1
|
Shin SA, Lyu AR, Jeong SH, Kim TH, Park MJ, Park YH. Acoustic Trauma Modulates Cochlear Blood Flow and Vasoactive Factors in a Rodent Model of Noise-Induced Hearing Loss. Int J Mol Sci 2019; 20:ijms20215316. [PMID: 31731459 PMCID: PMC6862585 DOI: 10.3390/ijms20215316] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022] Open
Abstract
Noise exposure affects the organ of Corti and the lateral wall of the cochlea, including the stria vascularis and spiral ligament. Although the inner ear vasculature and spiral ligament fibrocytes in the lateral wall consist of a significant proportion of cells in the cochlea, relatively little is known regarding their functional significance. In this study, 6-week-old male C57BL/6 mice were exposed to noise trauma to induce transient hearing threshold shift (TTS) or permanent hearing threshold shift (PTS). Compared to mice with TTS, mice with PTS exhibited lower cochlear blood flow and lower vessel diameter in the stria vascularis, accompanied by reduced expression levels of genes involved in vasodilation and increased expression levels of genes related to vasoconstriction. Ultrastructural analyses by transmission electron microscopy revealed that the stria vascularis and spiral ligament fibrocytes were more damaged by PTS than by TTS. Moreover, mice with PTS expressed significantly higher levels of proinflammatory cytokines in the cochlea (e.g., IL-1β, IL-6, and TNF-α). Overall, our findings suggest that cochlear microcirculation and lateral wall pathologies are differentially modulated by the severity of acoustic trauma and are associated with changes in vasoactive factors and inflammatory responses in the cochlea.
Collapse
Affiliation(s)
- Sun-Ae Shin
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.-A.S.); (A.-R.L.)
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
| | - Ah-Ra Lyu
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.-A.S.); (A.-R.L.)
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
| | - Seong-Hun Jeong
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
| | - Tae Hwan Kim
- Biomedical Convergence Research Center, Chungnam National University Hospital, Daejeon 35015, Korea;
| | - Min Jung Park
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.-A.S.); (A.-R.L.)
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Correspondence: (M.J.P.); (Y.-H.P.); Tel.: +82-42-280-7697(M.J.P.); Fax: +82-42-253-4059 (M.J.P.)
| | - Yong-Ho Park
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Korea; (S.-A.S.); (A.-R.L.)
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Correspondence: (M.J.P.); (Y.-H.P.); Tel.: +82-42-280-7697(M.J.P.); Fax: +82-42-253-4059 (M.J.P.)
| |
Collapse
|
2
|
Abstract
Normal blood supply to the cochlea is critically important for establishing the endocochlear potential and sustaining production of endolymph. Abnormal cochlear microcirculation has long been considered an etiologic factor in noise-induced hearing loss, age-related hearing loss (presbycusis), sudden hearing loss or vestibular function, and Meniere's disease. Knowledge of the mechanisms underlying the pathophysiology of cochlear microcirculation is of fundamental clinical importance. A better understanding of cochlear blood flow (CoBF) will enable more effective management of hearing disorders resulting from aberrant blood flow. This review focuses on recent discoveries and findings related to the physiopathology of the cochlear microvasculature.
Collapse
Affiliation(s)
- Xiaorui Shi
- Oregon Hearing Research Center (NRC04), Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
3
|
Li X, Mao XB, Hei RY, Zhang ZB, Wen LT, Zhang PZ, Qiu JH, Qiao L. Protective role of hydrogen sulfide against noise-induced cochlear damage: a chronic intracochlear infusion model. PLoS One 2011; 6:e26728. [PMID: 22046339 PMCID: PMC3202565 DOI: 10.1371/journal.pone.0026728] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 10/02/2011] [Indexed: 12/26/2022] Open
Abstract
Background A reduction in cochlear blood flow plays an essential role in noise-induced hearing loss (NIHL). The timely regulation of cochlear perfusion determines the progression and prognosis of NIHL. Hydrogen sulfide (H2S) has attracted increasing interest as a vasodilator in cardiovascular systems. This study identified the role of H2S in cochlear blood flow regulation and noise protection. Methodology/Principal Findings The gene and protein expression of the H2S synthetase cystathionine-γ-lyase (CSE) in the rat cochlea was examined using immunofluorescence and real-time PCR. Cochlear CSE mRNA levels varied according to the duration of noise exposure. A chronic intracochlear infusion model was built and artificial perilymph (AP), NaHS or DL-propargylglycine (PPG) were locally administered. Local sodium hydrosulfide (NaHS) significantly increased cochlear perfusion post-noise exposure. Cochlear morphological damage and hearing loss were alleviated in the NaHS group as measured by conventional auditory brainstem response (ABR), cochlear scanning electron microscope (SEM) and outer hair cell (OHC) count. The highest percentage of OHC loss occurred in the PPG group. Conclusions/Significance Our results suggest that H2S plays an important role in the regulation of cochlear blood flow and the protection against noise. Further studies may identify a new preventive and therapeutic perspective on NIHL and other blood supply-related inner ear diseases.
Collapse
Affiliation(s)
- Xu Li
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiao-Bo Mao
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ren-Yi Hei
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | - Li-Ting Wen
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Peng-Zhi Zhang
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jian-Hua Qiu
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- * E-mail: (J-HQ); (LQ)
| | - Li Qiao
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- * E-mail: (J-HQ); (LQ)
| |
Collapse
|
4
|
Dai M, Yang Y, Shi X. Lactate dilates cochlear capillaries via type V fibrocyte-vessel coupling signaled by nNOS. Am J Physiol Heart Circ Physiol 2011; 301:H1248-54. [PMID: 21856924 DOI: 10.1152/ajpheart.00315.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transduction of sound in the inner ear demands tight control over delivery of oxygen and glucose. However, the mechanisms underlying the control of regional blood flow are not yet fully understood. In this study, we report a novel local control mechanism that regulates cochlear blood flow to the stria vascularis, a high energy-consuming region of the inner ear. We found that extracellular lactate had a vasodilatory effect on the capillaries of the spiral ligament under both in vitro and in vivo conditions. The lactate, acting through monocarboxylate transporter 1 (MCT1), initiated neuronal nitric oxide (NO) synthase (nNOS) and catalyzed production of NO for the vasodilation. Blocking MCT1 with the MCT blocker, α-cyano-4-hydroxycinnamate (CHC), or a suppressing NO production with either the nonspecific inhibitor of NO synthase, N(G)-nitro-L-arginine methyl ester (L-NAME), or either of two selective nNOS inhibitors, 3-bromo-7-nitroindazole or (4S)-N-(4-amino-5[aminoethyl]aminopentyl)-N'-nitroguanidine (TFA), totally abolished the lactate-induced vasodilation. Pretreatment with the selective endothelial NO synthase inhibitor, L-N(5)-(1-iminoethyl)ornithine (L-NIO), eliminated the inhibition of lactate-induced vessel dilation. With immunohistochemical labeling, we found the expression of MCT1 and nNOS in capillary-coupled type V fibrocytes. The data suggest that type V fibrocytes are the source of the lactate-induced NO. Cochlear microvessel tone, regulated by lactate, is mediated by an NO-signaled coupling of fibrocytes and capillaries.
Collapse
Affiliation(s)
- Min Dai
- Department of Otolaryngology/Head and Neck Surgery, Oregon Hearing Research Center, Oregon Health and Science University, Portland, Oregon 97239-3098, USA
| | | | | |
Collapse
|
5
|
Scherer EQ, Yang J, Canis M, Reimann K, Ivanov K, Diehl CD, Backx PH, Wier WG, Strieth S, Wangemann P, Voigtlaender-Bolz J, Lidington D, Bolz SS. Tumor necrosis factor-α enhances microvascular tone and reduces blood flow in the cochlea via enhanced sphingosine-1-phosphate signaling. Stroke 2010; 41:2618-24. [PMID: 20930159 DOI: 10.1161/strokeaha.110.593327] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE We sought to demonstrate that tumor necrosis factor (TNF)-α, via sphingosine-1-phosphate signaling, has the potential to alter cochlear blood flow and thus, cause ischemic hearing loss. METHODS We performed intravital fluorescence microscopy to measure blood flow and capillary diameter in anesthetized guinea pigs. To measure capillary diameter ex vivo, capillary beds from the gerbil spiral ligament were isolated from the cochlear lateral wall and maintained in an organ bath. Isolated gerbil spiral modiolar arteries, maintained and transfected in organ culture, were used to measure calcium sensitivity (calcium-tone relationship). In a clinical study, a total of 12 adult patients presenting with typical symptoms of sudden hearing loss who were not responsive or only partially responsive to prednisolone treatment were identified and selected for etanercept treatment. Etanercept (25 mg s.c.) was self-administered twice a week for 12 weeks. RESULTS TNF-α induced a proconstrictive state throughout the cochlear microvasculature, which reduced capillary diameter and cochlear blood flow in vivo. In vitro isolated preparations of the spiral modiolar artery and spiral ligament capillaries confirmed these observations. Antagonizing sphingosine-1-phosphate receptor 2 subtype signaling (by 1 μmol/L JTE013) attenuated the effects of TNF-α in all models. TNF-α activated sphingosine kinase 1 (Sk1) and induced its translocation to the smooth muscle cell membrane. Expression of a dominant-negative Sk1 mutant (Sk1(G82D)) eliminated both baseline spiral modiolar artery calcium sensitivity and TNF-α effects, whereas a nonphosphorylatable Sk1 mutant (Sk1(S225A)) blocked the effects of TNF-α only. A small group of etanercept-treated, hearing loss patients recovered according to a 1-phase exponential decay (half-life=1.56 ± 0.20 weeks), which matched the kinetics predicted for a vascular origin. CONCLUSIONS TNF-α indeed reduces cochlear blood flow via activation of vascular sphingosine-1-phosphate signaling. This integrates hearing loss into the family of ischemic microvascular pathologies, with implications for risk stratification, diagnosis, and treatment.
Collapse
Affiliation(s)
- Elias Q Scherer
- Hals-Nasen-Ohrenklinik und Poliklinik, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Itou, Kaoru Ogawa, Yasuhiro Inoue, M. Effects of Neuropeptide Y on Cochlear Blood Flow in Guinea Pigs. Acta Otolaryngol 2009. [DOI: 10.1080/00016480119072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Luo Y, Tang Y, Xia Q, Liu J. The expression of endothelin type A and B receptors in the lateral wall of the mouse cochlea. Cell Mol Biol Lett 2007; 12:595-603. [PMID: 17607529 PMCID: PMC6275685 DOI: 10.2478/s11658-007-0027-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 04/30/2007] [Indexed: 02/05/2023] Open
Abstract
Endothelin (ET), originally characterized as a vasoconstrictive peptide, has been found to have many different biological functions, including acting as a local hormonal regulator of pressure, fluid, ions and neurotransmitters in the inner ear. The objective of this study was to examine and quantify the mRNA expression of the endothelin type A and B receptors (ETAR and ETBR) in the strial vascularies (StV) and non-strial tissues (NSt) of the cochlear lateral wall using the real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR) technique. The mouse tissue samples were harvested and RNA was extracted. RT was performed to obtain cDNA, and then the mRNA expression of each gene was measured via real-time PCR. We found that both receptor subtypes were expressed in the cochlear lateral wall, with a predominance of ETAR over ETBR. We showed that the mRNA expression of the two receptor subtypes was higher in the StV with a 1.8 times higher level of ETAR and an 8.1 times higher level of ETBR mRNAs than in the adjacent NSt of the lateral wall tissue. This study shows the existence and the quantity of ET receptor subtypes in the StV and NSt of the mouse cochlea. Our results suggest that an endothelin-mediated response via two different receptors, ETAR and ETBR, may play an important role in the physiological functions of the cochlear lateral wall by maintaining the homeostatic environment of the cochlea.
Collapse
Affiliation(s)
- Yan Luo
- Department of Otorhinolaryngology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yuedi Tang
- Department of Otorhinolaryngology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qingjie Xia
- Department of Ophthalmology, Laboratory of Molecular Biology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jin Liu
- Department of Anesthesiology and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Moon C. An investigation of the effects of ruthenium red, nitric oxide and endothelin-1 on infrared receptor activity in a crotaline snake. Neuroscience 2004; 124:913-8. [PMID: 15026131 DOI: 10.1016/j.neuroscience.2003.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2003] [Revised: 12/01/2003] [Accepted: 12/11/2003] [Indexed: 11/25/2022]
Abstract
The infrared (IR) receptors in the pit organ of crotaline snakes are very sensitive to temperature. The vasculature of the pit organs, which is located in close proximity to IR-sensitive terminal nerve masses (IR receptors), is finer, flatter, and more convoluted than that of other sensory organs. Using extracellular recording in vivo from IR-sensitive primary afferent trigeminal ganglion (TG) neurons of the crotaline snake Trimeresurus flavoviridis, I studied the response to IR warming (24-25 degrees C) and to various chemicals: an exogenous vasoactive substance nitric oxide donor (sodium nitroprusside, SNP), endothelin-1 (ET-1), a transient receptor potential vanilloid (TRPV)1 agonist (capsaicin, CAP) and antagonist (capsazepine, CZP), and Ruthenium Red (RR), an antagonist of the TRPV family. IR-sensitive primary afferent TG neurons display regular background firing at 10-25 impulses per second at 24-25 degrees C. At this temperature, Ruthenium Red and endothelin-1 clearly suppressed the frequency of background firing, while sodium nitroprusside injected into the bloodstream significantly increased the frequency of discharges (P<0.01) and caused regular bursts of firing in IR-sensitive TG neurons. By contrast, capsaicin and capsazepine had no effect on the infrared responses. The possibility that these opposite responses result from their vasoactive effects on the unusual pit vasculature or from their chemical effects on the thermoreceptors of IR-sensitive nerve terminals in the pit organ, like those of the TRPV family, is discussed.
Collapse
Affiliation(s)
- C Moon
- Department of Morphological and Functional Medicine, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan.
| |
Collapse
|
9
|
Mitchell D, Bihari A, Sandig M, Tyml K. Endothelin-a receptor in rat skeletal muscle microvasculature. Microvasc Res 2002; 64:179-85. [PMID: 12074645 DOI: 10.1006/mvre.2002.2427] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the effect of endothelin-1 (ET-1) on vascular tone has been studied extensively at the arterial/arteriolar level, little is known about the direct effect of ET-1 at the level of the capillary. Using intravital microscopy, we determined capillary red blood cell velocity and arteriolar diameter responses to ET-1, ET(A)-receptor blocker BQ-123, and ET(B)-receptor blocker BQ-788 applied locally on capillaries in rat extensor digitorum longus (EDL) muscle. Using immunohistochemistry, we examined capillaries in this muscle and microvascular endothelial cells isolated from this muscle for immunoreactivity with ET(A)-receptor antibody. ET-1 (10(-9) to 10(-5) M in micropipette) caused quick reductions (i.e., within several seconds), whereas BQ-123 (10(-8) to 10(-4) M) and BQ-788 (10(-6) and 10(-4) M) caused quick increases, in both velocity and diameter. Capillaries and endothelial cells showed ET(A)-receptor immunoreactivity. We conclude that the microvasculature of the rat EDL muscle is sensitive to ET-1 and its receptor blockers and that the ET(A) receptor may be present in the capillary wall of this muscle, including the endothelium.
Collapse
Affiliation(s)
- Debra Mitchell
- Departmente of Pharmacology and Toxicology, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | | | | | |
Collapse
|
10
|
Hess A, Bloch W, Huverstuhl J, Su J, Stennert E, Addicks K, Michel O. Expression of inducible nitric oxide synthase (iNOS/NOS II) in the cochlea of guinea pigs after intratympanical endotoxin-treatment. Brain Res 1999; 830:113-22. [PMID: 10350565 DOI: 10.1016/s0006-8993(99)01433-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Since NO is believed to be involved in cochlear physiology, presence of the constitutive isoforms of nitric oxide synthase (NOS), and the target enzyme of NO, soluble guanylyl cyclase (sGC) in structures of the mammalian cochlea have been demonstrated. To date, no reports have been published regarding the detection of the inducible isoform (NOS II) in the cochlea. In order to show the capability of iNOS expression in cochlear tissue, a mixture of proinflammatory bacterial lipopolysaccharides (LPS) and tumor necrosis factor alpha (TNF-alpha) was injected into the tympanic cavity of guinea pigs, vs. saline-solution as control. Paraffin sections of LPS/TNF-alpha treated and saline-treated cochleae (6 h) were examined immunohistochemically with specific antibodies to neuronal, endothelial and inducible NOS and to sGC. Initiated expression of iNOS in the cochlea was observed in the wall of blood vessels of the spiral ligament (SL) and the modiolus, in supporting cells of the organ of Corti, in the limbus, in nerve fibers and in a part of the perikarya of the spiral ganglion after LPS/TNFalpha-treatment. iNOS was not detected in saline-treated control tissue. Expression of both constitutive NOS-isoforms (endothelial and neuronal NOS) and of sGC showed no significant differences in both experimental groups. Endothelial eNOS and neuronal bNOS were detected co-localized in ganglion cells, in nerve fibers, in cells of the SL and in supporting cells of the organ of Corti, but not in sensory cells. Strong labeling for bNOS became evident in the endosteum of the cochlea, while in the endothelium of blood vessels and in the epithelium of the limbus only eNOS could be labeled. sGC could be detected in SL, in supporting and sensory cells of the organ of Corti, in nerve fibers, ganglion cells, in the wall of blood vessels and in the limbus-epithelium. While small amounts of NO, generated by bNOS and eNOS, seem to support the cochlear blood flow and auditory function as well as neurotransmission, high amounts of iNOS-generated NO could have dysregulative and neurotoxic effects on the inner ear during bacterial and viral infections of the middle and inner ear.
Collapse
Affiliation(s)
- A Hess
- Department of Oto-Rhino-Laryngology, University of Cologne, Joseph-Stelzmannstrasse 9, D-50924, Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Ando M, Takeuchi S. Postnatal vascular development in the lateral wall of the cochlear duct of gerbils: quantitative analysis by electron microscopy and confocal laser microscopy. Hear Res 1998; 123:148-56. [PMID: 9745963 DOI: 10.1016/s0378-5955(98)00109-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The development of the capillary network in the stria vascularis and in the underlying spiral ligament of gerbils was systematically and quantitatively investigated by conventional electron microscopy and confocal laser microscopy in association with vascular labeling with fluorescent gelatin. The developmental changes of capillaries in the lateral wall were observed as the following series of events. (i) At 0 days after birth (DAB) capillaries already existed in the spiral ligament as a network. (ii) At 3-9 DAB the capillary network developed into two layers starting from the scala vestibuli side to the scala tympani side; one layer was located in the stria and the other in the spiral ligament. (iii) At 9 DAB capillaries in the stria became separated from the spiral ligament, and the capillary network consisting of a two-layered structure was complete. (iv) Total capillary length and capillary density in the lateral wall increased until 9 DAB and leveled off thereafter, but changes in the relative position of capillaries in the stria toward the luminal surface of marginal cells continued until 31 DAB. On the basis of the above observations, we propose two possible mechanisms underlying the vascular development in the lateral wall: (i) the formation of new vasculature (angiogenesis), and (ii) changes in the position of cellular components relative to capillaries in association with the differentiation and maturation of marginal cells and intermediate cells.
Collapse
Affiliation(s)
- M Ando
- Department of Physiology, Kochi Medical School, Nankoku, Japan.
| | | |
Collapse
|
12
|
Abstract
The nitric oxide (NO)/cyclic guanosine monophosphate (GMP) pathway is now recognized as a major regulatory system in cell physiology and tissue homeostasis. This pathway may control processes as diverse as muscle relaxation, gut peristalsis, neurotransmission and hormonal secretion. It is also involved in the development and function of sensory systems such as vision and olfaction. This review will detail the NO/cyclic GMP pathway, evaluate studies in the auditory system and discuss its potential participation in cochlear blood flow, supporting cell physiology and excitotoxicity.
Collapse
Affiliation(s)
- J D Fessenden
- Department of Biological Chemistry and Kresge Hearing Research Institute, University of Michigan, Ann Arbor 48109-0506, USA
| | | |
Collapse
|