1
|
Takauji Y, Kudo I, En A, Matsuo R, Hossain MN, Nakabayashi K, Miki K, Fujii M, Ayusawa D. GNG11 (G-protein subunit γ 11) suppresses cell growth with induction of reactive oxygen species and abnormal nuclear morphology in human SUSM-1 cells. Biochem Cell Biol 2017; 95:517-523. [PMID: 28380310 DOI: 10.1139/bcb-2016-0248] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Enforced expression of GNG11, G-protein subunit γ 11, induces cellular senescence in normal human diploid fibroblasts. We here examined the effect of the expression of GNG11 on the growth of immortalized human cell lines, and found that it suppressed the growth of SUSM-1 cells, but not of HeLa cells. We then compared these two cell lines to understand the molecular basis for the action of GNG11. We found that expression of GNG11 induced the generation of reactive oxygen species (ROS) and abnormal nuclear morphology in SUSM-1 cells but not in HeLa cells. Increased ROS generation by GNG11 would likely be caused by the down-regulation of the antioxidant enzymes in SUSM-1 cells. We also found that SUSM-1 cells, even under normal culture conditions, showed higher levels of ROS and higher incidence of abnormal nuclear morphology than HeLa cells, and that abnormal nuclear morphology was relevant to the increased ROS generation in SUSM-1 cells. Thus, SUSM-1 and HeLa cells showed differences in the regulation of ROS and nuclear morphology, which might account for their different responses to the expression of GNG11. Thus, SUSM-1 cells may provide a unique system to study the regulatory relationship between ROS generation, nuclear morphology, and G-protein signaling.
Collapse
Affiliation(s)
- Yuki Takauji
- a Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Ikuru Kudo
- a Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Atsuki En
- a Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Ryo Matsuo
- a Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Mohammad Nazir Hossain
- b Department of Biochemistry, Primeasia University, 9 Banani C/A Banani, Dhaka 1213, Bangladesh
| | - Kazuhiko Nakabayashi
- c Department of Maternal-Fetal Biology, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Kensuke Miki
- a Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan.,d Ichiban Life Corporation, 1-1-7 Horai-cho, Naka-ku, Yokohama, Kanagawa 231-0048, Japan
| | - Michihiko Fujii
- a Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Dai Ayusawa
- a Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan.,d Ichiban Life Corporation, 1-1-7 Horai-cho, Naka-ku, Yokohama, Kanagawa 231-0048, Japan
| |
Collapse
|
2
|
Restriction of protein synthesis abolishes senescence features at cellular and organismal levels. Sci Rep 2016; 6:18722. [PMID: 26729469 PMCID: PMC4700526 DOI: 10.1038/srep18722] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 11/24/2015] [Indexed: 01/26/2023] Open
Abstract
Cellular senescence or its equivalence is induced by treatment of cells with an appropriate inducer of senescence in various cell types. Mild restriction of cytoplasmic protein synthesis prevented induction of all aspects of cellular senescence in normal and tumor-derived human cells. It allowed the cells to continuously grow with no sign of senescent features in the presence of various inducers. It also delayed replicative senescence in normal human fibroblasts. Moreover, it allowed for growth of the cells that had entered a senescent state. When adult worms of the nematode C. elegans were grown under protein-restricted conditions, their average and maximal lifespans were significantly extended. These results suggest that accumulation of cytoplasmic proteins due to imbalance in macromolecule synthesis is a fundamental cause of cellular senescence.
Collapse
|
3
|
High concentrations of NaCl induce cell swelling leading to senescence in human cells. Mol Cell Biochem 2015; 411:117-25. [PMID: 26463993 DOI: 10.1007/s11010-015-2573-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/26/2015] [Indexed: 10/23/2022]
Abstract
Cell swelling and retardation in DNA replication are always observed in senescent cells. When DNA replication is slowed down with RNA and protein syntheses unchanged in proliferating cells, it causes a phenomenon known as unbalanced growth. The purpose of this study is to assess the role of cell swelling in unbalanced growth in terms of senescence and investigate the mechanism underlying this phenomenon. We tried to induce cell swelling with minimum damage to cells in this study. We perturbed the osmoregulatory functions to induce cell swelling under hypotonic and hypertonic conditions in normal human fibroblasts. Addition of excess NaCl was found to induce significant cell and nuclear swelling in dose- and time-dependent manners. Excess NaCl immediately retarded DNA replication, accumulated cells at G1 phase of the cell cycle, and eventually deprived division potential of the cells. Such cells showed typical senescent cell shape followed by expression of the typical senescence-associated genes. Excess NaCl also activated ERK1/2, p38, and JNK of the mitogen activated protein kinase family. Addition of U0126, an inhibitor of ERK1/2, prevented appearance of senescent features induced by excess NaCl. These results suggest that hypertonic conditions induce cell swelling due to unbalanced growth, thereby leading to cellular senescence.
Collapse
|
4
|
Yamakami Y, Miki K, Yonekura R, Kudo I, Fujii M, Ayusawa D. Molecular basis for premature senescence induced by surfactants in normal human cells. Biosci Biotechnol Biochem 2014; 78:2022-9. [PMID: 25198914 DOI: 10.1080/09168451.2014.946391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Sublethal doses of surfactants as exemplified by NP-40 clearly induce premature senescence in normal human cells. To understand molecular basis for this phenomenon, we tried to suppress it with use of various inhibitors. An inhibitor of p38 of the MAPK family almost completely suppressed growth arrest and morphological changes induced by surfactants; however, other inhibitors tested had no effect. Oleic acid, a weak inducer of premature senescence, was found to suppress the effect of NP-40. Fluorescein-labeled oleic acid rapidly bound to the cell surface, and this binding was clearly blocked by pre-treatment with surfactants, suggesting that surfactants and oleic acid compete for binding to the cell surface. Moderate concentrations of cycloheximide, an inhibitor of protein synthesis, also suppressed the senescent features induced by NP-40. These results suggest that surfactants activate p38 signaling pathway by binding to the cell surface, and induce cellular senescence.
Collapse
Affiliation(s)
- Yoshimi Yamakami
- a Graduate School of Nanobioscience , Yokohama City University , Yokohama , Japan
| | | | | | | | | | | |
Collapse
|
5
|
Nuclear Swelling Occurs during Premature Senescence Mediated by MAP Kinases in Normal Human Fibroblasts. Biosci Biotechnol Biochem 2014; 72:1122-5. [DOI: 10.1271/bbb.70760] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Harris C. Animal Models in Epigenetic Research: Institutional Animal Care and Use Committee Considerations across the Lifespan. ILAR J 2012; 53:370-6. [DOI: 10.1093/ilar.53.3-4.370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
7
|
Kobayashi Y, Lee SS, Arai R, Miki K, Fujii M, Ayusawa D. ERK1/2 mediates unbalanced growth leading to senescence induced by excess thymidine in human cells. Biochem Biophys Res Commun 2012; 425:897-901. [PMID: 22902634 DOI: 10.1016/j.bbrc.2012.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 12/01/2022]
Abstract
Excess thymidine induces unbalanced growth by delaying DNA replication and subsequently induces senescence in every human cell type. Our previous studies with use of inhibitors suggested that ERK1/2 has a major role in these processes. Here we directly assessed the roles of ERK1 and ERK2 in unbalanced growth induced by excess thymidine. Knockdown of ERK2 and ERK1 by vector-based RNA interference prevented loss of colony forming ability and appearance of senescence markers induced by excess thymidine in HeLa and TIG-7 cells, respectively. Such cells continued growing in the presence of excess thymidine. Double knockdown of ERK1 and ERK2 did not improve the effects of single knockdowns of ERK1 and ERK2 in either cell types. These results demonstrate that ERK1 or ERK2 has a major role in manifestation of unbalanced growth in human cells.
Collapse
Affiliation(s)
- Yusuke Kobayashi
- Department of Genome System Science, Yokohama City University, 22-2 Seto, Yokohama 236-0027, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Takahashi M, Yanai N, Shiotani S, Endo J, Hagiwara S, Nabetani H. The Degradation of DNA Molecules by Reactive Oxygen Species and the Protective Activity of Naturally Occurring Antioxidants Derived from Foods. J JPN SOC FOOD SCI 2011. [DOI: 10.3136/nskkk.58.208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Gravina S, Vijg J. Epigenetic factors in aging and longevity. Pflugers Arch 2010. [DOI: '10.1007/s00424-009-0730-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
10
|
Gravina S, Vijg J. Epigenetic factors in aging and longevity. Pflugers Arch 2009; 459:247-58. [DOI: 10.1007/s00424-009-0730-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 08/26/2009] [Indexed: 12/13/2022]
|
11
|
Ay N, Irmler K, Fischer A, Uhlemann R, Reuter G, Humbeck K. Epigenetic programming via histone methylation at WRKY53 controls leaf senescence in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:333-346. [PMID: 19143996 DOI: 10.1111/j.0960-7412.2009.03782.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Leaf senescence, the final step of leaf development, involves extensive reprogramming of gene expression. Here, we show that these processes include discrete changes of epigenetic indexing, as well as global alterations in chromatin organization. During leaf senescence, the interphase nuclei show a decondensation of chromocenter heterochromatin, and changes in the nuclear distribution of the H3K4me2, H3K4me3, and the H3K27me2 and H3K27me3 histone modification marks that index active and inactive chromatin, respectively. Locus-specific epigenetic indexing was studied at the WRKY53 key regulator of leaf senescence. During senescence, when the locus becomes activated, H3K4me2 and H3K4me3 are significantly increased at the 5' end and at coding regions. Impairment of these processes is observed in plants overexpressing the SUVH2 histone methyltransferase, which causes ectopic heterochromatization. In these plants the transcriptional initiation of WRKY53 and of the senescence-associated genes SIRK, SAG101, ANAC083, SAG12 and SAG24 is inhibited, resulting in a delay of leaf senescence. In SUVH2 overexpression plants, significant levels of H3K27me2 and H3K27me3 are detected at the 5'-end region of WRKY53, resulting in its transcriptional repression. Furthermore, SUVH2 overexpression inhibits senescence-associated global changes in chromatin organization. Our data suggest that complex epigenetic processes control the senescence-specific gene expression pattern.
Collapse
Affiliation(s)
- Nicole Ay
- Department of Plant Physiology, Institute of Biology, Martin-Luther University Halle-Wittenberg, Weinbergweg 10, D-06120 Halle, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Arivazhagan P, Ayusawa D. Cardiolipin activates MAP kinases during premature senescence in normal human fibroblasts. Biogerontology 2007; 8:621-6. [PMID: 17588122 DOI: 10.1007/s10522-007-9103-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 05/18/2007] [Indexed: 11/27/2022]
Abstract
Lipids are major structural components of cellular membranes and regulate various signaling pathways as a mediator of the signals or a source of new signals. Our earlier studies show that cardiolipin very sensitively induces premature senescence in normal human fibroblasts. To understand a molecular basis for the action of cardiolipin, we tested whether the mitogen-activated protein (MAP) kinase cascades have a role in the above phenomenon. As expected, cardiolipin activated phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinases (JNK), and p38 map kinase (p38) of the MAP kinase family as in replicatively senesced cells. These results suggest that cardiolipin uses signaling pathways similar to those in replicative senescence to lead to premature senescence.
Collapse
Affiliation(s)
- Palaniyappan Arivazhagan
- Department of Biochemistry, Kihara Institute for Biological Research, Yokohama City University, Maioka-cho 641-12, Yokohama, 244-0813, Japan
| | | |
Collapse
|
13
|
Atkinson SP, Keith WN. Epigenetic control of cellular senescence in disease: opportunities for therapeutic intervention. Expert Rev Mol Med 2007; 9:1-26. [PMID: 17352843 DOI: 10.1017/s1462399407000269] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Understanding how senescence is established and maintained is an important area of study both for normal cell physiology and in tumourigenesis. Modifications to N-terminal tails of histone proteins, which can lead to chromatin remodelling, appear to be key to the regulation of the senescence phenotype. Epigenetic mechanisms such as modification of histone proteins have been shown to be sufficient to regulate gene expression levels and specific gene promoters can become epigenetically altered at senescence. This suggests that epigenetic mechanisms are important in senescence and further suggests epigenetic deregulation could play an important role in the bypass of senescence and the acquisition of a tumourigenic phenotype. Tumour suppressor proteins and cellular senescence are intimately linked and such proteins are now known to regulate gene expression through chromatin remodelling, again suggesting a link between chromatin modification and cellular senescence. Telomere dynamics and the expression of the telomerase genes are also both implicitly linked to senescence and tumourigenesis, and epigenetic deregulation of the telomerase gene promoters has been identified as a possible mechanism for the activation of telomere maintenance mechanisms in cancer. Recent studies have also suggested that epigenetic deregulation in stem cells could play an important role in carcinogenesis, and new models have been suggested for the attainment of tumourigenesis and bypass of senescence. Overall, proper regulation of the chromatin environment is suggested to have an important role in the senescence pathway, such that its deregulation could lead to tumourigenesis.
Collapse
Affiliation(s)
- Stuart P Atkinson
- Centre for Oncology and Applied Pharmacology, University of Glasgow, Cancer Research UK Beatson Laboratories, Bearsden, Glasgow, G61 1BD, UK
| | | |
Collapse
|
14
|
Sumikawa E, Matsumoto Y, Sakemura R, Fujii M, Ayusawa D. Prolonged unbalanced growth induces cellular senescence markers linked with mechano transduction in normal and tumor cells. Biochem Biophys Res Commun 2005; 335:558-65. [PMID: 16083852 DOI: 10.1016/j.bbrc.2005.07.106] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Accepted: 07/20/2005] [Indexed: 11/30/2022]
Abstract
Cellular senescence is induced by diverse means and hence thought to be mediated by multiple pathways. We show that prolonged unbalanced growth due to retardation of DNA replication elicits a senescence-like phenomenon irrespective of the cell type. In fact, modest inhibition of DNA replication by various means led to cell swelling, cytoskeletal alterations, and irregularly enlarged, flat cell shape. Such cells upregulated senescence-associated genes, and eventually lost division potential. These phenotypes, which define cellular senescence, were virtually reversed by reducing protein synthesis or blocking ERK of the MAP kinase family. These results suggest that cellular senescence is a manifestation of prolonged unbalanced growth linked with mechano transduction and can be prevented by at least two different ways.
Collapse
Affiliation(s)
- Emi Sumikawa
- Kihara Institute for Biological Research and Graduate School of Integrated Science, Yokohama City University, Maioka-cho 641-12, Yokohama 244-0813, Japan
| | | | | | | | | |
Collapse
|
15
|
Minagawa S, Nakabayashi K, Fujii M, Scherer SW, Ayusawa D. Early BrdU-responsive genes constitute a novel class of senescence-associated genes in human cells. Exp Cell Res 2005; 304:552-8. [PMID: 15748899 DOI: 10.1016/j.yexcr.2004.10.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 10/21/2004] [Accepted: 10/24/2004] [Indexed: 11/24/2022]
Abstract
We identified genes that immediately respond to 5-bromodeoxyuridine (BrdU) in SUSM-1, an immortal fibroblastic line, with DNA microarray and Northern blot analysis. At least 29 genes were found to alter gene expression greater than twice more or less than controls within 36 h after addition of BrdU. They took several different expression patterns upon addition of BrdU, and the majority showed a significant alteration within 12 h. When compared among SUSM-1, HeLa, and TIG-7 normal human fibroblasts, 19 genes behaved similarly upon addition of BrdU. In addition, 14 genes, 9 of which are novel as regards senescence, behaved similarly in senescent TIG-7 cells. The genes do not seem to have a role in proliferation or cell cycle progression. These results suggest that the early BrdU-responsive genes represent early signs of cellular senescence and can be its new biomarkers.
Collapse
Affiliation(s)
- Sachi Minagawa
- Kihara Institute for Biological Research and Graduate School of Integrated Science, Yokohama City University, Maioka-cho 641-12, Yokohama 244-0813, Japan
| | | | | | | | | |
Collapse
|
16
|
Russanova VR, Hirai TH, Tchernov AV, Howard BH. Mapping development-related and age-related chromatin remodeling by a high throughput ChIP-HPLC approach. J Gerontol A Biol Sci Med Sci 2005; 59:1234-43. [PMID: 15699522 DOI: 10.1093/gerona/59.12.1234] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Common to numerous differentiation pathways in vertebrate organisms is the regulation of key genes through epigenetic mechanisms. Less well studied is to what extent cells of a given differentiation state, but examined at different points within the life history of an organism, are distinct at the level of the epigenome. A few instances of such variation have been reported, and it would be of considerable value to have at hand a means to characterize additional examples more efficiently. We describe an integrated approach to this task, and further present evidence for regions of age-related histone H4 acetylation change extending over tens to hundreds of kilobases. Broad similarity between two distinct regions of such change suggests a previously unsuspected link between developmental programs and aging.
Collapse
Affiliation(s)
- Valya R Russanova
- National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
17
|
Lima EM, Rissino JD, Harada ML, Assumpção PP, Demachki S, Guimarães AC, Casartelli C, Smith MAC, Burbano RR. Conventional cytogenetic characterization of a new cell line, ACP01, established from a primary human gastric tumor. Braz J Med Biol Res 2004; 37:1831-8. [PMID: 15558189 DOI: 10.1590/s0100-879x2004001200008] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is the second most frequent type of neoplasia and also the second most important cause of death in the world. Virtually all the established cell lines of gastric neoplasia were developed in Asian countries, and western countries have contributed very little to this area. In the present study we describe the establishment of the cell line ACP01 and characterize it cytogenetically by means of in vitro immortalization. Cells were transformed from an intestinal-type gastric adenocarcinoma (T4N2M0) originating from a 48-year-old male patient. This is the first gastric adenocarcinoma cell line established in Brazil. The most powerful application of the cell line ACP01 is in the assessment of cytotoxicity. Solid tumor cell lines from different origins have been treated with several conventional and investigational anticancer drugs. The ACP01 cell line is triploid, grows as a single, non-organized layer, similar to fibroblasts, with focus formation, heterogeneous division, and a cell cycle of approximately 40 h. Chromosome 8 trisomy, present in 60% of the cells, was the most frequent cytogenetic alteration. These data lead us to propose a multifactorial triggering of gastric cancer which evolves over multiple stages involving progressive genetic changes and clonal expansion.
Collapse
Affiliation(s)
- E M Lima
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Arivazhagan P, Mizutani E, Fujii M, Ayusawa D. Cardiolipin induces premature senescence in normal human fibroblasts. Biochem Biophys Res Commun 2004; 323:739-42. [PMID: 15381062 DOI: 10.1016/j.bbrc.2004.08.177] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Indexed: 11/22/2022]
Abstract
Lipids seem to have various roles in cellular senescence. We found that cardiolipin very sensitively inhibits growth of normal human fibroblasts, whereas other phospholipids do not at 100 times higher concentrations. Growth arrested cells showed morphology similar to those of normally senesced cells and strongly induced senescence-associated beta-galactosidase. Senescence markers such as the p21(waf1/sdi-1), fibronectin, and collagenase-I genes were significantly upregulated by cardiolipin. In addition, caldiolipin significantly increased in normally senesced human fibroblasts leaving other phospholipids unaltered. These results suggest that accumulation of cardiolipin is one of the causes for replicative senescence.
Collapse
Affiliation(s)
- Palaniyappan Arivazhagan
- Kihara Institute for Biological Research, Yokohama City University, Maioka-cho 641-12, Yokohama 244-0813, Japan
| | | | | | | |
Collapse
|
19
|
Golubev A, Khrustalev S, Butov A. An in silico investigation into the causes of telomere length heterogeneity and its implications for the Hayflick limit. J Theor Biol 2004; 225:153-70. [PMID: 14575650 DOI: 10.1016/s0022-5193(03)00229-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
UNLABELLED In telomerase-negative cell populations the mean telomere length (TL) decreases with increasing population doubling number (PD). A critically small TL is believed to stop cell proliferation at a cell-, age- and species-specific PD thus defining the Hayflick limit. However, positively skewed TL distributions are broad compared to differences between initial and final mean TL and strongly overlap at middle and late PD, which is inconsistent with a limiting role of TL. We used computer-assisted modelling to define what set of premises may account for the above. Our model incorporates the following concepts. DNA end replication problem: telomeres loose 1 shortening unit (SU) upon each cell division. Free radical-caused TL decrease: telomeres experience random events resulting in the loss of a random SU number within a remaining TL. Stochasticity of gene expression and cell differentiation: cells experience random events inducing mitoses or committing cells to proliferation arrest, the latter option requiring a specified number of mitoses to be passed. Cells whose TL reaches 1SU cannot divide. The proliferation kinetics of such virtual cells conforms to the transition probability model of cell cycle. When no committing events occur and at realistic SU estimates of the initial TL, maximal PD values far exceed the Hayflick limit observed in normal cells and are consistent with the crisis stage entered by transformed cells that have surpassed the Hayflick limit. At intermediate PD, symmetrical TL distributions are yielded. Upon introduction of committing events making the ratio of the rates of proliferating and committing events (P/C) range from 1.10 to 1.25, TL distributions at intermediate PD become positively skewed, and virtual cell clones show bimodal size distributions. At P/C as high as 1.25 the majority of virtual cells at maximal PD contain telomeres with TL>1SU. A 10% increase in P/C within the 1.10-1.25 range produces a two-fold increase in the maximal PD, which can reach values of up to 25 observed in rodent and some human cells. Increasing the number of committed mitoses from 0 to 10 can increases PD to about 50 observed in human fibroblasts. Introduction of the random TL breakage makes the shapes of TL distributions quite dissimilar from those observed in real cells. CONCLUSIONS Telomere length decrease is a correlate of cell proliferation that cannot alone account for the Hayflick limit, which primarily depends on parameters of cell population kinetics. Free radical damage influences the Hayflick limit not through TL but rather by affecting the ratio of the rates of events that commit cells to mitoses or to proliferation arrest.
Collapse
Affiliation(s)
- A Golubev
- Research Institute of Experimental Medicine, St. Petersburg, Russia.
| | | | | |
Collapse
|
20
|
Abstract
The age-related changes in the functions and composition of the human body require adjustments of drug selection and dosage for old individuals. Drug excretion via the kidneys declines with age, the elderly should therefore be treated as renally insufficient patients. The metabolic clearance is primarily reduced with drugs that display high hepatic extraction ('blood flow-limited metabolism'), whereas the metabolism of drugs with low hepatic extraction ('capacity-limited metabolism') usually is not diminished. Reduction of metabolic drug elimination is more pronounced in malnourished or frail subjects. The water content of the aging body decreases, the fat content rises, hence the distribution volume of hydrophilic compounds is reduced in the elderly, whereas that of lipophilic drugs is increased. Intestinal absorption of most drugs is not altered in the elderly. Aside of these pharmacokinetic changes, one of the characteristics of old age is a progressive decline in counterregulatory (homeostatic) mechanisms. Therefore drug effects are mitigated less, the reactions are usually stronger than in younger subjects, the rate and intensity of adverse effects are higher. Examples of drug effects augmented is this manner are postural hypotension with agents that lower blood pressure, dehydration, hypovolemia, and electrolyte disturbances in response to diuretics, bleeding complications with oral anticoagulants, hypoglycemia with antidiabetics, and gastrointestinal irritation with non-steroidal anti-inflammatory drugs. The brain is an especially sensitive drug target in old age. Psychotropic drugs but also anticonvulsants and centrally acting antihypertensives may impede intellectual functions and motor coordination. The antimuscarinic effects of some antidepressants and neuroleptic drugs may be responsible for agitation, confusion, and delirium in elderly. Hence drugs should be used very restrictively in geriatric patients. If drug therapy is absolutely necessary, the dosage should be titrated to a clearly defined clinical or biochemical therapeutic goal starting from a low initial dose.
Collapse
Affiliation(s)
- Klaus Turnheim
- Institut für Pharmakologie, Universität Wien, Währinger Str. 13a, Vienna A-1090, Austria.
| |
Collapse
|
21
|
Smith JR, Price MC, Richardson A. The Sam and Ann Barshop Center for Longevity and Aging Studies: the University of Texas Health Science Center at San Antonio. Exp Gerontol 2002; 37:957-62. [PMID: 12213546 DOI: 10.1016/s0531-5565(02)00086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Sam and Ann Barshop Center for Longevity and Aging Studies is a focal point for advanced research designed exclusively to study the genes involved in aging and the diseases of aging. The research performed at the Barshop Center is based on a solid foundation of nearly twenty-five years of aging research at The University of Texas Health Science Center at San Antonio. Internationally recognized scientists in aging are now leading innovative research programs using state-of-the-art technologies in molecular and cellular biology to explore aging processes at the gene level in the four major programs that comprise the research at the Barshop Center: the Cellular Aging Program, the Invertebrate Aging Program, the Rodent Models of Aging Program, and the Human Genetics of Aging Program. The researchers involved in these programs share a common purpose in an atmosphere of collaboration to gain the scientific insights necessary to understand the molecular basis of aging. Their long-term goal is to gain the knowledge that will give rise to the development of interventions that retard or arrest the debilitating conditions associated with aging. February or March 2003 marks the groundbreaking for the first building of Barshop Center's new stand-alone facility. This is the initial step toward a $70 million, world-class research complex dedicated to the study of aging and healthy longevity.
Collapse
Affiliation(s)
- James R Smith
- Department of Pathology, MSC 7750, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| | | | | |
Collapse
|
22
|
Suzuki T, Michishita E, Ogino H, Fujii M, Ayusawa D. Synergistic induction of the senescence-associated genes by 5-bromodeoxyuridine and AT-binding ligands in HeLa cells. Exp Cell Res 2002; 276:174-84. [PMID: 12027447 DOI: 10.1006/excr.2002.5524] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
5-Bromodeoxyuridine induces a senescence-like phenomenon in mammalian cells. This effect was dramatically potentiated by AT-binding ligands such as distamycin A, netropsin, and Hoechst 33258. The genes most remarkably affected by these ligands include the widely used senescence-associated genes and were located on or nearby Giemsa-dark bands of human chromosomes. We hypothesize that AT-rich scaffold/nuclear matrix attachment region sequences are involved in this phenomenon. In fact, upon substitution of thymine with 5-bromouracil, a rat S/MAR sequence reduced its degree of bending and became insensitive to cancellation of the bending by distamycin A. The S/MAR sequence containing 5-bromouracil also bound more tightly to nuclear scaffold proteins in vitro and this binding was not inhibited by distamycin A. Under the same conditions, the S/MAR sequence containing thymine easily dissociated from the nuclear scaffold proteins. Taken together, the synergistic induction of the genes may be explained not only by opening of condensed chromatin by distamycin A but also by increase in the binding of 5-bromouracil-containing S/MAR sequences to the nuclear scaffolds.
Collapse
Affiliation(s)
- Toshikazu Suzuki
- Kihara Institute for Biological Research and Graduate School of Integrated Science, Yokohama City University, Maioka-cho 641-12, Yokohama 244-0813, Japan
| | | | | | | | | |
Collapse
|
23
|
Michishita E, Matsumura N, Kurahashi T, Suzuki T, Ogino H, Fujii M, Ayusawa D. 5-Halogenated thymidine analogues induce a senescence-like phenomenon in HeLa cells. Biosci Biotechnol Biochem 2002; 66:877-9. [PMID: 12036067 DOI: 10.1271/bbb.66.877] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We tested various thymidine analogues for induction of a senescence-like phenomenon in HeLa cells. CldU, BrdU, and IdU similarly induced the morphology of senescent cells and typical senescence markers. Thymidine analogues other than 5-halogenated forms caused only cell death. BrdU efficiently killed the cells in cooperation with irradiation with light and a brief treatment with Hoechst 33258, but CldU did not at all. 5-Halogenated thymidine analogues were thus shown to be specific inducers of cellular senescence in mammalian cells.
Collapse
Affiliation(s)
- Eriko Michishita
- Division of Biochemistry, Kihara Institute for Biological Research and Graduate School of Integrated Science, Yokohama City University, Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Sakaguchi M, Miyazaki M, Kondo T, Namba M. Up-regulation of S100C in normal human fibroblasts in the process of aging in vitro. Exp Gerontol 2001; 36:1317-25. [PMID: 11602207 DOI: 10.1016/s0531-5565(01)00097-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
S100 proteins belonging to the EF-hand Ca(2+)-binding protein family regulate a variety of cellular processes via interaction with different target proteins. Several diseases, including cancer and Alzheimer's disease, are related to a disorder of multifunctional S100 proteins, which are expressed in cell- and tissue-specific manners. We previously demonstrated that S100C could move to and accumulate in the nuclei of normal human fibroblasts but not in the nuclei of immortalized and neoplastic cells. In addition, we found that its nuclear accumulation resulted in suppression of DNA synthesis in normal cells at a confluent stage. In the present study, we investigated whether S100C was associated with cellular senescence in vitro. We found that S100C expression increased in normal human fibroblasts in the process of aging in culture and was accompanied by accumulation of its protein in the nuclei of senescent fibroblasts. In addition, the nuclear accumulation of S100C increased expression of a cyclin-dependent kinase inhibitor p21(Sdi1), a strong inhibitor of cell growth. These findings suggest that an increase in the cells having nuclear accumulation of S100C is closely related to the process of cellular senescence of normal human fibroblasts.
Collapse
Affiliation(s)
- M Sakaguchi
- Department of Cell Biology, Institute of Molecular and Cellular Biology, Okayama University Medical School, Okayama 700-8558, Japan
| | | | | | | |
Collapse
|
25
|
Young JI, Smith JR. DNA methyltransferase inhibition in normal human fibroblasts induces a p21-dependent cell cycle withdrawal. J Biol Chem 2001; 276:19610-6. [PMID: 11259405 DOI: 10.1074/jbc.m009470200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maintenance of methylation patterns in the mammalian genome by DNA (cytosine-5) methyltransferases (DNAMeTase) is required for normal cell and tissue function. Inhibition of DNAMeTase in cultured cells induces the expression of p21, a cyclin-dependent kinase (Cdk) inhibitor critical for cells to enter replicative senescence. We investigated the effects of DNAMeTase inhibition in normal human fibroblasts and found that it induces an irreversible growth arrest. Cells arrested by DNAMeTase inhibition became enlarged and had a flat morphology, exhibited an increased expression of collagenase and p21, and the DNA synthesis block could be overcome by the introduction of the SV40 large T antigen, all characteristics of senescent cells. In contrast, normal human fibroblasts lacking a functional p21 gene fail to undergo cell cycle arrest following DNAMeTase inhibition, indicating that p21 is an essential component of this arrest. Furthermore, DNAMeTase activity was reduced as cells approached the end of their proliferative potential. These data suggest that DNAMeTase could be an integral part of the mechanisms by which cells count the number of cell divisions completed and initiate a signaling cascade that ultimately results in the senescent phenotype.
Collapse
Affiliation(s)
- J I Young
- Roy M. and Phyllis Gough Huffington Center on Aging, Departments of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
26
|
Abstract
Aging processes are amenable to molecular genetic analyses. Two aspects of such research have been selected for discussion in this paper because of current great interest and their relevance to human aging. Studies on telomeres have revealed new insights on the control of cellular replicative senescence and provided a means to extend the cell's life span during in vitro cultivation. Emerging studies on genetic biomarkers have identified genes that appear to be associated with longevity or with risk factors for aging-related diseases, and raised considerations of ways to reduce disease expression. An interchange between basic scientists and clinicians would encourage new thoughts on the feasibility of translating these fundamental studies into interventions that promote healthier longevity.
Collapse
Affiliation(s)
- D Hamerman
- Resnick Gerontology Center, Albert Einstein College of Medicine and Montefiore Medical Center, 111 East 210th Street, Bronx, NY 10467, USA
| | | |
Collapse
|