1
|
Bian WP, Pu SY, Xie SL, Wang C, Deng S, Strauss PR, Pei DS. Loss of mpv17 affected early embryonic development via mitochondria dysfunction in zebrafish. Cell Death Discov 2021; 7:250. [PMID: 34537814 PMCID: PMC8449779 DOI: 10.1038/s41420-021-00630-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/06/2021] [Accepted: 08/26/2021] [Indexed: 11/09/2022] Open
Abstract
MVP17 encodes a mitochondrial inner-membrane protein, and mutation of human MVP17 can cause mitochondria DNA depletion syndrome (MDDS). However, the underlying function of mpv17 is still elusive. Here, we developed a new mutant with mpv17 knockout by using the CRISPR/Cas9 system. The mpv17-/- zebrafish showed developmental defects in muscles, liver, and energy supply. The mpv17-/- larvae hardly survived beyond a month, and they showed abnormal growth during the development stage. Abnormal swimming ability was also found in the mpv17-/- zebrafish. The transmission electron microscope (TEM) observation indicated that the mpv17-/- zebrafish underwent severe mitochondria dysfunction and the disorder of mitochondrial cristae. As an energy producer, the defects of mitochondria significantly reduced ATP content in mpv17-/- zebrafish, compared to wild-type zebrafish. We hypothesized that the disorder of mitochondria cristae was contributed to the dysfunction of muscle and liver in the mpv17-/- zebrafish. Moreover, the content of major energy depot triglycerides (TAG) was decreased dramatically. Interestingly, after rescued with normal exogenous mitochondria by microinjection, the genes involved in the TAG metabolism pathway were recovered to a normal level. Taken together, this is the first report of developmental defects in muscles, liver, and energy supply via mitochondria dysfunction, and reveals the functional mechanism of mpv17 in zebrafish.
Collapse
Affiliation(s)
- Wan-Ping Bian
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, Chongqing, China
| | - Shi-Ya Pu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, Chongqing, China.,School of Public Health and Management, Chongqing Medical University, 400016, Chongqing, China
| | - Shao-Lin Xie
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, Chongqing, China
| | - Chao Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, Chongqing, China
| | - Shun Deng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714, Chongqing, China
| | - Phyllis R Strauss
- Department of Biology, College of Science, Northeastern University, Boston, MA, 02115, USA
| | - De-Sheng Pei
- School of Public Health and Management, Chongqing Medical University, 400016, Chongqing, China.
| |
Collapse
|
2
|
Holmgren M, Sheets L. Influence of Mpv17 on Hair-Cell Mitochondrial Homeostasis, Synapse Integrity, and Vulnerability to Damage in the Zebrafish Lateral Line. Front Cell Neurosci 2021; 15:693375. [PMID: 34413725 PMCID: PMC8369198 DOI: 10.3389/fncel.2021.693375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/16/2021] [Indexed: 01/27/2023] Open
Abstract
Noise exposure is particularly stressful to hair-cell mitochondria, which must produce enough energy to meet high metabolic demands as well as regulate local intracellular Ca2+ concentrations. Mitochondrial Inner Membrane Protein 17 (Mpv17) functions as a non-selective cation channel and plays a role in maintaining mitochondrial homeostasis. In zebrafish, hair cells in mpv17a9/a9 mutants displayed elevated levels of reactive oxygen species (ROS), elevated mitochondrial calcium, hyperpolarized transmembrane potential, and greater vulnerability to neomycin, indicating impaired mitochondrial function. Using a strong water current to overstimulate hair cells in the zebrafish lateral line, we observed mpv17a9/a9 mutant hair cells were more vulnerable to morphological disruption than wild type (WT) siblings simultaneously exposed to the same stimulus. To determine the role of mitochondrial homeostasis on hair-cell synapse integrity, we surveyed synapse number in mpv17a9/a9 mutants and WT siblings as well as the sizes of presynaptic dense bodies (ribbons) and postsynaptic densities immediately following stimulus exposure. We observed mechanically injured mpv17a9/a9 neuromasts were not more vulnerable to synapse loss; they lost a similar number of synapses per hair cell relative to WT. Additionally, we quantified the size of hair cell pre- and postsynaptic structures following stimulation and observed significantly enlarged WT postsynaptic densities, yet relatively little change in the size of mpv17a9/a9 postsynaptic densities following stimulation. These results suggest chronically impaired hair-cell mitochondrial activity influences postsynaptic size under homeostatic conditions but does not exacerbate synapse loss following mechanical injury.
Collapse
Affiliation(s)
- Melanie Holmgren
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| | - Lavinia Sheets
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
3
|
Missing mitochondrial Mpv17 gene function induces tissue-specific cell-death pathway in the degenerating inner ear. Cell Tissue Res 2012; 347:343-56. [PMID: 22322422 DOI: 10.1007/s00441-012-1326-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 01/11/2012] [Indexed: 12/11/2022]
Abstract
The Mpv17 gene encodes a mitochondrial inner-membrane protein that has been implicated in the metabolism of reactive oxygen species. The loss of function in Mpv17-/- mice leads to early sensorineural deafness associated with severe inner ear degeneration and late onset of kidney failure. The present study demonstrates that the onset of the degeneration of the cochlear neuroepithelia is related to the onset of auditory function and appears to be first restricted to the outer hair cells (OHC), which subsequently undergo rapid degeneration. At the age of 18 days, the OHC lateral membrane degenerates and extensive vacuolization of the cytoplasm is followed by lysis of the OHCs. Such degenerative processes have been seen for the first time in relation to auditory dysfunction. The structural degeneration pattern of the OHC appears to be similar to the described paraptotic processes (an alternative form of programmed cell death) discussed in the literature as a cause of cytoplasmic neurodegeneration. In contrast, the melanocyte-like intermediate cells that are of neural crest origin and that are located in the stria vascularis, undergo apoptosis, as documented ultrastructurally. A lack of Mpv17 protein function in mitochondria thus seems to initiate tissue-specific cell-death pathways resulting in the pathology seen during the degeneration process.
Collapse
|
4
|
Abstract
Discoidin domain receptor 1 (DDR1) is a tyrosine kinase receptor that is activated by native collagen. The physiological functions of DDR1 include matrix homeostasis and cell growth, adhesion, branching, and migration, but the specific role of DDR1 in the development and function of the inner ear has not been analyzed. Here, we show that deletion of the DDR1 gene in mouse is associated with a severe decrease in auditory function and substantial structural alterations in the inner ear. Immunohistochemical analysis demonstrated DDR1 expression in several locations in the cochlea, mostly associated with basement membrane and fibrillar collagens; in particular in basal cells of the stria vascularis, type III fibrocytes, and cells lining the basilar membrane of the organ of Corti. In the stria vascularis, loss of DDR1 function resulted in altered morphology of the basal cells and accumulation of electron-dense matrix within the strial epithelial layer in conjunction with a focal and progressive deterioration of strial cells. Cell types in proximity to the basilar membrane, such as Claudius', inner and outer sulcus cells, also showed marked ultrastructural alterations. Changes in the organ of Corti, such as deterioration of the supporting cells, specifically the outer hair cells, Deiters', Hensen's and bordering cells, are likely to interfere with mechanical properties of the organ and may be responsible for the hearing loss observed in DDR1-null mice. These findings may also have relevance to the role of DDR1 in other disease processes, for example, those affecting the kidney.
Collapse
|
5
|
Zilany MSA, Bruce IC. Modeling auditory-nerve responses for high sound pressure levels in the normal and impaired auditory periphery. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2006; 120:1446-66. [PMID: 17004468 DOI: 10.1121/1.2225512] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
This paper presents a computational model to simulate normal and impaired auditory-nerve (AN) fiber responses in cats. The model responses match physiological data over a wider dynamic range than previous auditory models. This is achieved by providing two modes of basilar membrane excitation to the inner hair cell (IHC) rather than one. The two modes are generated by two parallel filters, component 1 (C1) and component 2 (C2), and the outputs are subsequently transduced by two separate functions. The responses are then added and passed through the IHC low-pass filter followed by the IHC-AN synapse model and discharge generator. The C1 filter is a narrow-band, chirp filter with the gain and bandwidth controlled by a nonlinear feed-forward control path. This filter is responsible for low and moderate level responses. A linear, static, and broadly tuned C2 filter followed by a nonlinear, inverted and nonrectifying C2 transduction function is critical for producing transition region and high-level effects. Consistent with Kiang's two-factor cancellation hypothesis, the interaction between the two paths produces effects such as the C1/C2 transition and peak splitting in the period histogram. The model responses are consistent with a wide range of physiological data from both normal and impaired ears for stimuli presented at levels spanning the dynamic range of hearing.
Collapse
Affiliation(s)
- Muhammad S A Zilany
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | | |
Collapse
|
6
|
Meyer zum Gottesberge AM, Felix H. Abnormal basement membrane in the inner ear and the kidney of the Mpv17-/- mouse strain: ultrastructural and immunohistochemical investigations. Histochem Cell Biol 2005; 124:507-16. [PMID: 16041630 DOI: 10.1007/s00418-005-0027-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2005] [Indexed: 11/30/2022]
Abstract
The loss of the function of the peroxisomal Mpv17-protein and associated imbalanced radical oxygen species (ROS) homeostasis leads to an early onset of focal segmental glomerulosclerosis and sensorineural deafness associated with severe degeneration of cochlear structures. An excessive enlargement of basal laminae of the stria vascularis capillaries and glomeruli indicates numerous changes in their molecular composition. The basement membrane (BM) of the glomeruli and the stria vascularis are simultaneously affected in early stages of the disease and the lamination, splitting of the membrane and formation of the "basket weaving" seen at the onset of the disease in the kidney are similar to the ultrastructural alterations characteristic for Alporta9s syndrome. The progressive alteration of the BMs is accompanied by irregularity in the distribution of the collagen IV subunits and by an accumulation of the laminin B2(gamma1) in the inner ear and B(beta1) in the kidney. Since Mpv17 protein contributes to ROS homeostasis, further studies are necessary to elucidate downstream signaling molecules activated by ROS. These studies explain the cellular responses to missing Mpv17-protein, such as accumulation of the extracellular matrix, degeneration, and apoptosis in the inner ear.
Collapse
Affiliation(s)
- Angela M Meyer zum Gottesberge
- Research Laboratory, Department of Otorhinolaryngology, University of Düsseldorf, Moorenstr, 5, 40225, Dusseldorf, Germany,
| | | |
Collapse
|
7
|
Gysling K, Forray MI, Haeger P, Daza C, Rojas R. Corticotropin-releasing hormone and urocortin: redundant or distinctive functions? ACTA ACUST UNITED AC 2005; 47:116-25. [PMID: 15572167 DOI: 10.1016/j.brainresrev.2004.06.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2004] [Indexed: 11/17/2022]
Abstract
Neuropeptides play important roles in synaptic transmission. Among them, the peptides of the corticotropin-releasing hormone (CRH) family present interesting features. The two main mammalian peptides of this family, CRH and urocortin (UCN), signal through the same receptors, CRH-R1 and CRH-R2. The question arises as to whether these peptides have redundant or distinctive functions. The fact that CRH and UCN have high affinity for both receptors has hampered the possibility to define the functional contribution of each peptide. Recent studies conducted on mice deficient in CRH, CRH-R1, CRH-R2 and CRH-R1/CRH-R2, as well as in two different UCN-deficient mice, have added relevant information towards the understanding of the role of this peptide family in the CNS. Our new anatomical evidence of UCN expression in the septum will be discussed in this context.
Collapse
Affiliation(s)
- Katia Gysling
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Catholic University of Chile, P.O. Box 193, Correo 22 Santiago, Chile.
| | | | | | | | | |
Collapse
|