1
|
Yamazoe H, Kominami C, Abe H. Superior Adhesion of a Multifunctional Protein-Based Micropatch to Intestinal Tissue by Harnessing the Hydrophobic Effect. SMALL METHODS 2022; 6:e2200153. [PMID: 35460203 DOI: 10.1002/smtd.202200153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Drug delivery systems comprising drug carriers capable of adhering to intestinal tissue have considerable potential to realize more sophisticated systemic drug delivery and topical drug treatments in the intestinal tract. The development of innovative strategies for improving the adhesion efficiency of carriers is of high importance for the advancement of this field. Herein, a novel approach to achieving high adhesion efficiency of drug carriers is presented, where the accessibility of the carrier to the intestinal surface and its subsequent adhesion to the intestinal tissue are promoted by utilizing the thermodynamic tendency of the hydrophobic carrier and its dispersion solvent, triacetin, to be excluded from the aqueous environment. Drug carriers are fabricated using proteins, imparting multiple functions, including drug release and the removal of reactive oxygen species (ROS). Results of ex vivo studies indicate that this multifunctional protein-based carrier, "protein micropatch," adheres to various mouse intestinal tissues, including the small intestine, colon, and inflamed colon, with high efficiency. Furthermore, protein micropatches, administered to mice via oral or rectal routes, successfully adhere to the intestinal tract. This approach and the highly functionalized carrier described in the study have the potential to significantly contribute to the development of bioadhesive carrier-based drug delivery systems.
Collapse
Affiliation(s)
- Hironori Yamazoe
- Advanced Medical Devices Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| | - Chizuko Kominami
- Advanced Medical Devices Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| | - Hiroko Abe
- Cellular Function Analysis Research Group, Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa, 761-0395, Japan
| |
Collapse
|
2
|
Sarker S, Wankum B, Perey T, Mau MM, Shimizu J, Jones R, Terry B. A Novel Capsule-Delivered Enteric Drug-Injection Device for Delivery of Systemic Biologics: A Pilot Study in a Porcine Model. IEEE Trans Biomed Eng 2021; 69:1870-1879. [PMID: 34807818 DOI: 10.1109/tbme.2021.3129653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Innovative swallowable capsule technologies such as drug-loaded, dissolvable microneedles, mucoadhesive patches, and various microdevices present unique drug-carrying capabilities to overcome challenges regarding oral delivery of biologics. Here, we report a swallowable capsule for intestinal drug delivery (SCIDD) with the potential of directly injecting biological therapeutics into the insensate small intestine wall. The design, optimization, and validation of the SCIDD's primary subsystems were performed both ex-vivo and in-vivo. The assembled capsule was further tested in vivo to validate the actuation sequence and showed a 70% (n=17) success rate in an animal model. Additionally, a drug delivery study indicated systemic uptake of adalimumab via SCIDD compared with luminal delivery in the small intestine. The pilot study presented here establishes that the novel platform could be used to orally deliver systemic biologics.
Collapse
|
3
|
Formulation strategies to improve the efficacy of intestinal permeation enhancers . Adv Drug Deliv Rev 2021; 177:113925. [PMID: 34418495 DOI: 10.1016/j.addr.2021.113925] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023]
Abstract
The use of chemical permeation enhancers (PEs) is the most widely tested approach to improve oral absorption of low permeability active agents, as represented by peptides. Several hundred PEs increase intestinal permeability in preclinical bioassays, yet few have progressed to clinical testing and, of those, only incremental increases in oral bioavailability (BA) have been observed. Still, average BA values of ~1% were sufficient for two recent FDA approvals of semaglutide and octreotide oral formulations. PEs are typically screened in static in vitro and ex-vivo models where co-presentation of active agent and PE in high concentrations allows the PE to alter barrier integrity with sufficient contact time to promote flux across the intestinal epithelium. The capacity to maintain high concentrations of co-presented agents at the epithelium is not reached by standard oral dosage forms in the upper GI tract in vivo due to dilution, interference from luminal components, fast intestinal transit, and possible absorption of the PE per se. The PE-based formulations that have been assessed in clinical trials in either immediate-release or enteric-coated solid dosage forms produce low and variable oral BA due to these uncontrollable physiological factors. For PEs to appreciably increase intestinal permeability from oral dosage forms in vivo, strategies must facilitate co-presentation of PE and active agent at the epithelium for a sustained period at the required concentrations. Focusing on peptides as examples of a macromolecule class, we review physiological impediments to optimal luminal presentation, discuss the efficacy of current PE-based oral dosage forms, and suggest strategies that might be used to improve them.
Collapse
|
4
|
Sarker S, Wankum B, Shimizu J, Jones R, Terry B. A Factorial Approach for Optimizing the Design Parameters of a Tissue Attachment Mechanism for Drug Delivery. IEEE Trans Biomed Eng 2021; 69:32-41. [PMID: 34097601 DOI: 10.1109/tbme.2021.3086975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Biological macromolecule drugs or biologics are not suited for commonly preferred oral delivery due to their intrinsic instability and physical, chemical, or immunological barriers to the gastrointestinal tract. Ingestible capsule robots (ICR) have become a versatile platform, including use for drug delivery applications for various gastrointestinal pathologies with future potential for systemic drug delivery. In this work, a tissue attachment mechanism (TAM) for a drug delivery ICR is introduced that can facilitate a non-invasive systemic delivery of unaltered biologics via direct injection through the insensate layers of the small intestine. The main prerequisite for achieving systemic drug delivery via this device is to have strong tissue attachment of the TAM. This study aimed to optimize the attachment success rate for drug delivery and characterize attachment duration in vivo. A fractional factorial approach was used in vivo to identify and optimize factors that most influence attachment of the TAM to maximize attachment rate. Multiple in vivo optimization levels were performed using the small intestine of anesthetized pigs, and an attachment success rate of 92% was achieved. Optimal TAMs were surgically placed in vivo to determine the duration of attachment following anesthetization and surgery recovery. The average in vivo attachment duration was 32.29.4 hours. This work establishes a device for consistent and reliable attachment duration, making the TAM a suitable candidate for a 24-hour systemic drug delivery platform.
Collapse
|
5
|
Maher S, Geoghegan C, Brayden DJ. Intestinal permeation enhancers to improve oral bioavailability of macromolecules: reasons for low efficacy in humans. Expert Opin Drug Deliv 2020; 18:273-300. [PMID: 32937089 DOI: 10.1080/17425247.2021.1825375] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Intestinal permeation enhancers (PEs) are substances that transiently alter the intestinal epithelial barrier to facilitate permeation of macromolecules with low oral bioavailability (BA). While a number of PEs have progressed to clinical testing in conventional formulations with macromolecules, there has been only low single digit increases in oral BA, irrespective of whether the drug met primary or secondary clinical endpoints. AREAS COVERED This article considers the causes of sub-optimal BA of macromolecules from PE dosage forms and suggests approaches that may improve performance in humans. EXPERT OPINION Permeation enhancement is most effective when the PE is co-localized with the macromolecule at the epithelial surface. Conditions in the GI tract impede optimal co-localization. Novel delivery systems that limit dilution and spreading of the PE and macromolecule in the small intestine have attempted to replicate promising enhancement efficacy observed in static drug delivery models.
Collapse
Affiliation(s)
- Sam Maher
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Caroline Geoghegan
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David J Brayden
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Broesder A, Kosta AMMAC, Woerdenbag HJ, Nguyen DN, Frijlink HW, Hinrichs WLJ. pH-dependent ileocolonic drug delivery, part II: preclinical evaluation of novel drugs and novel excipients. Drug Discov Today 2020; 25:1374-1388. [PMID: 32562842 DOI: 10.1016/j.drudis.2020.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/18/2020] [Accepted: 06/08/2020] [Indexed: 01/18/2023]
Abstract
Novel drugs and novel excipients in pH-dependent ileocolonic drug delivery systems have to be tested in animals. Which animal species are suitable and what in vivo methods are used to verify ileocolonic drug delivery?
Collapse
Affiliation(s)
- Annemarie Broesder
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Anne-Marijke M A C Kosta
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells and Systems, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Herman J Woerdenbag
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Duong N Nguyen
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henderik W Frijlink
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wouter L J Hinrichs
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
7
|
Micro and nanoscale technologies in oral drug delivery. Adv Drug Deliv Rev 2020; 157:37-62. [PMID: 32707147 PMCID: PMC7374157 DOI: 10.1016/j.addr.2020.07.012] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022]
Abstract
Oral administration is a pillar of the pharmaceutical industry and yet it remains challenging to administer hydrophilic therapeutics by the oral route. Smart and controlled oral drug delivery could bypass the physiological barriers that limit the oral delivery of these therapeutics. Micro- and nanoscale technologies, with an unprecedented ability to create, control, and measure micro- or nanoenvironments, have found tremendous applications in biology and medicine. In particular, significant advances have been made in using these technologies for oral drug delivery. In this review, we briefly describe biological barriers to oral drug delivery and micro and nanoscale fabrication technologies. Micro and nanoscale drug carriers fabricated using these technologies, including bioadhesives, microparticles, micropatches, and nanoparticles, are described. Other applications of micro and nanoscale technologies are discussed, including fabrication of devices and tissue engineering models to precisely control or assess oral drug delivery in vivo and in vitro, respectively. Strategies to advance translation of micro and nanotechnologies into clinical trials for oral drug delivery are mentioned. Finally, challenges and future prospects on further integration of micro and nanoscale technologies with oral drug delivery systems are highlighted.
Collapse
|
8
|
Abstract
Biologics now constitute a significant element of available medical treatments. Owing to their clinical and commercial success, biologics are a rapidly growing class and have become a dominant therapeutic modality. Although most of the successful biologics to date are drugs that bear a peptidic backbone, ranging from small peptides to monoclonal antibodies (~500 residues; 150 kDa), new biologic modalities, such as nucleotide-based therapeutics and viral gene therapies, are rapidly maturing towards widespread clinical use. Given the rise of peptides and proteins in the pharmaceutical landscape, tremendous research and development interest exists in developing less-invasive or non-invasive routes for the systemic delivery of biologics, including subcutaneous, transdermal, oral, inhalation, nasal and buccal routes. This Review summarizes the current status, latest updates and future prospects for such delivery of peptides, proteins and other biologics.
Collapse
|
9
|
Xu J, Lin Y, Boulas P, Peterson ML. Low colonic absorption drugs: risks and opportunities in the development of oral extended release products. Expert Opin Drug Deliv 2017; 15:197-211. [PMID: 28988504 DOI: 10.1080/17425247.2018.1389889] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Currently numerous drugs have been observed with lower colonic absorption than small intestine absorption, which can significantly impact in vivo performance of their oral extended release (ER) products. AREAS COVERED We reviewed over 300 publications, patents, book chapters, and commercial reports of drug products from regulatory agencies for low colonic absorption (LCA) drugs and critical findings are discussed. The focuses of this article are (1) current findings on the causes of low colonic absorption to support early assessment of LCA candidates, and (2) current knowledge on successful ER strategies and technical platforms used for LCA drugs in commercial drug products to facilitate oral ER product development. EXPERT OPINION Colonic drug absorption is one of the critical considerations in successful development of oral ER products. The root causes of low colonic absorption in many LCA drugs are still unclear. It is recommended to evaluate colonic drug absorption of drug candidate at early stage of oral ER product development. After evaluation, the selection of a formulation platform to develop an oral ER product needs to be carefully considered for LCA drugs. Based on the current commercial oral ER formulation platforms for LCA drugs, compounds are first divided into five types (I-V) and different ER formulation approaches with higher success rate are recommended for each type.
Collapse
Affiliation(s)
- Jin Xu
- a Pharmaceutical Development , Biogen Inc , Cambridge , MA , USA
| | - Yiqing Lin
- a Pharmaceutical Development , Biogen Inc , Cambridge , MA , USA
| | - Pierre Boulas
- a Pharmaceutical Development , Biogen Inc , Cambridge , MA , USA
| | | |
Collapse
|
10
|
Kirsch K, Hanke U, Weitschies W. An overview of intestinal wafers for oral drug delivery. Eur J Pharm Biopharm 2017; 114:135-144. [DOI: 10.1016/j.ejpb.2017.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/22/2016] [Accepted: 01/05/2017] [Indexed: 10/20/2022]
|
11
|
Bassi da Silva J, Ferreira SBDS, de Freitas O, Bruschi ML. A critical review about methodologies for the analysis of mucoadhesive properties of drug delivery systems. Drug Dev Ind Pharm 2017; 43:1053-1070. [DOI: 10.1080/03639045.2017.1294600] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jéssica Bassi da Silva
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringá, Maringá, Paran´, Brazil
| | - Sabrina Barbosa de Souza Ferreira
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringá, Maringá, Paran´, Brazil
| | - Osvaldo de Freitas
- Department of Pharmaceutical Sciences, Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcos Luciano Bruschi
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringá, Maringá, Paran´, Brazil
| |
Collapse
|
12
|
Challenges in oral drug delivery of antiretrovirals and the innovative strategies to overcome them. Adv Drug Deliv Rev 2016; 103:105-120. [PMID: 26772138 DOI: 10.1016/j.addr.2015.12.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 12/20/2015] [Accepted: 12/28/2015] [Indexed: 01/30/2023]
Abstract
Development of novel drug delivery systems (DDS) represents a promising opportunity to overcome the various bottlenecks associated with the chronic antiretroviral (ARV) therapy of the human immunodeficiency virus (HIV) infection. Oral drug delivery is the most convenient and simplest route of drug administration that involves the swallowing of a pharmaceutical compound with the intention of releasing it into the gastrointestinal tract. In oral delivery, drugs can be formulated in such a way that they are protected from digestive enzymes, acids, etc. and released in different regions of the small intestine and/or the colon. Not surprisingly, with the exception of the subcutaneous enfuvirtide, all the marketed ARVs are administered orally. However, conventional (marketed) and innovative (under investigation) oral delivery systems must overcome numerous challenges, including the acidic gastric environment, and the poor aqueous solubility and physicochemical instability of many of the approved ARVs. In addition, the mucus barrier can prevent penetration and subsequent absorption of the released drug, a phenomenon that leads to lower oral bioavailability and therapeutic concentration in plasma. Moreover, the frequent administration of the cocktail (ARVs are administered at least once a day) favors treatment interruption. To improve the oral performance of ARVs, the design and development of more efficient oral drug delivery systems are called for. The present review highlights various innovative research strategies adopted to overcome the limitations of the present treatment regimens and to enhance the efficacy of the oral ARV therapy in HIV.
Collapse
|
13
|
Polymeric microcontainers improve oral bioavailability of furosemide. Int J Pharm 2016; 504:98-109. [DOI: 10.1016/j.ijpharm.2016.03.050] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 03/25/2016] [Accepted: 03/26/2016] [Indexed: 12/18/2022]
|
14
|
Mansuri S, Kesharwani P, Jain K, Tekade RK, Jain N. Mucoadhesion: A promising approach in drug delivery system. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2016.01.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Affiliation(s)
- Mark W. Tibbitt
- Koch
Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - James E. Dahlman
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Robert Langer
- Koch
Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Harvard-MIT
Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Abstract
Microwells fabricated from poly-L-lactic acid (PLLA) were evaluated for their application as an oral drug delivery system using the amorphous sodium salt of furosemide (ASSF) as a model drug. Hot embossing of PLLA resulted in fabrication of microwells with an inner diameter of 240 μm and a height of 100 μm. The microwells were filled with ASSF using a modified screen printing technique, followed by coating of the microwell cavities with a gastro-resistant lid of Eudragit® L100. The release behavior of ASSF from the coated microwells was investigated using a μ-Diss profiler and a UV imaging system, and under conditions simulating the changing environment of the gastrointestinal tract. Biorelevant gastric medium (pH 1.6) was employed, after which a change to biorelevant intestinal release medium (pH 6.5) was carried out. Both μ-Diss profiler and UV imaging release experiments showed that sealing of microwell cavities with an Eudragit® layer prevented drug release in biorelevant gastric medium. An immediate release of the ASSF from coated microwells was observed in the intestinal medium. This pH-triggered release behavior demonstrates the future potential of PLLA microwells as a site-specific oral drug delivery system.
Collapse
|
17
|
Spizzirri UG, Cirillo G, Curcio M, Spataro T, Picci N, Iemma F. Coated biodegradable casein nanospheres: a valuable tool for oral drug delivery. Drug Dev Ind Pharm 2015; 41:2006-17. [PMID: 26023992 DOI: 10.3109/03639045.2015.1040415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Biodegradable casein nanospheres for the sustained release of bioactive molecules in the gastro-intestinal tract were prepared by precipitation polymerization using sodium methacrylate (NaMA) and N,N'-methylene bis-acrylamide (MEBA) as pH-responsive monomer and cross-linker. Three materials with different casein amount were obtained and characterized by scanning electron microscopy, dimensional analysis, water uptake, cytotoxicity and enzymatic degradation experiments. Nanospheres biodegradability was tuned by coating with polyacrylic acid. Coated and uncoated materials were investigated as delivery vehicles for diclofenac sodium salt. For un-coated samples, the release raise 100% in 30 h, while for coated specimens these values were lower than 70%, due to the diffusional constraints of polymer layer.
Collapse
Affiliation(s)
- Umile Gianfranco Spizzirri
- a Dipartimento di Farmacia e Scienze della Salute e della Nutrizione , Università della Calabria, Edificio Polifunzionale , Arcavacata di Rende , Italia
| | - Giuseppe Cirillo
- a Dipartimento di Farmacia e Scienze della Salute e della Nutrizione , Università della Calabria, Edificio Polifunzionale , Arcavacata di Rende , Italia
| | - Manuela Curcio
- a Dipartimento di Farmacia e Scienze della Salute e della Nutrizione , Università della Calabria, Edificio Polifunzionale , Arcavacata di Rende , Italia
| | - Tania Spataro
- a Dipartimento di Farmacia e Scienze della Salute e della Nutrizione , Università della Calabria, Edificio Polifunzionale , Arcavacata di Rende , Italia
| | - Nevio Picci
- a Dipartimento di Farmacia e Scienze della Salute e della Nutrizione , Università della Calabria, Edificio Polifunzionale , Arcavacata di Rende , Italia
| | - Francesca Iemma
- a Dipartimento di Farmacia e Scienze della Salute e della Nutrizione , Università della Calabria, Edificio Polifunzionale , Arcavacata di Rende , Italia
| |
Collapse
|
18
|
Hong Z, Xu Y, Yin JF, Jin J, Jiang Y, Du Q. Improving the effectiveness of (-)-epigallocatechin gallate (EGCG) against rabbit atherosclerosis by EGCG-loaded nanoparticles prepared from chitosan and polyaspartic acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:12603-12609. [PMID: 25483592 DOI: 10.1021/jf504603n] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
(-)-Epigallocatechin gallate (EGCG) is the major bioactive compound in green tea. Its effect is limited by the harsh environment of the gastrointestinal tract. The present study investigates how the effectiveness of EGCG is influenced by its encapsulation into self-assembled nanoparticles of chitosan (CS) and aspartic acid (PAA). Blank nanoparticles with a mean diameter of ca. 93 nm were prepared from 30-50 kDa PAA and 3-5 kDa CS with a mass rate of 1:1. EGCG was loaded in the nanoparticles to yield EGCG-CS-PAA nanoparticles with an average diameter of 102 nm, which were pH-responsive and demonstrated different EGCG release profiles in simulated gastrointestinal tract media. The average ratio (%) of lipid deposition for EGCG-CS-PAA nanoparticles administered orally to rabbits was 16.9 ± 5.8%, which was close to that of oral simvastatin (15.6 ± 4.1%). Orally administered EGCG alone yielded an average ratio of lipid deposit area of 42.1 ± 4.0%, whereas this value was 65.3 ± 10.8% for the blank nanoparticles. The effectiveness of EGCG against rabbit atherosclerosis was significantly improved by incorporating EGCG into the nanoformulation.
Collapse
Affiliation(s)
- Zhiyong Hong
- Institute of Food Chemistry, Zhejiang A&F University , 88 Huanbei Road, Hangzhou, Zhejiang 311300, China
| | | | | | | | | | | |
Collapse
|
19
|
Chirra HD, Shao L, Ciaccio N, Fox CB, Wade JM, Ma A, Desai TA. Planar microdevices for enhanced in vivo retention and oral bioavailability of poorly permeable drugs. Adv Healthc Mater 2014; 3:1648-54. [PMID: 24711341 DOI: 10.1002/adhm.201300676] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/07/2014] [Indexed: 11/09/2022]
Abstract
The development of novel oral drug delivery platforms for administering therapeutics in a safe and effective manner through the harsh gastrointestinal environment is of great importance. Here, the use of engineered thin planar poly(methyl methacrylate) (PMMA) microdevices is tested to enhance oral bioavailability of acyclovir, a poorly permeable drug. Acyclovir is loaded into the unidirectional drug releasing microdevice reservoirs using a drug entrapping photocross-linkable hydrogel matrix. An increase in acyclovir permeation across in vitro caco-2 monolayer is seen in the presence of microdevices as compared with acyclovir-entrapped hydrogels or free acyclovir solution. Cell proliferation studies show that microdevices are relatively nontoxic in nature for use in in vivo studies. Enhanced in vivo retention of microdevices is observed as their thin side walls experience minimal peristaltic shear stress as compared with spherical microparticles. Unidirectional acyclovir release and enhanced retention of microdevices achieve a 4.5-fold increase in bioavailability in vivo as compared with an oral gavage of acyclovir solution with the same drug mass. The enhanced oral bioavailability results suggest that thin, planar, bioadhesive, and unidirectional drug releasing microdevices will significantly improve the systemic and localized delivery of a broad range of oral therapeutics in the near future.
Collapse
Affiliation(s)
- Hariharasudhan D. Chirra
- Department of Bioengineering and Therapeutic Sciences; University of California; 1700 4th Street, Byers Hall 204, Box 2520 San Francisco CA 94158 USA
| | - Ling Shao
- Division of Gastroenterology, Department of Medicine; University of California; 513 Parnassus Ave San Francisco CA 94143 USA
| | - Natalie Ciaccio
- Department of Bioengineering and Therapeutic Sciences; University of California; 1700 4th Street, Byers Hall 204, Box 2520 San Francisco CA 94158 USA
| | - Cade B. Fox
- Department of Bioengineering and Therapeutic Sciences; University of California; 1700 4th Street, Byers Hall 204, Box 2520 San Francisco CA 94158 USA
| | - Jennifer M. Wade
- Department of Bioengineering and Therapeutic Sciences; University of California; 1700 4th Street, Byers Hall 204, Box 2520 San Francisco CA 94158 USA
| | - Averil Ma
- Division of Gastroenterology, Department of Medicine; University of California; 513 Parnassus Ave San Francisco CA 94143 USA
| | - Tejal A. Desai
- Department of Bioengineering and Therapeutic Sciences; University of California; 1700 4th Street, Byers Hall 204, Box 2520 San Francisco CA 94158 USA
| |
Collapse
|
20
|
Yu SH, Tang DW, Hsieh HY, Wu WS, Lin BX, Chuang EY, Sung HW, Mi FL. Nanoparticle-induced tight-junction opening for the transport of an anti-angiogenic sulfated polysaccharide across Caco-2 cell monolayers. Acta Biomater 2013; 9:7449-59. [PMID: 23583645 DOI: 10.1016/j.actbio.2013.04.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 03/15/2013] [Accepted: 04/02/2013] [Indexed: 01/23/2023]
Abstract
Fucoidan has the ability to inhibit angiogenesis by human umbilical vein endothelial cells (HUVECs). However, a major clinical limitation is its poor oral availability because fucoidan is a hydrophilic macromolecule. In this study, an oversulfation reaction of fucoidan has been performed to enhance its anti-angiogenic activities. The synthesized, oversulfated fucoidan (OFD) was characterized by Fourier transform infrared spectroscopy. The oversulfate content of OFD was estimated to be 41.7% by using a BaCl2 gelatin method. Nanoparticles (NPs) composed of chitosan (CS) and OFD were prepared by a polycation-polyanion complex method. The mean particle sizes of prepared CS/OFD NPs were in the range of 172-265nm with a negative or positive surface charge, depending on the relative concentrations of CS to OFD used. The self-assembled NPs with pH-sensitive characteristics could be used as a pH-switched nanocarrier for oral delivery of the antiangiogenic macromolecule, OFD, in response to simulated gastrointestinal (GI) tract media. Evaluation of test NPs in enhancing the intestinal paracellular transport of OFD suggested that the NPs with a positive surface charge could transiently open the tight junctions between Caco-2 cells and thus increase the paracellular permeability. Tight-junction opening and restoration were examined by monitoring the redistribution of ZO-1 tight-junction proteins using confocal laser scanning microscopy (CLSM). The transported OFD significantly inhibits the tube formation of HUVECs via competitive binding of OFD and basic fibroblast growth factor (bFGF) to bFGF receptors (bFGFRs).
Collapse
Affiliation(s)
- Shu-Huei Yu
- Department of Materials Science and Engineering, Vanung University, Chung-Li, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Characterization of tea catechins-loaded nanoparticles prepared from chitosan and an edible polypeptide. Food Hydrocoll 2013. [DOI: 10.1016/j.foodhyd.2012.04.014] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Chirra HD, Desai TA. Multi-reservoir bioadhesive microdevices for independent rate-controlled delivery of multiple drugs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:3839-3846. [PMID: 22962019 PMCID: PMC3527694 DOI: 10.1002/smll.201201367] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/07/2012] [Indexed: 05/29/2023]
Abstract
A variety of oral administrative systems such as enterically coated tablets, capsules, particles, and liposomes have been developed to improve oral bioavailability of drugs. However, they suffer from poor intestinal localization and therapeutic efficacy due to the various physiological conditions and high shear fluid flow. Fabrication of novel microdevices combined with the introduction of controlled release, improved adhesion, selective targeting, and tissue permeation may overcome these issues and potentially diminish the toxicity and high frequency of conventional oral administration. Herein, thin, asymmetric, poly(methyl methacrylate) (PMMA) microdevices are fabricated with multiple reservoirs using photolithography and reactive ion etching. They are loaded with different individual model drug in each reservoir. Enhanced bioadhesion of the microdevices is observed in the presence of a conjugated of targeting protein (tomato lectin) to the PMMA surface. As compared to drug encompassing hydrogels, an increase in drug permeation across the caco-2 monolayer is noticed in the presence of a microdevice loaded with the same drug-hydrogel system. Also, the release of multiple drugs from their respective reservoirs is found to be independent from each other. The use of different hydrogel systems in each reservoir shows differences in the controlled release of the respective drugs over the same release period. These results suggest that, in the future, microfabricated unidirectional multi-drug releasing devices will have an impact on the oral administration of a broad range of therapeutics.
Collapse
Affiliation(s)
| | - Tejal A. Desai
- Corresponding Author. 1700 4 Street, Byers Hall 204, Box 2520, San Francisco, CA 94158, USA. Tel.: +1 415 514 4503; fax: +1 415 514 9656.
| |
Collapse
|
23
|
Chirra HD, Desai TA. Emerging microtechnologies for the development of oral drug delivery devices. Adv Drug Deliv Rev 2012; 64:1569-78. [PMID: 22981755 PMCID: PMC3488155 DOI: 10.1016/j.addr.2012.08.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 08/06/2012] [Accepted: 08/12/2012] [Indexed: 10/27/2022]
Abstract
The development of oral drug delivery platforms for administering therapeutics in a safe and effective manner across the gastrointestinal epithelium is of much importance. A variety of delivery systems such as enterically coated tablets, capsules, particles, and liposomes have been developed to improve oral bioavailability of drugs. However, orally administered drugs suffer from poor localization and therapeutic efficacy due to various physiological conditions such as low pH, and high shear intestinal fluid flow. Novel platforms combining controlled release, improved adhesion, tissue penetration, and selective intestinal targeting may overcome these issues and potentially diminish the toxicity and high frequency of administration associated with conventional oral delivery. Microfabrication along with appropriate surface chemistry, provide a means to fabricate these platforms en masse with flexibility in tailoring the shape, size, reservoir volume, and surface characteristics of microdevices. Moreover, the same technology can be used to include integrated circuit technology and sensors for designing sophisticated autonomous drug delivery devices that promise to significantly improve point of care diagnostic and therapeutic medical applications. This review sheds light on some of the fabrication techniques and addresses a few of the microfabricated devices that can be effectively used for controlled oral drug delivery applications.
Collapse
Affiliation(s)
- Hariharasudhan D. Chirra
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, U.S.A
| | - Tejal A. Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, U.S.A
| |
Collapse
|
24
|
He P, Tang Z, Lin L, Deng M, Pang X, Zhuang X, Chen X. Novel Biodegradable and pH-Sensitive Poly(ester amide) Microspheres for Oral Insulin Delivery. Macromol Biosci 2012; 12:547-56. [DOI: 10.1002/mabi.201100358] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 12/07/2011] [Indexed: 12/18/2022]
|
25
|
Cetin M, Aktas MS, Vural I, Ozturk M. Salmon calcitonin-loaded Eudragit® and Eudragit®-PLGA nanoparticles:in vitroandin vivoevaluation. J Microencapsul 2011; 29:156-66. [DOI: 10.3109/02652048.2011.635426] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Fukushima K, Prabha T, Ito Y, Sugioka N, Takada K. Polymeric three-layered particles for the delivery of prednisolone to the lower gastrointestinal tract in rats. Drug Dev Ind Pharm 2011; 37:335-41. [PMID: 21244236 DOI: 10.3109/03639045.2010.513010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The aim of this study is to investigate the feasibility of three-layered particles as a drug delivery system to the lower part of small intestine. METHODS The particle surface and basement layers were made of enteric polymer, Eudragit(®) S100, and water-insoluble polymer, ethylcellulose. Prednisolone (PSL), as a model drug, was sealed with the surface and basement layers. After the administration of the test preparations to the duodenum of rats, blood samples were collected and plasma PSL levels were measured by high-performance liquid chromatography. The retention and transit characteristics of the three-layered particles in rat small intestine were studied by direct observation after abdominal incision up to 8 hours. RESULTS Three-layered PSL particles showed C(max) of 0.32 ± 0.07 μg/mL and T(max) at 6 hours, whereas the mean C(max) and T(max) of PSL powder, as a reference preparation, were 0.42 ± 0.03 μg/mL and 1 hour, respectively. With the direct observations, after administration of particles, about 77.5% of them were detected in duodenum at 1 hour, 45% in distal jejunum at 3 hours, and 50% in proximal ileum at 4 hours. Then, they were gradually transferred to the lower part of the small intestine at 5-8 hours time intervals. In comparison with PSL powder, three-layered particles delayed the intestinal transit and released PSL during their passage through the small intestine. CONCLUSION These results suggested that three-layered particles adhered to the gastrointestinal mucosa and sustained the release of drug, resulting in drug delivery to the lower part of gastrointestinal tract.
Collapse
Affiliation(s)
- Keizo Fukushima
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Japan.
| | | | | | | | | |
Collapse
|
27
|
Shibata N, Nishumura A, Naruhashi K, Nakao Y, Miura R. Preparation and pharmaceutical evaluation of new sustained-release capsule including starch-sponge matrix (SSM). Biomed Pharmacother 2010; 64:352-8. [DOI: 10.1016/j.biopha.2009.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 09/27/2009] [Indexed: 01/18/2023] Open
|
28
|
Liu C, Liu X, Tong J, Chen D, Bi K. Design and evaluation ofSan-huangdispersible tablet – an efficient delivery system for Traditional Chinese Medicine. Pharm Dev Technol 2009; 14:506-15. [DOI: 10.1080/10837450902814164] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Hoyer H, Greindl M, Bernkop‐Schnürch A. Design and In Vivo Evaluation of a Patch System Based on Thiolated Polymers. J Pharm Sci 2009; 98:620-7. [DOI: 10.1002/jps.21480] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Lin YH, Sonaje K, Lin KM, Juang JH, Mi FL, Yang HW, Sung HW. Multi-ion-crosslinked nanoparticles with pH-responsive characteristics for oral delivery of protein drugs. J Control Release 2008; 132:141-9. [DOI: 10.1016/j.jconrel.2008.08.020] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 07/04/2008] [Accepted: 08/29/2008] [Indexed: 10/21/2022]
|
31
|
Ainslie KM, Desai TA. Microfabricated implants for applications in therapeutic delivery, tissue engineering, and biosensing. LAB ON A CHIP 2008; 8:1864-78. [PMID: 18941687 PMCID: PMC2970504 DOI: 10.1039/b806446f] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
By adapting microfabrication techniques originally developed in the microelectronics industry novel devices for drug delivery, tissue engineering and biosensing have been engineered for in vivo use. Implant microfabrication uses a broad range of techniques including photolithography, and micromachining to create devices with features ranging from 0.1 to hundreds of microns with high aspect ratios and precise features. Microfabrication offers device feature scale that is relevant to the tissues and cells to which they are applied, as well as offering ease of en masse fabrication, small device size, and facile incorporation of integrated circuit technology. Utilizing these methods, drug delivery applications have been developed for in vivo use through many delivery routes including intravenous, oral, and transdermal. Additionally, novel microfabricated tissue engineering approaches propose therapies for the cardiovascular, orthopedic, and ocular systems, among others. Biosensing devices have been designed to detect a variety of analytes and conditions in vivo through both enzymatic-electrochemical reactions and sensor displacement through mechanical loading. Overall, the impact of microfabricated devices has had an impact over a broad range of therapies and tissues. This review addresses many of these devices and highlights their fabrication as well as discusses materials relevant to microfabrication techniques.
Collapse
Affiliation(s)
- Kristy M. Ainslie
- Department of Bioengineering and Therapeutic Sciences; Department of Physiology University of California, San Francisco
| | - Tejal A. Desai
- Department of Bioengineering and Therapeutic Sciences; Department of Physiology University of California, San Francisco
| |
Collapse
|
32
|
Ito Y, Tosh B, Togashi Y, Amagase K, Kishida T, Kishida T, Sugioka N, Shibata N, Takada K. Absorption of interferon alpha from patches in rats. J Drug Target 2008; 13:383-90. [PMID: 16278158 DOI: 10.1080/10611860500331506] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Interferon alpha (IFN-alpha), patch preparations composed of three layers, water-insoluble backing layer, drug containing layer with absorption enhancer and surface layer containing pH-dependent polymer were prepared. As absorption enhancer, three surfactants, Gelucire44/14 (Lauroyl macrogol-32 glycerides), Labrasol (Caprylocaproyl macrogol-8 glycerides) and HCO-60 (polyoxyethylated hydrogenerated castor oil) were used in preparing IFN-alpha patch preparations. The intestinal absorption of IFN-alpha was studied after the administration of test patch preparations into the rat jejunum, 50,000 IU/kg. The serum IFN-alpha levels were measured by an ELISA method and both C(max) and AUC were determined as the index of absorption of IFN-alpha. Gelucire44/14 preparation including Pharmasol for the stable solidification showed the higher C(max), 7.66 +/- 0.82 IU/ml, and AUC, 12.85 +/- 1.49 IU h/ml, than Labrasol (6.51 +/- 0.89 and 8.30 +/- 1.34 IU h/ml) and HCO-60 (6.02 +/- 1.14, 7.53 +/- 1.84 IU h/ml) preparations, respectively. By comparing to the AUC obtained after s.c. injection of the same dose of IFN-alpha to rats, bioavailability (BA) was estimated to be 7.8% in Gelucire44/14 preparation. In vitro release study showed that the T50%s, the time when half of the formulated IFN-alpha is released from the patches, were 3.4 +/- 0.1 min for HCO-60, 7.8 +/- 0.1 min for Gelucire44/14 and 11.4 +/- 0.1 min for Labrasol preparations. To study the effect of absorption site, Gelucire44/14 preparation was administered into the rat duodenum and ileum. However, there were not significant differences on AUC among the three absorption sites. By reducing the IFN-alpha dose from 50,000 to 25,000 IU/kg, the serum IFN-alpha levels vs time profile showed a tendency of dose-dependency. When the histological examination of small intestinal mucosa was carried out in this study, the small intestinal mucosa after the Gelucire44/14 patches administered and before it was administered, could not recognize impaired. From these results, the usefulness of oral patch system for the oral delivery of IFN-alpha has been proved in rats.
Collapse
Affiliation(s)
- Yukako Ito
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Mi FL, Wu YY, Lin YH, Sonaje K, Ho YC, Chen CT, Juang JH, Sung HW. Oral delivery of peptide drugs using nanoparticles self-assembled by poly(gamma-glutamic acid) and a chitosan derivative functionalized by trimethylation. Bioconjug Chem 2008; 19:1248-55. [PMID: 18517235 DOI: 10.1021/bc800076n] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the study, chitosan (CS) was conjugated with trimethyl groups for the synthesis of N-trimethyl chitosan (TMC) polymers with different degrees of quaternization. Nanoparticles (NPs) self-assembled by the synthesized TMC and poly(gamma-glutamic acid) (gamma-PGA, TMC/gamma-PGA NPs) were prepared for oral delivery of insulin. The loading efficiency and loading content of insulin in TMC/gamma-PGA NPs were 73.8 +/- 2.9% and 23.5 +/- 2.1%, respectively. TMC/gamma-PGA NPs had superior stability in a broader pH range to CS/gamma-PGA NPs; the in vitro release profiles of insulin from both test NPs were significantly affected by their stability at distinct pH environments. At pH 7.0, CS/gamma-PGA NPs became disintegrated, resulting in a rapid release of insulin, which failed to provide an adequate retention of loaded insulin, while the cumulative amount of insulin released from TMC/gamma-PGA NPs was significantly reduced. At pH 7.4, TMC/gamma-PGA NPs were significantly swelled and a sustained release profile of insulin was observed. Confocal microscopy confirmed that TMC40/gamma-PGA NPs opened the tight junctions of Caco-2 cells to allow the transport of insulin along the paracellular pathway. Transepithelial-electrical-resistance measurements and transport studies implied that CS/gamma-PGA NPs can be effective as an insulin carrier only in a limited area of the intestinal lumen where the pH values are close to the p K a of CS. In contrast, TMC40/gamma-PGA NPs may be a suitable carrier for transmucosal delivery of insulin within the entire intestinal tract.
Collapse
Affiliation(s)
- Fwu-Long Mi
- Department of Biotechnology, Vanung University, Chungli, Taoyuan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Lin YH, Mi FL, Chen CT, Chang WC, Peng SF, Liang HF, Sung HW. Preparation and Characterization of Nanoparticles Shelled with Chitosan for Oral Insulin Delivery. Biomacromolecules 2007; 8:146-52. [PMID: 17206800 DOI: 10.1021/bm0607776] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nanoparticles (NPs) composed of chitosan (CS) and poly(gamma-glutamic acid) (gamma-PGA) were prepared by a simple ionic-gelation method for oral insulin delivery. Fourier transform infrared (FT-IR) spectra indicated that CS and gamma-PGA were ionized at pH 2.5-6.6, while X-ray diffractograms demonstrated that the crystal structure of CS was disrupted after it was combined with gamma-PGA. The diameters of the prepared NPs were in the range of 110-150 nm with a negative or positive surface charge, depending on the relative concentrations of CS to gamma-PGA used. The NPs with a positive surface charge (or shelled with CS) could transiently open the tight junctions between Caco-2 cells and thus increased the paracellular permeability. After loading of insulin, the NPs remained spherical and the insulin release profiles were significantly affected by their stability in distinct pH environments. The in vivo results clearly indicated that the insulin-loaded NPs could effectively reduce the blood glucose level in a diabetic rat model.
Collapse
Affiliation(s)
- Yu-Hsin Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
35
|
Fuchigami K, Taguchi Y, Tanaka M. Preparation of hemispherical hollow silica microcapsules with different affinity surface by using spherical vaterite calcium carbonate as template. POLYM ADVAN TECHNOL 2007. [DOI: 10.1002/pat.939] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 2006; 58:1655-1670. [PMID: 17125884 DOI: 10.1081/e-ebppc-120050042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 09/29/2006] [Indexed: 05/27/2023]
Abstract
Stimuli-responsive polymers show a sharp change in properties upon a small or modest change in environmental condition, e.g. temperature, light, salt concentration or pH. This behaviour can be utilised for the preparation of so-called 'smart' drug delivery systems, which mimic biological response behaviour to a certain extent. The possible environmental conditions to use for this purpose are limited due to the biomedical setting of drug delivery as application. Different organs, tissues and cellular compartments may have large differences in pH, which makes the pH a suitable stimulus. Therefore the majority of examples, discussed in this paper, deal with pH-responsive drug delivery system. Thermo-responsive polymer is also covered to a large extent, as well as double-responsive system. The physico-chemical behaviour underlying the phase transition will be discussed in brief. Then selected examples of applications are described.
Collapse
Affiliation(s)
- Dirk Schmaljohann
- Centre for Polymer Therapeutics, Welsh School of Pharmacy, Cardiff University and Cardiff Institute of Tissue Engineering and Repair (CITER), Redwood Building, King Edward VII Avenue, Cardiff, CF10 3XF, Wales, UK.
| |
Collapse
|
37
|
Venkatesan N, Uchino K, Amagase K, Ito Y, Shibata N, Takada K. Gastro-intestinal patch system for the delivery of erythropoietin. J Control Release 2006; 111:19-26. [PMID: 16377018 DOI: 10.1016/j.jconrel.2005.11.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 11/13/2005] [Accepted: 11/18/2005] [Indexed: 10/25/2022]
Abstract
The absorption of erythropoietin (EPO) from rat small intestine was studied using gastro-intestinal patches (GI-PS) in the presence of absorption enhancers. Surfactants such as a saturated polyglycolysed C8-C18 glyceride (Gelucire 44/14), PEG-8 capryl/caprylic acid glycerides (Labrasol), and polyoxyethylene hydrogenated castor oil derivative (HCO-60) were used as absorption enhancers at 143, 94 and 20 mg/kg, respectively. The absorption of EPO was studied by measuring serum EPO levels by an ELISA method after small intestinal administration of EPO-GI-PS preparation in rats at the EPO dose level of 100 IU/kg. Labrasol showed the highest absorption enhancing effect after intrajejunum administration with maximum serum EPO level of 84.1+/-11.4 mIU/ml while Gelucire 44/14 and HCO-60 showed 43.5+/-9.8 and 26.5+/-2.3 mIU/ml, respectively. The appropriate site for EPO absorption was also investigated. Jejunum was found to be the most efficient absorption site for the absorption of EPO from GI-PS. Using Labrasol as the absorption enhancer and jejunum as the absorption site, the effect of EPO dose on EPO absorption was studied by increasing the EPO dose from 50, to 100, 300 and 600 IU/kg. It was found that 100 IU/kg was the optimum dose with a serum EPO level of 84.1+/-11.4 mIU/ml while escalating doses showed decreases in serum EPO levels 48.3+/-5.6 for 300 IU/kg and 50.6+/-10.3 mIU/ml for 600 IU/kg. The percent bioavailability (BA) of EPO-GI-PS with Labrasol as absorption enhancer was 7.9 at 50 IU/kg, 12.1 at 100 IU/kg, 3.2 at 300 IU/kg and 1.2 at 600 IU/kg. Histological studies showed no adverse effect at the site of administration.
Collapse
Affiliation(s)
- N Venkatesan
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Nakauchi-cho 5, Misasagi, Yamashina-ku, Kyoto 607 8414, Japan
| | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Abstract
Gastrointestinal patch systems with integrated multifunctions could surmount the challenges associated with conventional drug delivery. Several gastrointestinal patch systems provide bioadhesion, drug protection and unidirectional release. This combination of function could improve the overall oral bioavailability of large molecules that can currently be delivered only by injection, for example, epoetin-alpha and granulocyte-colony-stimulating factor, which are commonly used to treat chemotherapy-associated anemia and leukopenia, respectively. Furthermore, self-regulated release and cell-specific targeting provide additional 'smart' characteristics to this innovative therapeutic platform.
Collapse
Affiliation(s)
- Sarah L Tao
- Department of Physiology, University of California, San Francisco, CA 94143, USA
| | | |
Collapse
|
40
|
Eaimtrakarn S, Rama Prasad YV, Puthli SP, Yoshikawa Y, Shibata N, Takada K. Possibility of a patch system as a new oral delivery system. Int J Pharm 2003; 250:111-7. [PMID: 12480277 DOI: 10.1016/s0378-5173(02)00534-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A new oral patch system has been designed to increase the residence time of model drugs within the gastrointestinal tract. The system consisted of three layers (1) water-insoluble backing layer (2) drug-carrying adhesive layer composed of a model drug, fluorescein (FL) or fluorescein isothiocyanate-dextran (FD), and gel-forming polymer and (3) pH-sensitive enteric polymer. These three layers system was prepared as 3.0 mm diameter patches. As references, tablet containing FL or FD was prepared. In vitro dissolution studies showed that the mean dissolution time (MDT) of model drugs from patch preparation was 0.739+/-0.021 h for FL and 0.407+/-0.021 h for FD, which were longer than from tablet, 0.327+/-0.008 h for FL and 0.270+/-0.019 h for FD. The two test preparations were orally administered to beagle dogs in a crossover manner at a FL dose of 30 mg/dog and the measured plasma FL concentrations were used for pharmacokinetic analysis. With FL patch preparation, area under the plasma drug concentration vs. time curve (AUC) was 2.12+/-0.24 microgh/ml and mean residence time (MRT) was 4.60+/-0.18 h, which were greater than those of tablet, AUC was 1.52+/-0.16 microgh/ml and MRT was 3.18+/-0.09 h, respectively. Oral patch preparation also increased both AUC and MRT of FD, a model macromolecular drug, which was formulated into both patches and tablets and administered to dogs (30 mg/dog). The AUC and MRT of FD from the patch preparation were 1.11+/-0.13 microgh/ml and 5.58+/-0.55 h and from tablets were 0.53+/-0.08 microg h/ml and 4.09+/-0.29 h, respectively. These results suggest that oral patch preparation has as a potential a new oral delivery system to obtain a long residence time of drug in the gastrointestinal tract.
Collapse
Affiliation(s)
- Sudarat Eaimtrakarn
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan.
| | | | | | | | | | | |
Collapse
|
41
|
Katsuma M, Watanabe S, Kawai H, Takemura S, Masuda Y, Fukui M. Studies on lactulose formulations for colon-specific drug delivery. Int J Pharm 2002; 249:33-43. [PMID: 12433432 DOI: 10.1016/s0378-5173(02)00429-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A novel, colon-targeted delivery system (CODES), which uses lactulose, was investigated in this study. Lactulose is not absorbed in the upper GI tract, but degraded to organic acids by enterobacteria in the lower gastrointestinal tract, especially the colon. A CODES consists of three components: a core containing lactulose and the drug, an inner acid-soluble material layer, and an outer layer of an enterosoluble material. When a CODES containing a pigment was introduced into the rat cecum directly after shaking in JP 2nd fluid for 3 h, pigment release was observed 1 h after introduction. A CODES containing 5-aminosalicylic acid (5-ASA) was orally administered to fasting and fed dogs to evaluate its pharmacokinetic profiles. 5-ASA was first detected in plasma after 3 h, which is the reported colon arrival time for indigestible solids, after dosing to fasting dogs. The T(max) in fed dogs was delayed by 9 h when compared to fasting dogs. This corresponds to the gastric emptying time. However, the C(max) and AUC under fed conditions were almost as same as those under fasting conditions. The results of this study show that lactulose can act as a trigger for drug release in the colon, utilizing the action of enterobacteria.
Collapse
Affiliation(s)
- Masataka Katsuma
- DDS Research, Novel Pharmaceutical Laboratories, Yamanouchi Pharmaceutical Co Ltd, 180 Ozumi, Yaizu, Shizuoka 425-0072, Japan.
| | | | | | | | | | | |
Collapse
|
42
|
Ahmed A, Bonner C, Desai TA. Bioadhesive microdevices with multiple reservoirs: a new platform for oral drug delivery. J Control Release 2002; 81:291-306. [PMID: 12044568 DOI: 10.1016/s0168-3659(02)00074-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A variety of delivery systems have been devised, in recent years, to improve the oral bioavailability of drugs including enterically coated tablets, capsules, particles, and liposomes. Microfabrication technology may offer some potential advantages over conventional drug delivery technologies. This technology, combined with appropriate surface chemistry, may permit the highly localized and unidirectional release of drugs, permeation enhancers, and/or promoters. In this study, we demonstrate the fabrication of prototype reservoir-containing microdevices and a surface chemistry protocol that can be used to bind lectin via avidin-biotin interactions to these micromachined drug delivery vehicles. The use of microfabrication allows one to tailor the size, shape, reservoir volume, and surface characteristics of the drug delivery vehicle. In vitro studies show enhanced bioadhesion of these lectin conjugated silicon microdevices. This approach may be used to improve the absorption of pharmacologically active biopolymers such as peptides, proteins and oligonucleotides into circulation at targeted sites in the GI system via the creation of a robust hybrid organic/inorganic delivery system. This paper describes one of the first applications of microfabrication to oral drug delivery.
Collapse
Affiliation(s)
- Aamer Ahmed
- Department of Bioengineering, University of Illinois, Chicago, IL 60607, USA
| | | | | |
Collapse
|
43
|
Eaimtrakarn S, Prasad YVR, Puthli SP, Yoshikawa Y, Shibata N, Takada K. Evaluation of Gastrointestinal Transit Characteristics of Oral Patch Preparation Using Caffeine as a Model Drug in Human Volunteers. Drug Metab Pharmacokinet 2002; 17:284-91. [PMID: 15618679 DOI: 10.2133/dmpk.17.284] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Salivary caffeine excretion rate test has been proposed for the evaluation of gastrointestinal transit characteristics of an oral patch preparation after administration to human volunteers instead of measuring the plasma or serum concentration in the early stages of formulation development. Patches having a diameter of 3.0 mm and containing caffeine as a model drug were prepared. The patches consisted of 1) the backing layer made of a water-insoluble polymer, 2) the drug-carrying layer composed of caffeine and a gel-forming polymer, and 3) the enteric polymer membrane. These three layer patches were filled into enteric capsules. Caffeine solution in an enteric capsule was used as the control preparation. After oral administration of each preparation to human volunteers at a dose of 50 mg of caffeine in a cross-over study with a wash-out period of two weeks, saliva samples were collected over 1 min at every sampling time for 12 h and salivary caffeine concentration was determined by a HPLC assay method. Salivary caffeine excretion rate (ER) was used for pharmacokinetic analysis. Mean residence time (MRT) and first-appearance time of caffeine into the saliva (T(i)) were determined. To characterize the pharmacokinetics of caffeine, MRT-T(i) values of patch and solution preparations were compared. Patch preparations had a T(i) value of 2.33+/-0.33 h and showed significantly longer MRT-T(i), 3.87+/-0.21 h, as compared to the control preparation (MRT-T(i)=1.04+/-0.38 h) under fasting condition (p<0.05). Food intake prolonged the gastric emptying time (GET) of the preparations with T(i) values of 5.00+/-1.15 h for control preparation and 4.67+/-1.20 h for patch preparation. The MRT-T(i) values were 0.62+/-0.20 h (control) and 2.45+/-0.73 h (patch). The results of this study indicate that the parameter, MRT-T(i), was useful in characterizing the transit characteristics of oral patch preparations than MRT itself and the presence of food affects the performance of the patch system.
Collapse
|