binding to this protein. In this article, the field is reviewed, as well as our models to predict drug-binding affinities to HSA from drug structure. The physiological role of HSA is described, as well as its influence in drug action. The crystal structures of this protein are discussed, emphasizing the two drug-binding sites and the fatty acids binding sites observed therein. The advantages of using high-performance affinity chromatography to rapidly screen drugs for HSA binding are explained. The different QSAR models for HSA binding of restricted families of drugs (both from other groups and our group) are enumerated. Finally, a detailed description of our general models to predict drug-binding strengths to HSA from structure is given. It is expected for these models to be useful in drug design and pharmaceutical research.
Collapse
Affiliation(s)
- Gonzalo Colmenarejo
- Department of Cheminformatics, GlaxoSmithKline, Centro de Investigación Básica, Parque Tecnológico de Madrid, E-28760 Madrid, Spain.
| |
Collapse
|