1
|
Perišić Nanut M, Pawelec G, Kos J. Human CD4+ T-Cell Clone Expansion Leads to the Expression of the Cysteine Peptidase Inhibitor Cystatin F. Int J Mol Sci 2021; 22:8408. [PMID: 34445118 PMCID: PMC8395124 DOI: 10.3390/ijms22168408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 01/12/2023] Open
Abstract
The existence of CD4+ cytotoxic T cells (CTLs) at relatively high levels under different pathological conditions in vivo suggests their role in protective and/or pathogenic immune functions. CD4+ CTLs utilize the fundamental cytotoxic effector mechanisms also utilized by CD8+ CTLs and natural killer cells. During long-term cultivation, CD4+ T cells were also shown to acquire cytotoxic functions. In this study, CD4+ human T-cell clones derived from activated peripheral blood lymphocytes of healthy young adults were examined for the expression of cytotoxic machinery components. Cystatin F is a protein inhibitor of cysteine cathepsins, synthesized by CD8+ CTLs and natural killer cells. Cystatin F affects the cytotoxic efficacy of these cells by inhibiting the major progranzyme convertases cathepsins C and H as well as cathepsin L, which is involved in perforin activation. Here, we show that human CD4+ T-cell clones express the cysteine cathepsins that are involved in the activation of granzymes and perforin. CD4+ T-cell clones contained both the inactive, dimeric form as well as the active, monomeric form of cystatin F. As in CD8+ CTLs, cysteine cathepsins C and H were the major targets of cystatin F in CD4+ T-cell clones. Furthermore, CD4+ T-cell clones expressed the active forms of perforin and granzymes A and B. The levels of the cystatin F decreased with time in culture concomitantly with an increase in the activities of granzymes A and B. Therefore, our results suggest that cystatin F plays a role in regulating CD4+ T cell cytotoxicity. Since cystatin F can be secreted and taken up by bystander cells, our results suggest that CD4+ CTLs may also be involved in regulating immune responses through cystatin F secretion.
Collapse
Affiliation(s)
- Milica Perišić Nanut
- Department of Biotechnology, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia;
| | - Graham Pawelec
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15/3.008, 72076 Tübingen, Germany;
- Health Sciences North Research Institute, 56 Walford Rd, Sudbury, ON P3E 2H2, Canada
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia;
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Teteloshvili N, Dekkema G, Boots AM, Heeringa P, Jellema P, de Jong D, Terpstra M, Brouwer E, Pawelec G, Kok K, van den Berg A, Kluiver J, Kroesen BJ. Involvement of MicroRNAs in the Aging-Related Decline of CD28 Expression by Human T Cells. Front Immunol 2018; 9:1400. [PMID: 29967621 PMCID: PMC6015875 DOI: 10.3389/fimmu.2018.01400] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 06/05/2018] [Indexed: 01/05/2023] Open
Abstract
Loss of CD28 is a characteristic feature of T cell aging, but the underlying mechanisms of this loss are elusive. As differential expression of microRNAs (miRNAs) has been described between CD28+ and CD28− T cells, we hypothesized that altered miRNA expression contributes to the age-associated downregulation of CD28. To avoid the confounding effects of age-associated changes in the proportions of T cells at various differentiation stages in vivo, an experimental model system was used to study changes over time in the expression of miRNA associated with the loss of CD28 expression in monoclonal T cell populations at a lower or higher number of population doublings (PDs). This approach allows identification of age-associated miRNA expression changes in a longitudinal model. Results were validated in ex vivo samples. The cumulative number of PDs but not the age of the donor of the T cell clone was correlated with decreased expression of CD28. Principal component analysis of 252 expressed miRNAs showed clustering based on low and high PDs, irrespective of the age of the clone donor. Increased expression of miR-9-5p and miR-34a-5p was seen in clones at higher PDs, and miR-9-5p expression inversely correlated with CD28 expression in ex vivo sorted T-cells from healthy subjects. We then examined the involvement of miR-9-5p, miR-34a-5p, and the members of the miR-23a~24-2 cluster, in which all are predicted to bind to the 3′UTR of CD28, in the IL-15-induced loss of CD28 in T cells. Culture of fresh naive CD28+ T cells in the presence of IL-15 resulted in a gradual loss of CD28 expression, while the expression of miR-9-5p, miR-34a-5p, and members of the miR-23a~24-2 cluster increased. Binding of miR-9-5p, miR-34a-5p, miR-24-3p, and miR-27- 3p to the 3′UTR of CD28 was studied using luciferase reporter constructs. Functional binding to the 3′UTR was shown for miR-24-3p and miR-27a-3p. Our results indicate involvement of defined miRNAs in T cells in relation to specific characteristics of T cell aging, i.e., PD and CD28 expression.
Collapse
Affiliation(s)
- Nato Teteloshvili
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Gerjan Dekkema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Annemieke M Boots
- Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Pytrick Jellema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Debora de Jong
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Martijn Terpstra
- Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Elisabeth Brouwer
- Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Graham Pawelec
- Department of Internal Medicine II, Center for Medical Research, University of Tübingen, Tübingen, Germany.,Cancer Solutions Program, Health Sciences North Research Institute, Sudbury, Ontario, Canada
| | - Klaas Kok
- Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Bart-Jan Kroesen
- Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
3
|
Vivien R, Saïagh S, Lemarre P, Chabaud V, Jesson B, Godon C, Jarry U, Guillaume T, Chevallier P, Vié H, Clémenceau B. The doubling potential of T lymphocytes allows clinical-grade production of a bank of genetically modified monoclonal T-cell populations. Cytotherapy 2018; 20:436-452. [PMID: 29396255 DOI: 10.1016/j.jcyt.2017.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/29/2017] [Accepted: 12/02/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND AIMS To produce an anti-leukemic effect after hematopoietic stem cell transplantation we have long considered the theoretical possibility of using banks of HLA-DP specific T-cell clones transduced with a suicide gene. For that application as for any others, a clonal strategy is constrained by the population doubling (PD) potential of T cells, which has been rarely explored or exploited. METHODS We used clinical-grade conditions and two donors who were homozygous and identical for all HLA-alleles except HLA-DP. After mixed lymphocyte culture and transduction, we obtained 14 HLA-DP-specific T-cell clones transduced with the HSV-TK suicide gene. Clones were then selected on the basis of their specificity and functional characteristics and evaluated for their doubling potential. RESULTS After these steps of selection the clone NAT-DP4(TK), specific for HLA-DPB1*04:01/04:02, which produced high levels of interferon-γ (IFNγ), tumor necrosis factor (TNF), interleukin-2 (IL-2) and granulocyte-macrophage colony-stimulating factor (GM-CSF), was fully sequenced. It has two copies of the HSV-TK suicide transgene whose localizations were determined. Four billion NAT-DP4(TK) cells were frozen after 50 PDs. Thawed NAT-DP4(TK) cells retain the potential to undergo 50 additional PDs, a potential very far beyond that required to produce a biological effect. This PD potential was confirmed on 6/16 additional different T-cell clones. This type of well-defined clone can also support a second genetic modification with CAR constructs. CONCLUSION The possibility of choosing rare donors and exploiting the natural proliferative potential of T lymphocytes may dramatically reduce the clinical and immunologic complexity of adoptive transfer protocols that rely on the use of third-party T-cell populations.
Collapse
Affiliation(s)
- Régine Vivien
- Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), Institut National de la Santé et de la Recherche Médicale (INSERM) 1232, Centre National de la Recherche Scientifique (CNRS), Université d'Angers, Université de Nantes, Nantes, France
| | - Soraya Saïagh
- Centre Hospitalier Universitaire (CHU) de Nantes, Hôtel Dieu, Unité de Thérapie Cellulaire et Génique (UTCG), Nantes, France
| | - Philippe Lemarre
- Centre Hospitalier Universitaire (CHU) de Nantes, Hôtel Dieu, Unité de Thérapie Cellulaire et Génique (UTCG), Nantes, France
| | | | - Béline Jesson
- Helixio Biopôle Clermont-Limagne, Saint-Beauzire, France
| | - Catherine Godon
- Centre Hospitalier Universitaire (CHU) de Nantes, Hôtel Dieu, Unité de Thérapie Cellulaire et Génique (UTCG), Nantes, France
| | - Ulrich Jarry
- Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), Institut National de la Santé et de la Recherche Médicale (INSERM) 1232, Centre National de la Recherche Scientifique (CNRS), Université d'Angers, Université de Nantes, Nantes, France
| | - Thierry Guillaume
- Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), Institut National de la Santé et de la Recherche Médicale (INSERM) 1232, Centre National de la Recherche Scientifique (CNRS), Université d'Angers, Université de Nantes, Nantes, France; Centre Hospitalier Universitaire (CHU) de Nantes, Hôtel Dieu, Unité de Thérapie Cellulaire et Génique (UTCG), Nantes, France
| | - Patrice Chevallier
- Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), Institut National de la Santé et de la Recherche Médicale (INSERM) 1232, Centre National de la Recherche Scientifique (CNRS), Université d'Angers, Université de Nantes, Nantes, France; Centre Hospitalier Universitaire (CHU) de Nantes, Hôtel Dieu, Unité de Thérapie Cellulaire et Génique (UTCG), Nantes, France
| | - Henri Vié
- Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), Institut National de la Santé et de la Recherche Médicale (INSERM) 1232, Centre National de la Recherche Scientifique (CNRS), Université d'Angers, Université de Nantes, Nantes, France; Etablissement Français du Sang (EFS), Pays de la Loire, Site de Nantes, Nantes, France.
| | - Béatrice Clémenceau
- Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), Institut National de la Santé et de la Recherche Médicale (INSERM) 1232, Centre National de la Recherche Scientifique (CNRS), Université d'Angers, Université de Nantes, Nantes, France; Centre Hospitalier Universitaire (CHU) de Nantes, Hôtel Dieu, Unité de Thérapie Cellulaire et Génique (UTCG), Nantes, France.
| |
Collapse
|
4
|
Teteloshvili N, Kluiver J, van der Geest KSM, van der Lei RJ, Jellema P, Pawelec G, Brouwer E, Kroesen BJ, Boots AMH, van den Berg A. Age-Associated Differences in MiRNA Signatures Are Restricted to CD45RO Negative T Cells and Are Associated with Changes in the Cellular Composition, Activation and Cellular Ageing. PLoS One 2015; 10:e0137556. [PMID: 26360056 PMCID: PMC4567287 DOI: 10.1371/journal.pone.0137556] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/19/2015] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as important players in the regulation of T-cell functionality. However, comprehensive insight into the extent of age-related miRNA changes in T cells is lacking. We established miRNA expression patterns of CD45RO- naïve and CD45RO+ memory T-cell subsets isolated from peripheral blood cells from young and elderly individuals. Unsupervised clustering of the miRNA expression data revealed an age-related clustering in the CD45RO- T cells, while CD45RO+ T cells clustered based on expression of CD4 and CD8. Seventeen miRNAs showed an at least 2-fold up- or downregulation in CD45RO- T cells obtained from young as compared to old donors. Validation on the same and independent samples revealed a statistically significant age-related upregulation of miR-21, miR-223 and miR-15a. In a T-cell subset analysis focusing on known age-related phenotypic changes, we showed significantly higher miR-21 and miR-223 levels in CD8+CD45RO-CCR7- TEMRA compared to CD45RO-CCR7+ TNAIVE-cells. Moreover, miR-21 but not miR-223 levels were significantly increased in CD45RO-CD31- post-thymic TNAIVE cells as compared to thymic CD45RO-CD31+ TNAIVE cells. Upon activation of CD45RO- TNAIVE cells we observed a significant induction of miR-21 especially in CD4+ T cells, while miR-223 levels significantly decreased only in CD4+ T cells. Besides composition and activation-induced changes, we showed a borderline significant increase in miR-21 levels upon an increasing number of population doublings in CD4+ T-cell clones. Together, our results show that ageing related changes in miRNA expression are dominant in the CD45RO- T-cell compartment. The differential expression patterns can be explained by age related changes in T-cell composition, i.e. accumulation of CD8+ TEMRA and CD4+ post-thymic expanded CD31- T cells and by cellular ageing, as demonstrated in a longitudinal clonal culture model.
Collapse
Affiliation(s)
- Nato Teteloshvili
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Initiative on Healthy Ageing and Immune Longevity (GRAIL), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Kornelis S. M. van der Geest
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Initiative on Healthy Ageing and Immune Longevity (GRAIL), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Roelof Jan van der Lei
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Pytrick Jellema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Graham Pawelec
- Department of Internal Medicine II, Centre for Medical Research, University of Tübingen, Tübingen, Germany
- School of Science and Technology, Nottingham Trent University, Nottingham, United KIngdom
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Initiative on Healthy Ageing and Immune Longevity (GRAIL), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bart-Jan Kroesen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Initiative on Healthy Ageing and Immune Longevity (GRAIL), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Annemieke M. H. Boots
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Initiative on Healthy Ageing and Immune Longevity (GRAIL), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Initiative on Healthy Ageing and Immune Longevity (GRAIL), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
5
|
Kushida Y, Ishida JY, Fujii M, Touma M, Hosono M. Population doublings of murine CD4(+) memory T cells during continuous antigen stimulation in vivo. Cell Immunol 2014; 292:45-52. [PMID: 25261713 DOI: 10.1016/j.cellimm.2014.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/06/2014] [Accepted: 09/15/2014] [Indexed: 10/24/2022]
Abstract
We investigated the expansion rate of CD4(+) memory T cells using a newly developed in vivo system. Neonatal thymectomy abrogates the subsequent production of T cells and induces autoimmune gastritis (AIG) by the activation of CD4(+) T cells; this disease was transferred into athymic nude mice through the inoculation of splenic CD4(+) memory T cells. The transferred CD4(+) T cells increased logarithmically in number during the first 2months in the spleen of the recipients. The serial transfer of these splenocytes at two-month intervals revealed that the numbers of the AIG-transferable generations were inversely correlated with the age of the first AIG donors. The duration of the AIG-promoting capacity of CD4(+) T cells under continuous antigenic stimulation in vivo was approximately equivalent-one and a half years. These results indicate that there exists an intrinsic population doubling limit in memory CD4(+) T cells similar to that of self-renewing naïve ones.
Collapse
Affiliation(s)
- Yoshihiro Kushida
- Laboratory of Immunobiology, Department of Life Science, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Jun-ya Ishida
- Laboratory of Immunobiology, Department of Life Science, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Masato Fujii
- Laboratory of Immunobiology, Department of Life Science, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Maki Touma
- Department of Biology, Faculty of Science, Niigata University, Niigata, Japan.
| | - Masamichi Hosono
- Laboratory of Immunobiology, Department of Life Science, Graduate School of Science and Technology, Niigata University, Niigata, Japan.
| |
Collapse
|
6
|
Zhou L, Miranda-Saksena M, Saksena NK. Viruses and neurodegeneration. Virol J 2013; 10:172. [PMID: 23724961 PMCID: PMC3679988 DOI: 10.1186/1743-422x-10-172] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 05/20/2013] [Indexed: 11/10/2022] Open
Abstract
Neurodegenerative diseases (NDs) are chronic degenerative diseases of the central nervous system (CNS), which affect 37 million people worldwide. As the lifespan increases, the NDs are the fourth leading cause of death in the developed countries and becoming increasingly prevalent in developing countries. Despite considerable research, the underlying mechanisms remain poorly understood. Although the large majority of studies do not show support for the involvement of pathogenic aetiology in classical NDs, a number of emerging studies show support for possible association of viruses with classical neurodegenerative diseases in humans. Space does not permit for extensive details to be discussed here on non-viral-induced neurodegenerative diseases in humans, as they are well described in literature.Viruses induce alterations and degenerations of neurons both directly and indirectly. Their ability to attack the host immune system, regions of nervous tissue implies that they can interfere with the same pathways involved in classical NDs in humans. Supporting this, many similarities between classical NDs and virus-mediated neurodegeneration (non-classical) have been shown at the anatomic, sub-cellular, genomic and proteomic levels suggesting that viruses can explain neurodegenerative disorders mechanistically. The main objective of this review is to provide readers a detailed snapshot of similarities viral and non-viral neurodegenerative diseases share, so that mechanistic pathways of neurodegeneration in human NDs can be clearly understood. Viruses can guide us to unveil these pathways in human NDs. This will further stimulate the birth of new concepts in the biological research, which is needed for gaining deeper insights into the treatment of human NDs and delineate mechanisms underlying neurodegeneration.
Collapse
Affiliation(s)
- Li Zhou
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, The University of Sydney, Westmead NSW 2145, Sydney Australia
| | | | | |
Collapse
|
7
|
Marthandan S, Hyland P, Pawelec G, Barnett Y. An investigation of the effects of the antioxidants, ebselen or N-acetyl cysteine on human peripheral blood mononuclear cells and T cells. IMMUNITY & AGEING 2013; 10:7. [PMID: 23432994 PMCID: PMC3610132 DOI: 10.1186/1742-4933-10-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/09/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND The research literature has documented age-related increases in genetic damage, including oxidative DNA damage, in human T lymphocytes, in vitro and ex vivo. Such damage has the potential to interfere with the ability of the T cells to proliferate at times when they need to, such as when antigen challenged. The consequence of this could be a sub-optimal immune response in vivo. CONTEXT AND PURPOSE The purpose of the research reported in this paper was to investigate the impact of two antioxidants, which can be administered in vivo, Ebselen and N-acetyl L-cysteine, on the age-related increase in genetic damage, and on T cell proliferation and lifespan. In vitro human T cell clones, ex vivo peripheral blood mononuclear cells or T cells were supplemented with different concentrations of antioxidants, under standard conditions and for different periods of time. A range of assays were then applied in order to determine any impact of the antioxidants. RESULTS 30 μM ebselen or 7.5 mM N-acetyl L-cysteine supplementation resulted in a significantly higher intracellular GSH: GSSG ratio. This increased ratio was accompanied by reduced levels of oxidative DNA damage in established CD4+ human T cell clones, from a young or a middle-aged donor. Additionally, cultures of primary human peripheral blood mononuclear cells and CD4+ T cells from donors aged 25-30 or 55-60 years were also supplemented with these agents. Cells from all sources exhibited increased proliferation, and in the case of the T cell clones, an increase in cumulative population doublings. Neither ebselen nor N-acetyl L-cysteine had such effects on clones supplemented from the midpoint of their in vitro lifespan. CONCLUSIONS Ebselen and N-acetyl L-cysteine, under certain conditions, may have anti-immunosenescent potential in T cells in in vitro clonal and ex vivo polyclonal culture models.
Collapse
Affiliation(s)
- Shiva Marthandan
- School of Science and Technology, College of Arts and Science, Nottingham Trent University, Clifton Lane, Nottingham, England, NG11 8NS, UK.
| | | | | | | |
Collapse
|
8
|
Neri S, Pawelec G, Facchini A, Ferrari C, Mariani E. Altered expression of mismatch repair proteins associated with acquisition of microsatellite instability in a clonal model of human T lymphocyte aging. Rejuvenation Res 2008; 11:565-72. [PMID: 18484899 DOI: 10.1089/rej.2007.0639] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The DNA mismatch repair system, the main postreplicative correction pathway in eukaryotic cells, has been shown to be involved in the acquisition of genetic damage during the aging of normal somatic cells, including those of the immune system. Previously, we showed that some but not all human T cell clones (TCC) in an in vitro culture aging model develop microsatellite instability (MSI), which is associated with altered expression of mismatch repair genes. Here, we analyzed levels of mismatch repair proteins as well as the corresponding mRNAs and related this to the development of microsatellite instability in TCC. Msh2, Msh3, Msh6, Pms1, and Pms2 protein expression was quantified by Western blotting. We found that clones not manifesting microsatellite instability in this in vitro model of T cell replicative aging, induced by persistent antigenic stimulation, maintain normal transcriptional control and coordination among the mismatch repair system genes, while clones which do manifest MSI display a general deregulation of gene expression, which is likely to contribute to its occurrence.
Collapse
Affiliation(s)
- Simona Neri
- Laboratorio di Immunologia e Genetica, Istituto di Ricerca Codivilla-Putti, IOR, Bologna, Italy
| | | | | | | | | |
Collapse
|
9
|
Neri S, Pawelec G, Facchini A, Mariani E. Microsatellite instability and compromised mismatch repair gene expression during in vitro passaging of monoclonal human T lymphocytes. Rejuvenation Res 2007; 10:145-56. [PMID: 17518701 DOI: 10.1089/rej.2006.0510] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An age-related accumulation of DNA damage caused by increased insult and/or decreased repair, could contribute to impaired cellular function. DNA mismatch repair (MMR), the main postreplicative correction pathway, can be monitored by assessing microsatellite instability and has been reported to decrease with age. Here, we analyzed the involvement of the MMR system in the accumulation of genetic damage in a cultured monoclonal human T lymphocyte model. We correlated microsatellite instability (MSI) and MMR gene expression, and replicative senescence of CD4+ clones derived from young, old and centenarian individuals or from CD34+ precursors. Cells were analyzed for MSI at five loci (CD4, VWA, Fes, D2S123, and BAT26), for the methylation status of MLH1 and MSH2 gene promoters, and for the expression of the MMR genes MSH2, MSH6, MSH3, MLH1, PMS2, and PMS1. MSI increased with increasing culture passages, particularly in the CD34+ progenitor-derived clones, but also in those from adult T cells. MSI and MMR gene expression were found to correlate, mostly due to a reduced expression of the components of MutL heterodimers, pointing to a role of MMR in the acquisition of DNA damage with in vitro aging.
Collapse
Affiliation(s)
- Simona Neri
- Laboratorio di Immunologia e Genetica, Istituto di Ricerca Codivilla-Putti, I.O.R., Bologna, Italy
| | | | | | | |
Collapse
|
10
|
Mazzatti DJ, White A, Forsey RJ, Powell JR, Pawelec G. Gene expression changes in long-term culture of T-cell clones: genomic effects of chronic antigenic stress in aging and immunosenescence. Aging Cell 2007; 6:155-63. [PMID: 17286612 PMCID: PMC2049045 DOI: 10.1111/j.1474-9726.2007.00269.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The adaptive immune response requires waves of T-cell clonal expansion on contact with altered self and contraction after elimination of antigen. In the case of persisting antigen, as occurs for example in cytomegalovirus or Epstein–Barr virus infection, this critical process can become dysregulated and responding T-cells enter into a dysfunctional senescent state. Longitudinal studies suggest that the presence of increased numbers of such T-cells is a poor prognostic factor for survival in the very elderly. Understanding the nature of the defects in these T-cells might facilitate intervention to improve immunity in the elderly. The process of clonal expansion under chronic antigenic stress can be modelled in vitro using continuously cultured T-cells. Here, we have used cDNA array technology to investigate differences in gene expression in a set of five different T-cell clones at early, middle and late passage in culture. Differentially expressed genes were confirmed by real-time polymerase chain reaction, and relationships between these assessed using Ingenuity Systems evidence-based association analysis. Several genes and chemokines related to induction of apoptosis and signal transduction pathways regulated by transforming growth factor β (TGFβ), epidermal growth factor (EGF), fos and β-catenin were altered in late compared to early passage cells. These pathways and affected genes may play a significant role in driving the cellular senescent phenotype and warrant further investigation as potential biomarkers of aging and senescence. These genes may additionally provide targets for intervention.
Collapse
Affiliation(s)
- Dawn J Mazzatti
- Unilever Corporate Research, Colworth Park, Sharnbrook, Bedford MK44 1LQ, UK.
| | | | | | | | | |
Collapse
|
11
|
Maus MV, Kovacs B, Kwok WW, Nepom GT, Schlienger K, Riley JL, Allman D, Finkel TH, June CH. Extensive replicative capacity of human central memory T cells. THE JOURNAL OF IMMUNOLOGY 2004; 172:6675-83. [PMID: 15153483 DOI: 10.4049/jimmunol.172.11.6675] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To characterize the replicative capacity of human central memory (T(CM)) CD4 T cells, we have developed a defined culture system optimized for the ex vivo expansion of Ag-specific CD4(+) T cells. Artificial APCs (aAPCs) consisting of magnetic beads coated with Abs to HLA class II and a costimulatory Ab to CD28 were prepared; peptide-charged HLA class II tetramers were then loaded on the beads to provide Ag specificity. Influenza-specific DR*0401 CD4 T(CM) were isolated from the peripheral blood of normal donors by flow cytometry. Peptide-loaded aAPC were not sufficient to induce resting CD4 T(CM) to proliferate. In contrast, we found that the beads efficiently promoted the growth of previously activated CD4 T(CM) cells, yielding cultures with >80% Ag-specific CD4 cells after two stimulations. Further stimulation with peptide-loaded aAPC increased purity to >99% Ag-specific T cells. After in vitro culture for 3-12 wk, the flu-specific CD4 T(CM) had surface markers that were generally consistent with an effector phenotype described for CD8 T cells, except for the maintenance of CD28 expression. The T(CM) were capable of 20-40 mean population doublings in vitro, and the expanded cells produced IFN-gamma, IL-2, and TNF-alpha in response to Ag, and a subset of cells also secreted IL-4 with PMA/ionomycin treatment. In conclusion, aAPCs expand T(CM) that have extensive replicative capacity, and have potential applications in adoptive immunotherapy as well as for studying the biology of human MHC class II-restricted T cells.
Collapse
Affiliation(s)
- Marcela V Maus
- Abramson Family Cancer Research Institute, University of Pennsylvania Cancer Center,University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Neri S, Cattini L, Facchini A, Pawelec G, Mariani E. Microsatellite instability in in vitro ageing of T lymphocyte clones. Exp Gerontol 2004; 39:499-505. [PMID: 15050283 DOI: 10.1016/j.exger.2003.11.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Revised: 10/30/2003] [Accepted: 11/01/2003] [Indexed: 11/17/2022]
Abstract
Repair of mismatches in mammalian cell DNA is mediated by a complex of proteins that constitute the so-called mismatch repair system (MMR), the main post-replicative pathway for the correction of replication errors. Loss of MMR (as exemplified by germline mutations in some MMR genes, leading to hereditary non-polyposis colorectal cancer) results in increased mutation rates at both coding sequences and in non-coding regions such as microsatellites. In order to evaluate possible functional alterations of this repair system during ageing that could affect immune system efficiency, we studied microsatellite instability at five different loci interspersed in the genome (CD4, VWA31, Tpox, Fes/FPS and p53) in total DNA from T lymphocyte clones derived from hematopoietic stem cells, or peripheral T cells of young or elderly subjects. In addition, these clones had been maintained for different periods in vitro to represent a culture model of ageing. We observed increasing instability accumulating with increasing passages in culture, particularly in CD34+cell-derived clones, but no clear donor age relationship.
Collapse
Affiliation(s)
- Simona Neri
- Laboratorio di Immunologia e Genetica, Istituto di Ricerca Codivilla Putti, IOR, Via di Barbiano 1/10, 40136 Bologna, Italy
| | | | | | | | | |
Collapse
|
13
|
Pawelec G, Mariani E, McLeod J, Ben-Yehuda A, Fulop T, Aringer M, Barnett Y. Engineering Anticancer T Cells for Extended Functional Longevity. Ann N Y Acad Sci 2004; 1019:178-85. [PMID: 15247010 DOI: 10.1196/annals.1297.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Like other somatic cells, human T lymphocytes have a finite replicative capacity in vitro, and, by implication and consistent with the limited data available, in vivo as well. An accumulation of dysfunctional T cells may be detrimental under conditions of chronic antigenic stress (chronic infection, cancer, autoimmunity). Using T cells from young donors to model the process of T cell clonal expansion in vitro under these conditions reveals age-associated increasing levels of oxidative DNA damage and microsatellite instability (MSI), coupled with decreasing DNA repair capacity, telomerase induction and telomere length, decreased levels of expression of the T cell costimulator CD28 and consequently reduced secretion of the T cell growth factor interleukin-2 (IL-2). However, data from similar experiments using T cell clones (TCCs) derived from extremely healthy very elderly donors ("successfully aged") indicate that DNA repair is better maintained, MSI less prevalent, and (already short) telomere lengths are maintained. Nonetheless, oxidative DNA damage is seen to the same extent, and clonal longevity is also similar in these clones. DNA damage levels are reduced by culture in 5% oxygen, but longevity is not improved. This may be because of the requirement for intermittent reactivation via receptor pathways dependent on free radical production in T cells. These recent findings from our international immunosenescence research consortium suggest that strategies other than telomere maintenance, better protection against free radicals, or improved DNA repair will be required for functional longevity extension of human TCCs. To obtain sufficient cells for adoptive immunotherapy of cancer, alternative avenues need exploration; currently, these include enforced expression of certain heat shock proteins and proteasome components, and interference with the expression of negative regulatory receptors expressed by T cells.
Collapse
Affiliation(s)
- Graham Pawelec
- Center for Medical Research, ZMF, University of Tübingen Medical School, Waldhörnlestrasse 22, D-72072 Tuebingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
14
|
Pietschmann P, Gollob E, Brosch S, Hahn P, Kudlacek S, Willheim M, Woloszczuk W, Peterlik M, Tragl KH. The effect of age and gender on cytokine production by human peripheral blood mononuclear cells and markers of bone metabolism. Exp Gerontol 2004; 38:1119-27. [PMID: 14580865 DOI: 10.1016/s0531-5565(03)00189-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Aging has been associated with various alterations of immune functions, the musculoskeletal system and a decline of sex hormone levels. Estradiol has a central role in the regulation of bone turnover and also modulates the production of cytokines such as interleukin-1 and -6 and tumor necrosis factor-alpha. We therefore studied the effect of age and gender on cytokine production by mononuclear cells and markers of bone metabolism. METHODS Peripheral blood mononuclear cells were isolated from young and elderly subjects; intracellular detection of cytokine production after stimulation with ionomycine and PMA (T cells) or LPS (monocytes) was performed by four color flow cytometry. Sex hormone levels and markers of bone metabolism were measured by RIA or ELISA: RESULTS When we compared elderly to young women we found an increased proportion of T cells that were positive for interferon-gamma, interleukin-2, -4, -10 and -13. Also the percentage of cells producing interleukin-4 or interferon-gamma within the CD8(+) population was higher in the group of elderly women. In contrast, proportionally fewer monocytes of elderly women were positive for tumor necrosis factor-alpha or interleukin-6 than those of young women. In elderly men a higher percentage of T cells produced interleukin-2, -4 and -13. In the group of aged men we found a higher frequency of cells that produced interleukin-4 within the CD4(+) or CD8(+) population. Moreover, within monocytes of elderly men we found an increased percentage of cells positive for both interleukin-1beta and tumor necrosis factor-alpha. The data on markers of bone metabolism indicated an increase of bone turnover in old age. CONCLUSION Our data demonstrate that aging is associated with significant alterations of bone metabolism and cytokine production by T cells and monocytes. For particular cytokines (interferon-gamma and interleukin-10 in T cells, interleukin-6 and tumor necrosis factor-alpha in monocytes) these changes are gender specific.
Collapse
Affiliation(s)
- Peter Pietschmann
- Department of Pathophysiology, University of Vienna, Waehringer Guertel 18-20, Vienna A-1090, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Witkowski JM, Bryl E. Paradoxical age-related cell cycle quickening of human CD4+ lymphocytes: a role for cyclin D1 and calpain. Exp Gerontol 2004; 39:577-85. [PMID: 15050293 DOI: 10.1016/j.exger.2003.10.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2003] [Revised: 08/22/2003] [Accepted: 10/07/2003] [Indexed: 10/26/2022]
Abstract
Precise determination of cell cycle length and G(0)-->G(1) transition time of CD4(+) lymphocytes in relation to age was never done before. We show that the cell cycle of healthy elderly donors' CD4(+) cells is significantly shorter, while time to the first division (G(0)-->G(1)) extended compared to cells of young people. The G(0)-->G(1) time inversely correlates with cycle length and the number of CD28 molecules. Quickening of elderly CD4(+) cell divisions depends on overexpression of cyclin D1, possibly related to lowered proteolytic degradation by calpain. Apoptosis eliminates most of responding cells after only one or two divisions, especially in older donors.
Collapse
Affiliation(s)
- Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland.
| | | |
Collapse
|
16
|
Duggan O, Hyland P, Annett K, Freeburn R, Barnett C, Pawelec G, Barnett Y. Effects of a reduced oxygen tension culture system on human T cell clones as a function of in vitro age. Exp Gerontol 2004; 39:525-30. [PMID: 15050286 DOI: 10.1016/j.exger.2003.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Revised: 11/26/2003] [Accepted: 12/01/2003] [Indexed: 11/24/2022]
Abstract
Oxidative DNA damage has been suggested to contribute to the decline in T cell clone (TCC) function with increased age in vitro. To test this hypothesis the effect of a reduced oxygen tension culture system (6% O(2)) on TCCs was examined. Specifically, the effects of the altered culture conditions on DNA damage levels, in vitro lifespan and proliferative capacity were assessed in five independently derived human CD4+ TCCs. DNA damage levels over the entire lifespan were significantly lowered by reducing oxygen tension. Lifespan (total population doublings (PDs) achieved) and proliferative capacity (PDs/week) were reduced for all clones under reduced oxygen tension when compared to standard culture conditions. This observed tendency warrants further investigation using a greater number of clones from donors of all age groups before definitive conclusions regarding the effect of low oxygen tension on the lifespan and proliferative capacity of TCC can be made. However, these results may suggest that the reduced oxygen tension culture system has interfered with some aspect of T cell biology not yet examined within the remit of this study.
Collapse
Affiliation(s)
- Orla Duggan
- Cancer and Ageing Research Group, School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK
| | | | | | | | | | | | | |
Collapse
|
17
|
Pawelec G. Extrathymic T-cell differentiation in vitro. Nat Rev Immunol 2004. [DOI: 10.1038/nri1257-c1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Pawelec G, Ouyang Q, Wagner W, Biol D, Wikby A. Pathways to a robust immune response in the elderly. Immunol Allergy Clin North Am 2003; 23:1-13. [PMID: 12645875 DOI: 10.1016/s0889-8561(02)00075-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Circumstantial evidence suggests that infectious disease is the major cause of morbidity and mortality in the elderly, and immune-system dysfunction may contribute to this finding. Because innate and humoral immunity seem to be relatively unaffected by aging and because the T-cell compartment shows marked age-associated alterations, this article focuses on the association between T cells and aging. Longitudinal studies suggest that immune parameters, which predominantly are related to T cells, can be clustered to yield an IRP that is predictive of mortality in the elderly. Determining the IRP also may be helpful in younger individuals, particularly those under chronic antigenic stress (eg, patients with cancer or chronic infections) who experience premature aging of the immune system. Some changes in T cells can be modeled in clonal cultures in vitro to discover new biomarkers of immune aging. These biomarkers, which need to be validated in vivo, could be used to refine IRP. Interventions to selectively target changes that are identified as part of IRP may improve the health and quality of life of the elderly, reduce healthcare costs, and avoid potential unwanted side effects of global intervention approaches, such as triggering or exacerbating autoimmunity and inflammation.
Collapse
Affiliation(s)
- Graham Pawelec
- Second Department of Internal Medicine, University of Tübingen Medical School, Waldhörnlestr. 22, D-72076 Tübingen, Germany.
| | | | | | | | | |
Collapse
|
19
|
Cultured T cell clones as models for immunosenescence. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1566-3124(02)13017-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|