1
|
Sarris D, Tsouko E, Photiades A, Tchakouteu SS, Diamantopoulou P, Papanikolaou S. Growth Response of Non-Conventional Yeasts on Sugar-Rich Media: Part 2: Citric Acid Production and Circular-Oriented Valorization of Glucose-Enriched Olive Mill Wastewaters Using Novel Yarrowia lipolytica Strains. Microorganisms 2023; 11:2243. [PMID: 37764087 PMCID: PMC10534340 DOI: 10.3390/microorganisms11092243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
The global market for citric acid (CA) is one of the biggest and fastest expanding markets in the food industry. The CA production employing microbial bioprocessing with efficient GRAS strains and renewable waste streams is in line with the European Union binding targets for resource efficiency, sustainable consumption-production, and low-carbon technologies. In this work, the potential of three novel wild-type Yarrowia lipolytica strains (namely LMBF Y-46, LMBF Y-47 and ACA-YC 5033) regarding the production of CA and other valuable metabolites was tested on glucose-based media, and the most promising amongst the screened strains (viz. the strain ACA-YC 5033) was cultured on glucose-based media, in which part of the fermentation water had been replaced by olive-mill wastewaters (OMWs) in a novel approach of simultaneous OMW valorization and bioremediation. In the first part of this study, the mentioned strains were cultured under nitrogen-limited conditions with commercial (low-cost) glucose employed as a sole carbon source in shake-flask cultures at an initial concentration (S0) ≈ of 50 g/L. Variable quantities of secreted citric acid (CA) and intra-cellular compounds (viz. polysaccharides and lipids) were produced. All strains did not accumulate significantly high lipid quantities (i.e., maximum lipid in dry cell weight [DCW] values ≈30% w/w were noted) but produced variable CA quantities. The most promising strain, namely ACA-YC 5033, produced CA up to c. 24 g/L, with a yield of CA produced on glucose consumed (YCA/S) ≈ 0.45 g/g. This strain in stirred tank bioreactor experiments, at remarkably higher S0 concentrations (≈110 g/L) and the same initial nitrogen quantity added into the medium, produced notably higher CA quantities, up to 57 g/L (YCA/S ≈ 0.52 g/g). The potential of the same strain (ACA-YC 5033) to bioremediate OMWs and to produce value-added compounds, i.e., yeast cells, CA, and intra-cellular metabolites, was also assessed; under nitrogen-limited conditions in which OMWs had partially replaced tap water and significant glucose concentrations had been added (S0 ≈ 100 g/L, simultaneous molar ratio C/N ≈ 285 g/g, initial phenolic compounds [Phen0] adjusted to ≈1.0 g/L; these media were similar to the OMWs generated from the traditional press extraction systems) the notable CA quantity of 60.2 g/L with simultaneous YCA/S = 0.66 g/g, was obtained in shake flasks, together with satisfactory phenolic compounds removal (up to 19.5% w/w) and waste decolorization (up to 47.0%). Carbon-limited conditions with Phen0 ≈ 1.0 g/L favored the production of yeast DCW (up to 25.3 g/L), with equally simultaneous interesting phenolic compounds and color removal. The fatty acid profile showed that cellular lipids were highly unsaturated with oleic, linoleic and palmitoleic acids, accounting for more than 80% w/w. This study proposed an interesting approach that could efficiently address the biotreatment of toxic effluents and further convert them into circular-oriented bioproducts.
Collapse
Affiliation(s)
- Dimitris Sarris
- Laboratory of Physico-Chemical and Biotechnological Valorization of Food By-Products, Department of Food, Science and Nutrition, School of the Environment, University of the Aegean, Leoforos Dimokratias 66, 81400 Myrina, Lemnos, Greece; (E.T.); (A.P.)
| | - Erminta Tsouko
- Laboratory of Physico-Chemical and Biotechnological Valorization of Food By-Products, Department of Food, Science and Nutrition, School of the Environment, University of the Aegean, Leoforos Dimokratias 66, 81400 Myrina, Lemnos, Greece; (E.T.); (A.P.)
| | - Angelos Photiades
- Laboratory of Physico-Chemical and Biotechnological Valorization of Food By-Products, Department of Food, Science and Nutrition, School of the Environment, University of the Aegean, Leoforos Dimokratias 66, 81400 Myrina, Lemnos, Greece; (E.T.); (A.P.)
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Attiki, Greece;
| | - Sidoine Sadjeu Tchakouteu
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Attiki, Greece;
| | - Panagiota Diamantopoulou
- Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization—Demeter, 1 Sofokli Venizelou Street, 14123 Lykovryssi, Attiki, Greece;
| | - Seraphim Papanikolaou
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Attiki, Greece;
| |
Collapse
|
2
|
Upgrading Major Waste Streams Derived from the Biodiesel Industry and Olive Mills via Microbial Bioprocessing with Non-Conventional Yarrowia lipolytica Strains. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
This study reports the development of a bioprocess involving the valorization of biodiesel-derived glycerol as the main carbon source for cell proliferation of Yarrowia lipolytica strains and production of metabolic compounds, i.e., citric acid (Cit), polyols, and other bio-metabolites, the substitution of process tap water with olive mill wastewater (OMW) in batch fermentations, and partial detoxification of OMW (up to 31.1% decolorization). Increasing initial phenolics (Phen) of OMW-glycerol blends led to substantial Cit secretion. Maximum Cit values, varying between 64.1–65.1 g/L, combined with high yield (YCit/S = 0.682–0.690 g Cit/g carbon sources) and productivity (0.335–0.344 g/L/h) were achieved in the presence of Phen = 3 g/L. The notable accumulation of endopolysaccharides (EPs) on the produced biomass was determined when Y. lipolytica LMBF Y-46 (51.9%) and ACA-YC 5033 (61.5%) were cultivated on glycerol-based media. Blending with various amounts of OMW negatively affected EPs and polyols biosynthesis. The ratio of mannitol:arabitol:erythritol was significantly affected (p < 0.05) by the fermentation media. Erythritol was the major polyol in the absence of OMW (53.5–62.32%), while blends of OMW-glycerol (with Phen = 1–3 g/L) promoted mannitol production (54.5–76.6%). Nitrogen-limited conditions did not favor the production of cellular lipids (up to 16.6%). This study addressed sustainable management and resource efficiency enabling the bioconversion of high-organic-load and toxic waste streams into valuable products within a circular bioeconomy approach.
Collapse
|
3
|
De Vuyst L, Comasio A, Kerrebroeck SV. Sourdough production: fermentation strategies, microbial ecology, and use of non-flour ingredients. Crit Rev Food Sci Nutr 2021; 63:2447-2479. [PMID: 34523363 DOI: 10.1080/10408398.2021.1976100] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sourdough production is an ancient method to ferment flour from cereals for the manufacturing of baked goods. This review deals with the state-of-the-art of current fermentation strategies for sourdough production and the microbial ecology of mature sourdoughs, with a particular focus on the use of non-flour ingredients. Flour fermentation processes for sourdough production are typically carried out by heterogeneous communities of lactic acid bacteria and yeasts. Acetic acid bacteria may also occur, although their presence and role in sourdough production can be criticized. Based on the inoculum used, sourdough productions can be distinguished in fermentation processes using backslopping procedures, originating from a spontaneously fermented flour-water mixture (Type 1), starter culture-initiated fermentation processes (Type 2), and starter culture-initiated fermentation processes that are followed by backslopping (Type 3). In traditional recipes for the initiation and/or propagation of Type 1 sourdough productions, non-flour ingredients are often added to the flour-water mixture. These ingredients may be the source of an additional microbial inoculum and/or serve as (co-)substrates for fermentation. An example of the former is the addition of yoghurt; an example of the latter is the use of fruit juices. The survival of microorganisms transferred from the ingredients to the fermenting flour-water mixture depends on the competitiveness toward particular strains of the microbial species present under the harsh conditions of the sourdough ecosystem. Their survival and growth is also determined by the presence of the appropriate substrates, whether or not carried over by the ingredients added.
Collapse
Affiliation(s)
- Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Andrea Comasio
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Simon Van Kerrebroeck
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
4
|
Gottardi D, Siroli L, Vannini L, Patrignani F, Lanciotti R. Recovery and valorization of agri-food wastes and by-products using the non-conventional yeast Yarrowia lipolytica. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
5
|
Yarrowia lipolytica Strains and Their Biotechnological Applications: How Natural Biodiversity and Metabolic Engineering Could Contribute to Cell Factories Improvement. J Fungi (Basel) 2021; 7:jof7070548. [PMID: 34356927 PMCID: PMC8307478 DOI: 10.3390/jof7070548] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/20/2022] Open
Abstract
Among non-conventional yeasts of industrial interest, the dimorphic oleaginous yeast Yarrowia lipolytica appears as one of the most attractive for a large range of white biotechnology applications, from heterologous proteins secretion to cell factories process development. The past, present and potential applications of wild-type, traditionally improved or genetically modified Yarrowia lipolytica strains will be resumed, together with the wide array of molecular tools now available to genetically engineer and metabolically remodel this yeast. The present review will also provide a detailed description of Yarrowia lipolytica strains and highlight the natural biodiversity of this yeast, a subject little touched upon in most previous reviews. This work intends to fill this gap by retracing the genealogy of the main Yarrowia lipolytica strains of industrial interest, by illustrating the search for new genetic backgrounds and by providing data about the main publicly available strains in yeast collections worldwide. At last, it will focus on exemplifying how advances in engineering tools can leverage a better biotechnological exploitation of the natural biodiversity of Yarrowia lipolytica and of other yeasts from the Yarrowia clade.
Collapse
|
6
|
Isolation and Characterization of Lactic Acid Bacteria and Yeasts from Typical Bulgarian Sourdoughs. Microorganisms 2021; 9:microorganisms9071346. [PMID: 34206198 PMCID: PMC8306846 DOI: 10.3390/microorganisms9071346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 11/23/2022] Open
Abstract
Traditional sourdoughs in Bulgaria were almost extinct during the centralized food production system. However, a rapidly developing trend of sourdough revival in the country is setting the demand for increased production and use of commercial starter cultures. The selection of strains for such cultures is based on geographical specificity and beneficial technological properties. In this connection, the aim of this study was to isolate, identify and characterize lactic acid bacteria (LAB) and yeasts from typical Bulgarian sourdoughs for the selection of strains for commercial sourdough starter cultures. Twelve samples of typical Bulgarian sourdoughs were collected from different geographical locations. All samples were analyzed for pH, total titratable acidity and dry matter content. Enumeration of LAB and yeast was also carried out. Molecular identification by 16S rDNA sequence analysis was performed for 167 LAB isolates, and 106 yeast strains were identified by ITS1-5.8S-ITS2 rRNA gene partial sequence analysis. The LAB strains were characterized according to their amylolytic and proteolytic activity and acidification capacity, and 11 strains were selected for further testing of their antimicrobial properties. The strains with the most pronounced antibacterial and antifungal activity are listed as recommended candidates for the development of starter cultures for sourdoughs or other food products.
Collapse
|
7
|
Wang G, Qing li, Tang W, Ma F, Wang H, Xu X, Qiu W. AprD is important for extracellular proteolytic activity, physicochemical properties and spoilage potential in meat-borne Pseudomonas fragi. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Syrokou MK, Tziompra S, Psychogiou EE, Mpisti SD, Paramithiotis S, Bosnea L, Mataragas M, Skandamis PN, Drosinos EH. Technological and Safety Attributes of Lactic Acid Bacteria and Yeasts Isolated from Spontaneously Fermented Greek Wheat Sourdoughs. Microorganisms 2021; 9:microorganisms9040671. [PMID: 33805132 PMCID: PMC8064081 DOI: 10.3390/microorganisms9040671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to assess the technological and safety potential of 207 lactic acid bacteria (LAB) and 195 yeast strains isolated from spontaneously fermented Greek wheat sourdoughs. More accurately, the amylolytic, proteolytic, lipolytic, phytase and amino acid decarboxylase activities, along with the production of exopolysaccharides and antimicrobial compounds by the LAB and yeast isolates, were assessed. A well diffusion assay revealed seven proteolytic LAB and eight yeast strains; hydrolysis of tributyrin was evident only in 11 LAB strains. A further Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) indicated partial hydrolysis of gluten. Lipolysis kinetics over 21 days was applied, exhibiting that lipolytic activity ranged from 6.25 to 65.50 AU/mL. Thirteen LAB inhibited Penicillium olsonii and Aspergillus niger growth and 12 yeast strains inhibited Pe. chrysogenum growth. Twenty-one Lactiplantibacillus plantarum strains exhibited inhibitory activity against Listeria monocytogenes, as well as several sourdough-associated isolates. The structural gene encoding plantaricin 423 was detected in 19 Lcb. plantarum strains, while the structural genes encoding plantaricins NC8, PlnE/F, PlnJ/K, and S were detected in two Lcb. plantarum strains. None of the microbial strains tested exhibited exopolysaccharide (EPS) production, amino acid decarboxylase, amylolytic or phytase activity. The technological and safety potential of the Lcb. plantarum and Wickerhamomyces anomalus strains was highlighted, since some of them exhibited proteolytic, lipolytic, antibacterial and antimould activities.
Collapse
Affiliation(s)
- Maria K. Syrokou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece; (M.K.S.); (S.T.); (E.-E.P.); (S.-D.M.); (P.N.S.); (E.H.D.)
| | - Sofia Tziompra
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece; (M.K.S.); (S.T.); (E.-E.P.); (S.-D.M.); (P.N.S.); (E.H.D.)
| | - Eleni-Efthymia Psychogiou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece; (M.K.S.); (S.T.); (E.-E.P.); (S.-D.M.); (P.N.S.); (E.H.D.)
| | - Sofia-Despoina Mpisti
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece; (M.K.S.); (S.T.); (E.-E.P.); (S.-D.M.); (P.N.S.); (E.H.D.)
| | - Spiros Paramithiotis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece; (M.K.S.); (S.T.); (E.-E.P.); (S.-D.M.); (P.N.S.); (E.H.D.)
- Correspondence:
| | - Loulouda Bosnea
- Department of Dairy Research, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “DEMETER”, 45221 Ioannina, Greece; (L.B.); (M.M.)
| | - Marios Mataragas
- Department of Dairy Research, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “DEMETER”, 45221 Ioannina, Greece; (L.B.); (M.M.)
| | - Panagiotis N. Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece; (M.K.S.); (S.T.); (E.-E.P.); (S.-D.M.); (P.N.S.); (E.H.D.)
| | - Eleftherios H. Drosinos
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece; (M.K.S.); (S.T.); (E.-E.P.); (S.-D.M.); (P.N.S.); (E.H.D.)
| |
Collapse
|
9
|
Comasio A, Van Kerrebroeck S, De Vuyst L. Lemon juice and apple juice used as source of citrate and malate, respectively, enhance the formation of buttery aroma compounds and/or organic acids during Type 2 and Type 3 sourdough productions performed with Companilactobacillus crustorum LMG 23699. Int J Food Microbiol 2020; 339:109020. [PMID: 33360296 DOI: 10.1016/j.ijfoodmicro.2020.109020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/14/2020] [Accepted: 12/03/2020] [Indexed: 11/18/2022]
Abstract
Extra ingredients are often used in traditional sourdough production recipes by artisan bakeries. These ingredients may be the source of microorganisms or stimulate the growth and/or the metabolic activities of the microorganisms added to or naturally present in the flour-water mixture. The present study examined the influence of the addition of lemon juice or apple juice as source of citrate or malate, respectively, on the growth and activity of the citrate- and malate-positive Companilactobacillus crustorum LMG 23699 strain (formerly known as Lactobacillus crustorum LMG 23699), used to initiate firm (dough yield of 200) wheat sourdough productions, and on the flavour of the baked goods produced. Three fermentation strategies were applied, namely one-step long fermentation sourdough production processes with the addition of juice at the start (Type 2) and backslopped fermentations with the addition of juice either only at the start of the sourdough productions or at the start of the sourdough productions and at the beginning of each subsequent refreshment step during the whole backslopping process (both Type 3). It turned out that the starter culture strain used prevailed during all sourdough productions performed. Yeasts were particularly present in Type 3 sourdough productions, although lemon juice retarded their growth. Due to high yeast activity, high concentrations of ethanol and glycerol were produced toward the end of the sourdough productions. Addition of lemon juice stimulated the production of lactic acid, acetic acid, and the buttery flavour compounds acetoin and diacetyl, because of citrate conversion, during the Type 2 and Type 3 sourdough productions. In Type 3 sourdough productions, these compounds were found in higher concentrations only when lemon juice was added at each backslopping step. Alternatively, the addition of apple juice led to high concentrations of lactic acid because of malolactic fermentation in both Type 2 and Type 3 sourdough productions. Moreover, the addition of apple juice increased the initial concentrations of the carbohydrates (fructose, glucose, and sucrose) and sugar alcohols (mannitol and sorbitol), which were exhausted upon backslopping or accumulated in the sourdough matrix, respectively. Baked goods produced using sourdoughs obtained from the Type 2 and Type 3 sourdough productions with the addition of juice at each backslopping step were significantly different in flavour from doughs supplemented with the respective juices and lactic acid and/or Type 3 sourdough productions with the addition of juice only at the start.
Collapse
Affiliation(s)
- Andrea Comasio
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Simon Van Kerrebroeck
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.
| |
Collapse
|
10
|
Syrokou MK, Themeli C, Paramithiotis S, Mataragas M, Bosnea L, Argyri AA, Chorianopoulos NG, Skandamis PN, Drosinos EH. Microbial Ecology of Greek Wheat Sourdoughs, Identified by a Culture-Dependent and a Culture-Independent Approach. Foods 2020; 9:foods9111603. [PMID: 33158141 PMCID: PMC7694216 DOI: 10.3390/foods9111603] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 01/20/2023] Open
Abstract
The aim of the present study was to assess the microecosystem of 13 homemade spontaneously fermented wheat sourdoughs from different regions of Greece, through the combined use of culture-dependent (classical approach; clustering by Random Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR) and identification by PCR species-specific for Lactiplantibacillus plantarum, and sequencing of the 16S-rRNA and 26S-rRNA gene, for Lactic Acid Bacteria (LAB) and yeasts, respectively) and independent approaches [DNA- and RNA-based PCR-Denaturing Gradient Gel Electrophoresis (DGGE)]. The pH and Total Titratable Acidity (TTA) values ranged from 3.64–5.05 and from 0.50–1.59% lactic acid, respectively. Yeast and lactic acid bacteria populations ranged within 4.60–6.32 and 6.28–9.20 log CFU/g, respectively. The yeast: LAB ratio varied from 1:23–1:10,000. A total of 207 bacterial and 195 yeast isolates were obtained and a culture-dependent assessment of their taxonomic affiliation revealed dominance of Lb. plantarum in three sourdoughs, Levilactobacillus brevis in four sourdoughs and co-dominance of these species in two sourdoughs. In addition, Companilactobacillusparalimentarius dominated in two sourdoughs and Fructilactobacillussanfranciscensis and Latilactobacillus sakei in one sourdough each. Lactococcus lactis, Lb. curvatus, Leuconostoc citreum, Ln. mesenteroides and Lb. zymae were also recovered from some samples. Regarding the yeast microbiota, it was dominated by Saccharomyces cerevisiae in 11 sourdoughs and Pichia membranifaciens and P. fermentans in one sourdough each. Wickerhamomyces anomalus and Kazachstania humilis were also recovered from one sample. RNA-based PCR-DGGE provided with nearly identical results with DNA-based one; in only one sample the latter provided an additional band. In general, the limitations of this approach, namely co-migration of amplicons from different species to the same electrophoretic position and multiband profile of specific isolates, greatly reduced resolution capacity, which resulted in only partial verification of the microbial ecology detected by culture-dependent approach in the majority of sourdough samples. Our knowledge regarding the microecosystem of spontaneously fermented Greek wheat-based sourdoughs was expanded, through the study of sourdoughs originating from regions of Greece that were not previously assessed.
Collapse
Affiliation(s)
- Maria K. Syrokou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece; (M.K.S.); (C.T.); (S.P.); (P.N.S.); (E.H.D.)
| | - Christina Themeli
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece; (M.K.S.); (C.T.); (S.P.); (P.N.S.); (E.H.D.)
| | - Spiros Paramithiotis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece; (M.K.S.); (C.T.); (S.P.); (P.N.S.); (E.H.D.)
| | - Marios Mataragas
- Department of Dairy Research, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “DEMETER”, 3 Ethnikis Antistaseos St., 45221 Ioannina, Greece;
- Correspondence:
| | - Loulouda Bosnea
- Department of Dairy Research, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “DEMETER”, 3 Ethnikis Antistaseos St., 45221 Ioannina, Greece;
| | - Anthoula A. Argyri
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “DEMETER”, 1 Sof. Venizelou St., 14123 Lycovrissi, Greece; (A.A.A.); (N.G.C.)
| | - Nikos G. Chorianopoulos
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “DEMETER”, 1 Sof. Venizelou St., 14123 Lycovrissi, Greece; (A.A.A.); (N.G.C.)
| | - Panagiotis N. Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece; (M.K.S.); (C.T.); (S.P.); (P.N.S.); (E.H.D.)
| | - Eleftherios H. Drosinos
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece; (M.K.S.); (C.T.); (S.P.); (P.N.S.); (E.H.D.)
| |
Collapse
|
11
|
Boyaci‐Gunduz CP, Erten H. Predominant yeasts in the sourdoughs collected from some parts of Turkey. Yeast 2020; 37:449-466. [DOI: 10.1002/yea.3500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Cennet Pelin Boyaci‐Gunduz
- Faculty of Agriculture, Food Engineering Department Cukurova University Adana Turkey
- Faculty of Engineering, Food Engineering Department Adana Alparslan Turkes Science and Technology University Adana Turkey
| | - Huseyin Erten
- Faculty of Agriculture, Food Engineering Department Cukurova University Adana Turkey
| |
Collapse
|
12
|
Effect of Salt Addition upon the Production of Metabolic Compounds by Yarrowia lipolytica Cultivated on Biodiesel-Derived Glycerol Diluted with Olive-Mill Wastewaters. ENERGIES 2019. [DOI: 10.3390/en12193649] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One of the major environmental problems is the highly toxic agro-industrial waste called olive mill wastewater (OMW), deriving from olive oil production. On the other hand, the continuous development of the biological liquid fuel industry (biodiesel and bioethanol) makes it mandatory the process and exploitation of their main by-products, crude glycerol. This study dealt with the biotechnological conversions of biodiesel-derived crude glycerol with the use of the non-conventional yeast Yarrowia lipolytica in media that had been diluted with OMWs. OMWs, employed as simultaneous liquid medium and substrate, is a new trend recently appearing in Industrial Biotechnology, where value-added metabolites could be produced with simultaneous partial detoxification (i.e. decolorization and phenol removal) of the used residue. In the present study, diluted OMWs (containing 2.0 g/L of total phenolic compounds) blended with 70.0 g/L crude glycerol were employed as substrates. Production of value-added compounds by Y. lipolytica strain ACA-YC 5031 was studied in nitrogen-limited media favoring the production of secondary metabolites (i.e. citric acid, polyols, microbial lipids, polysaccharides). Batch-flask cultures were carried out and the impact of the addition of different NaCl concentrations (1.0%, 3.0%, 5.0% w/w) added upon the biochemical behavior of the strain was studied. Remarkable biomass production was observed in all trials, while in the “blank” experiment (no OMWs and no salt added), the metabolism was shifted toward the synthesis of polyols (Σpolyols = mannitol + arabitol + erythritol > 20 g/L and maximum total citric acid-Cit (sum of citric and isocitric acid) = 10.5 g/L). Addition of OMWs resulted in Citmax = 32.7 g/L, while Σpolyols concentration dropped to <15 g/L. Addition of salt in the OMW-based media slightly reduced the produced biomass, while Cit production drastically increased, reaching a final value of 54.0 g/L (conversion yield of Cit produced per unit of glycerol consumed = 0.82 g/g) in the trial with addition of 5.0% NaCl. Finally, significant color and phenols removal were observed, evaluating the yeast as a decontamination medium for the OMW and a great candidate for the production of value-added compounds.
Collapse
|
13
|
Zhang G, Sun Y, Sadiq FA, Sakandar HA, He G. Evaluation of the effect of Saccharomyces cerevisiae on fermentation characteristics and volatile compounds of sourdough. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2018; 55:2079-2086. [PMID: 29892108 PMCID: PMC5976591 DOI: 10.1007/s13197-018-3122-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/02/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
Abstract
The objective of this study was to unveil insights into the effects of Saccharomyces cerevisiae on the development of volatile compounds and metabolites during the dough fermentation in making Chinese steamed bread. Changes in gluten structure under the influence of baker's yeast were studied using scanning electron micrographs (SEM). A unique aroma profile was found comprising some previously reported aromatic compounds and some unreported aromatic aldehydes ((E)-2-Decenal and 2-Undecenal) and ketones (2-Heptanone and 2-Nonanone) in the baker's yeast fermentation. Among metabolites, the most preferred sugar for this yeast (glucose) showed a significant decrease in contents during the initial few hours of the fermentation and at last an increase was observed. However, most of the amino acids increased either slightly or decreased by the fermentation time. SEM of fermented dough showed that the yeast had a very little effect on starch stability. This study provided some fermentation features of the bakers' yeast which could be used for the tailored production of steamed bread.
Collapse
Affiliation(s)
- Guohua Zhang
- School of Life Science, Shanxi University, Wucheng Road 92, Taiyuan, 030006 China
| | - Yurong Sun
- School of Life Science, Shanxi University, Wucheng Road 92, Taiyuan, 030006 China
| | - Faizan Ahmed Sadiq
- College of Biosystems Engineering and Food Science, Zhejiang University, Yuhangtang Road 388, Hangzhou, 310058 China
- Zhejiang Provincial Key Laboratory of Food Microbiology, Zhejiang University, Hangzhou, 310058 China
| | | | - Guoqing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Yuhangtang Road 388, Hangzhou, 310058 China
- Zhejiang Provincial Key Laboratory of Food Microbiology, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
14
|
Zeng X, He L, Guo X, Deng L, Yang W, Zhu Q, Duan Z. Predominant processing adaptability of Staphylococcus xylosus strains isolated from Chinese traditional low-salt fermented whole fish. Int J Food Microbiol 2017; 242:141-151. [DOI: 10.1016/j.ijfoodmicro.2016.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 01/01/2023]
|
15
|
Microbial Ecology and Process Technology of Sourdough Fermentation. ADVANCES IN APPLIED MICROBIOLOGY 2017; 100:49-160. [PMID: 28732554 DOI: 10.1016/bs.aambs.2017.02.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
From a microbiological perspective, sourdough is to be considered as a specific and stressful ecosystem, harboring yeasts and lactic acid bacteria (LAB), that is used for the production of baked goods. With respect to the metabolic impact of the sourdough microbiota, acidification (LAB), flavor formation (LAB and yeasts), and leavening (yeasts and heterofermentative LAB species) are most noticeable. Three distinct types of sourdough fermentation processes can be discerned based on the inocula applied, namely backslopped ones (type 1), those initiated with starter cultures (type 2), and those initiated with a starter culture followed by backslopping (type 3). A sourdough-characteristic LAB species is Lactobacillus sanfranciscensis. A sourdough-characteristic yeast species is Candida humilis. Although it has been suggested that the microbiota of a specific sourdough may be influenced by its geographical origin, region specificity often seems to be an artefact resulting from interpretation of the research data, as those are dependent on sampling, isolation, and identification procedures. It is however clear that sourdough-adapted microorganisms are able to withstand stress conditions encountered during their growth. Based on the technological setup, type 0 (predoughs), type I (artisan bakery firm sourdoughs), type II (industrial liquid sourdoughs), and type III sourdoughs (industrial dried sourdoughs) can be distinguished. The production of all sourdoughs, independent of their classification, depends on several intrinsic and extrinsic factors. Both the flour (type, quality status, etc.) and the process parameters (fermentation temperature, pH and pH evolution, dough yield, water activity, oxygen tension, backslopping procedure and fermentation duration, etc.) determine the dynamics and outcome of (backslopped) sourdough fermentation processes.
Collapse
|
16
|
Yeast diversity of sourdoughs and associated metabolic properties and functionalities. Int J Food Microbiol 2016; 239:26-34. [DOI: 10.1016/j.ijfoodmicro.2016.07.018] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 06/09/2016] [Accepted: 07/11/2016] [Indexed: 12/30/2022]
|
17
|
Wang GY, Wang HH, Han YW, Xing T, Ye KP, Xu XL, Zhou GH. Evaluation of the spoilage potential of bacteria isolated from chilled chicken in vitro and in situ. Food Microbiol 2016; 63:139-146. [PMID: 28040161 DOI: 10.1016/j.fm.2016.11.015] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/16/2016] [Accepted: 11/17/2016] [Indexed: 12/20/2022]
Abstract
Microorganisms play an important role in the spoilage of chilled chicken. In this study, a total of 53 isolates, belonging to 7 species of 3 genera, were isolated using a selective medium based on the capacity to spoil chicken juice. Four isolates, namely Aeromonas salmonicida 35, Pseudomonas fluorescens H5, Pseudomonas fragi H8 and Serratia liquefaciens 17, were further characterized to assess their proteolytic activities in vitro using meat protein extracts and to evaluate their spoilage potential in situ. The in vitro studies showed that A. salmonicida 35 displayed the strongest proteolytic activity against both sarcoplasmic and myofibrillar proteins. However, the major spoilage isolate in situ was P. fragi H8, which exhibited a fast growth rate, slime formation and increased pH and total volatile basic nitrogen (TVBN) on chicken breast fillets. The relative amounts of volatile organic compounds (VOCs) originating from the microorganisms, including alcohols, aldehydes, ketones and several sulfur compounds, increased during storage. In sum, this study demonstrated the characteristics of 4 potential spoilage bacteria on chilled yellow-feather chicken and provides a simple and convenient method to assess spoilage bacteria during quality management.
Collapse
Affiliation(s)
- Guang-Yu Wang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Hu-Hu Wang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yi-Wei Han
- Collaborative Innovation Center of Food Safety and Nutrition, Ministry of Education and Finance, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Tong Xing
- Collaborative Innovation Center of Food Safety and Nutrition, Ministry of Education and Finance, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Ke-Ping Ye
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xing-Lian Xu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| | - Guang-Hong Zhou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
18
|
Santos MI, Gerbino E, Tymczyszyn E, Gomez-Zavaglia A. Applications of Infrared and Raman Spectroscopies to Probiotic Investigation. Foods 2015; 4:283-305. [PMID: 28231205 PMCID: PMC5224548 DOI: 10.3390/foods4030283] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/01/2015] [Accepted: 07/09/2015] [Indexed: 11/16/2022] Open
Abstract
In this review, we overview the most important contributions of vibrational spectroscopy based techniques in the study of probiotics and lactic acid bacteria. First, we briefly introduce the fundamentals of these techniques, together with the main multivariate analytical tools used for spectral interpretation. Then, four main groups of applications are reported: (a) bacterial taxonomy (Subsection 4.1); (b) bacterial preservation (Subsection 4.2); (c) monitoring processes involving lactic acid bacteria and probiotics (Subsection 4.3); (d) imaging-based applications (Subsection 4.4). A final conclusion, underlying the potentialities of these techniques, is presented.
Collapse
Affiliation(s)
- Mauricio I Santos
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), 1900 La Plata, Argentina.
| | - Esteban Gerbino
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), 1900 La Plata, Argentina.
| | - Elizabeth Tymczyszyn
- Laboratory for Molecular Microbiology, Department of Food Science and Technology, National University of Quilmes, 1876 Buenos Aires, Argentina.
| | - Andrea Gomez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), 1900 La Plata, Argentina.
| |
Collapse
|
19
|
Effect of sulfur dioxide addition in wild yeast population dynamics and polyphenolic composition during spontaneous red wine fermentation from Vitis vinifera cultivar Agiorgitiko. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2303-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Technological properties of Lactobacillus plantarum strains isolated from Chinese traditional low salt fermented whole fish. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.11.048] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Microbial population dynamics during spontaneous fermentation of Asparagus officinalis L. young sprouts. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2222-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
A generic model for spoilage of acidic emulsified foods: Combining physicochemical data, diversity and levels of specific spoilage organisms. Int J Food Microbiol 2014; 170:1-11. [DOI: 10.1016/j.ijfoodmicro.2013.10.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 09/05/2013] [Accepted: 10/26/2013] [Indexed: 11/18/2022]
|
23
|
Wenning M, Scherer S. Identification of microorganisms by FTIR spectroscopy: perspectives and limitations of the method. Appl Microbiol Biotechnol 2013; 97:7111-20. [PMID: 23860713 DOI: 10.1007/s00253-013-5087-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 11/29/2022]
Abstract
Fourier transform infrared (FTIR) spectroscopy was introduced in 1991 as a technique to identify and classify microbes. Since then, it has gained growing interest and has undergone a remarkable evolution. Highly sophisticated spectrometers have been developed, enabling a high sample throughput. Today, the generation of high-quality data in a short time and the application of the technique for rapid and reliable identification of microbes to the species level are well documented. What makes FTIR spectroscopy even more attractive is the fact that spectral information can also be exploited for strain typing purposes, which is particularly important for epidemiological analyses and some technological applications. Accordingly, in recent years, FTIR spectroscopy has been increasingly used for typing and classifying microorganisms below the species level. The intention of this review is to give an overview over current knowledge and strategies of using FTIR spectroscopy for species identification and to describe different approaches for strain typing.
Collapse
Affiliation(s)
- Mareike Wenning
- Abteilung Mikrobiologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung-ZIEL, Technische Universität München, Weihenstephaner Berg 3, D-85350 Freising, Germany.
| | | |
Collapse
|
24
|
Yeasts from kefir grains: isolation, identification, and probiotic characterization. World J Microbiol Biotechnol 2013; 30:43-53. [DOI: 10.1007/s11274-013-1419-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/24/2013] [Indexed: 12/18/2022]
|
25
|
Microbial ecology of sourdough fermentations: diverse or uniform? Food Microbiol 2013; 37:11-29. [PMID: 24230469 DOI: 10.1016/j.fm.2013.06.002] [Citation(s) in RCA: 273] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 05/14/2013] [Accepted: 06/03/2013] [Indexed: 01/16/2023]
Abstract
Sourdough is a specific and stressful ecosystem inhabited by yeasts and lactic acid bacteria (LAB), mainly heterofermentative lactobacilli. On the basis of their inocula, three types of sourdough fermentation processes can be distinguished, namely backslopped ones, those initiated with starter cultures, and those initiated with a starter culture followed by backslopping. Typical sourdough LAB species are Lactobacillus fermentum, Lactobacillus paralimentarius, Lactobacillus plantarum, and Lactobacillus sanfranciscensis. Typical sourdough yeast species are Candida humilis, Kazachstania exigua, and Saccharomyces cerevisiae. Whereas region specificity is claimed in the case of artisan backslopped sourdoughs, no clear-cut relationship between a typical sourdough and its associated microbiota can be found, as this is dependent on the sampling, isolation, and identification procedures. Both simple and very complex consortia may occur. Moreover, a series of intrinsic and extrinsic factors may influence the composition of the sourdough microbiota. For instance, an influence of the flour (type, quality status, etc.) and the process parameters (temperature, pH, dough yield, backslopping practices, etc.) occurs. In this way, the presence of Lb. sanfranciscensis during sourdough fermentation depends on specific environmental and technological factors. Also, Triticum durum seems to select for obligately heterofermentative LAB species. Finally, there are indications that the sourdough LAB are of intestinal origin.
Collapse
|
26
|
Comparative study of spontaneously fermented sourdoughs originating from two regions of Greece: Peloponnesus and Thessaly. Eur Food Res Technol 2010. [DOI: 10.1007/s00217-010-1345-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Paramithiotis S, Hondrodimou OL, Drosinos EH. Development of the microbial community during spontaneous cauliflower fermentation. Food Res Int 2010. [DOI: 10.1016/j.foodres.2010.01.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Papanikolaou S, Chatzifragkou A, Fakas S, Galiotou-Panayotou M, Komaitis M, Nicaud JM, Aggelis G. Biosynthesis of lipids and organic acids by Yarrowia lipolytica strains cultivated on glucose. EUR J LIPID SCI TECH 2009. [DOI: 10.1002/ejlt.200900055] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
André A, Chatzifragkou A, Diamantopoulou P, Sarris D, Philippoussis A, Galiotou-Panayotou M, Komaitis M, Papanikolaou S. Biotechnological conversions of bio-diesel-derived crude glycerol by Yarrowia lipolytica strains. Eng Life Sci 2009. [DOI: 10.1002/elsc.200900063] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
30
|
Rapid investigation of French sourdough microbiota by restriction fragment length polymorphism of the 16S-23S rRNA gene intergenic spacer region. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9763-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Rapid identification of Lactobacillus nantensis, Lactobacillus spicheri and Lactobacillus hammesii species using species-specific primers. Int J Food Microbiol 2008; 123:269-76. [PMID: 18378031 DOI: 10.1016/j.ijfoodmicro.2008.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 01/09/2008] [Accepted: 02/14/2008] [Indexed: 11/22/2022]
Abstract
Based on the 16S-23S ribosomal DNA (rDNA) intergenic spacer region (ISR), an identification tool for rapid differentiation of Lactobacillus nantensis, Lactobacillus spicheri and Lactobacillus hammesii, species isolated recently from French sourdough was developed. The DNA fragments containing ISRs were amplified with primers pairs 16S/p2 and 23S/p7. Clone libraries of the PCR-amplified rDNA with these primers were constructed using a pCR2.1 TA cloning kit and sequenced. The DNA sequences obtained were analyzed and species-specific primers were designed from these sequences. Two PCR amplicons, which were designated small ISR (S-ISR) and large ISR (L-ISR), were obtained for all Lactobacillus species studied. The L-ISR sequence reveale2d the presence of two tRNA genes, tRNAAla and tRNAIle. Species-specific primers designed allowed rapid identification of these species. The specificity of these primers was positively demonstrated as no response was obtained for more than 200 other species tested.
Collapse
|
32
|
Paramithiotis S, Sofou A, Tsakalidou E, Kalantzopoulos G. Flour carbohydrate catabolism and metabolite production by sourdough lactic acid bacteria. World J Microbiol Biotechnol 2007. [DOI: 10.1007/s11274-007-9384-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Drosinos EH, Paramithiotis S, Kolovos G, Tsikouras I, Metaxopoulos I. Phenotypic and technological diversity of lactic acid bacteria and staphylococci isolated from traditionally fermented sausages in southern Greece. Food Microbiol 2006; 24:260-70. [PMID: 17188204 DOI: 10.1016/j.fm.2006.05.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 04/27/2006] [Accepted: 05/02/2006] [Indexed: 10/24/2022]
Abstract
The physicochemical and microbiological characteristics of spontaneously fermented sausages made by two medium-sized enterprises (MSE) located in southern Greece have been studied. A total of 300 lactic acid bacteria and 300 staphylococcal strains have been isolated and identified by their physiological characteristics. Lactobacillus plantarum strains were found to dominate the lactic acid bacteria microbiota in most of the cases with L. sakei strains prevailing in some of them and L. rhamnosus strains occasionally accompanying the dominant lactic acid bacteria microbiota. On the other hand, S. saprophyticus strains were found to dominate the staphylococcal microbiota in all spontaneously fermented sausages with of S. simulans, S. xylosus, S. gallinarum and S. cohnii cohnii strains being sporadically present. Following the identification, an evaluation of their technological properties, namely proteolytic and lipolytic capacities as well as production of biogenic amines and antimicrobial compounds, took place. None of the lactic acid bacteria and staphylococci was found to possess lipolytic activity whereas a total of 6 lactic acid bacteria and 51 staphylococci strains were found to be able to hydrolyse either the sarcoplasic, myofibrillar or both protein fractions. Furthermore, only one L. sakei strain and 185 staphylococci strains were found to possess decarboxylase activity against lysine, tyrosine, ornithine or histidine. Finally none of the staphylococcal microbiota and 3 lactic acid bacteria strains were found to be able to produce antimicrobial compounds of proteinaceous nature against Listeria monocytogenes.
Collapse
Affiliation(s)
- Eleftherios H Drosinos
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Technology, Agricultural University of Athens, 75, Iera Odos, Street, Votanikos, Athens, GR-11855, Greece.
| | | | | | | | | |
Collapse
|
34
|
Beh AL, Fleet GH, Prakitchaiwattana C, Heard GM. Evaluation of molecular methods for the analysis of yeasts in foods and beverages. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 571:69-106. [PMID: 16408594 DOI: 10.1007/0-387-28391-9_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Affiliation(s)
- Ai Lin Beh
- Food Science and Technology, School of Chemical Engineering and Industrial Chemistry, University of New South Wales, Sydney, Australia
| | | | | | | |
Collapse
|
35
|
Application of selected starter cultures for the production of wheat sourdough bread using a traditional three-stage procedure. Process Biochem 2005. [DOI: 10.1016/j.procbio.2004.12.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
|
37
|
Meroth CB, Hammes WP, Hertel C. Identification and population dynamics of yeasts in sourdough fermentation processes by PCR-denaturing gradient gel electrophoresis. Appl Environ Microbiol 2004; 69:7453-61. [PMID: 14660398 PMCID: PMC309968 DOI: 10.1128/aem.69.12.7453-7461.2003] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Four sourdoughs (A to D) were produced under practical conditions, using a starter obtained from a mixture of three commercially available sourdough starters and baker's yeast. The doughs were continuously propagated until the composition of the microbiota remained stable. A fungi-specific PCR-denaturing gradient gel electrophoresis (DGGE) system was established to monitor the development of the yeast biota. The analysis of the starter mixture revealed the presence of Candida humilis, Debaryomyces hansenii, Saccharomyces cerevisiae, and Saccharomyces uvarum. In sourdough A (traditional process with rye flour), C. humilis dominated under the prevailing fermentation conditions. In rye flour sourdoughs B and C, fermented at 30 and 40 degrees C, respectively, S. cerevisiae became predominant in sourdough B, whereas in sourdough C the yeast counts decreased within a few propagation steps below the detection limit. In sourdough D, which corresponded to sourdough C in temperature but was produced with rye bran, Candida krusei became dominant. Isolates identified as C. humilis and S. cerevisiae were shown by randomly amplified polymorphic DNA-PCR analysis to originate from the commercial starters and the baker's yeast, respectively. The yeast species isolated from the sourdoughs were also detected by PCR-DGGE. However, in the gel, additional bands were visible. Because sequencing of these PCR fragments from the gel failed, cloning experiments with 28S rRNA amplicons obtained from rye flour were performed, which revealed Cladosporium sp., Saccharomyces servazii, S. uvarum, an unculturable ascomycete, Dekkera bruxellensis, Epicoccum nigrum, and S. cerevisiae. The last four species were also detected in sourdoughs A, B, and C.
Collapse
Affiliation(s)
- Christiane B Meroth
- Institute of Food Technology, University of Hohenheim, D-70599 Stuttgart, Germany
| | | | | |
Collapse
|
38
|
De Vuyst L, Schrijvers V, Paramithiotis S, Hoste B, Vancanneyt M, Swings J, Kalantzopoulos G, Tsakalidou E, Messens W. The biodiversity of lactic acid bacteria in Greek traditional wheat sourdoughs is reflected in both composition and metabolite formation. Appl Environ Microbiol 2002; 68:6059-69. [PMID: 12450829 PMCID: PMC134406 DOI: 10.1128/aem.68.12.6059-6069.2002] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactic acid bacteria (LAB) were isolated from Greek traditional wheat sourdoughs manufactured without the addition of baker's yeast. Application of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of total cell protein, randomly amplified polymorphic DNA-PCR, DNA-DNA hybridization, and 16S ribosomal DNA sequence analysis, in combination with physiological traits such as fructose fermentation and mannitol production, allowed us to classify the isolated bacteria into the species Lactobacillus sanfranciscensis, Lactobacillus brevis, Lactobacillus paralimentarius, and Weissella cibaria. This consortium seems to be unique for the Greek traditional wheat sourdoughs studied. Strains of the species W. cibaria have not been isolated from sourdoughs previously. No Lactobacillus pontis or Lactobacillus panis strains were found. An L. brevis-like isolate (ACA-DC 3411 t1) could not be identified properly and might be a new sourdough LAB species. In addition, fermentation capabilities associated with the LAB detected have been studied. During laboratory fermentations, all heterofermentative sourdough LAB strains produced lactic acid, acetic acid, and ethanol. Mannitol was produced from fructose that served as an additional electron acceptor. In addition to glucose, almost all of the LAB isolates fermented maltose, while fructose as the sole carbohydrate source was fermented by all sourdough LAB tested except L. sanfranciscensis. Two of the L. paralimentarius isolates tested did not ferment maltose; all strains were homofermentative. In the presence of both maltose and fructose in the medium, induction of hexokinase activity occurred in all sourdough LAB species mentioned above, explaining why no glucose accumulation was found extracellularly. No maltose phosphorylase activity was found either. These data produced a variable fermentation coefficient and a unique sourdough metabolite composition.
Collapse
Affiliation(s)
- Luc De Vuyst
- Research Group of Industrial Microbiology, Fermentation Technology and Downstream Processing (IMDO), Department of Applied Biological Sciences, Vrije Universiteit Brussel (VUB), Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Arias CR, Burns JK, Friedrich LM, Goodrich RM, Parish ME. Yeast species associated with orange juice: evaluation of different identification methods. Appl Environ Microbiol 2002; 68:1955-61. [PMID: 11916718 PMCID: PMC123878 DOI: 10.1128/aem.68.4.1955-1961.2002] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2001] [Accepted: 01/14/2002] [Indexed: 11/20/2022] Open
Abstract
Five different methods were used to identify yeast isolates from a variety of citrus juice sources. A total of 99 strains, including reference strains, were identified using a partial sequence of the 26S rRNA gene, restriction pattern analysis of the internal transcribed spacer region (5.8S-ITS), classical methodology, the RapID Yeast Plus system, and API 20C AUX. Twenty-three different species were identified representing 11 different genera. Distribution of the species was considerably different depending on the type of sample. Fourteen different species were identified from pasteurized single-strength orange juice that had been contaminated after pasteurization (PSOJ), while only six species were isolated from fresh-squeezed, unpasteurized orange juice (FSOJ). Among PSOJ isolates, Candida intermedia and Candida parapsilosis were the predominant species. Hanseniaspora occidentalis and Hanseniaspora uvarum represented up to 73% of total FSOJ isolates. Partial sequence of the 26S rRNA gene yielded the best results in terms of correct identification, followed by classical techniques and 5.8S-ITS analysis. The commercial identification kits RapID Yeast Plus system and API 20C AUX were able to correctly identify only 35 and 13% of the isolates, respectively. Six new 5.8S-ITS profiles were described, corresponding to Clavispora lusitaniae, Geotrichum citri-aurantii, H. occidentalis, H. vineae, Pichia fermentans, and Saccharomycopsis crataegensis. With the addition of these new profiles to the existing database, the use of 5.8S-ITS sequence became the best tool for rapid and accurate identification of yeast isolates from orange juice.
Collapse
Affiliation(s)
- Covadonga R Arias
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, Florida 33850, USA
| | | | | | | | | |
Collapse
|
40
|
Cadez N, Raspor P, de Cock AWAM, Boekhout T, Smith MT. Molecular identification and genetic diversity within species of the genera Hanseniaspora and Kloeckera. FEMS Yeast Res 2002; 1:279-89. [PMID: 12702331 DOI: 10.1111/j.1567-1364.2002.tb00046.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Three molecular methods, RAPD-PCR analysis, electrophoretic karyotyping and RFLP of the PCR-amplified ITS regions (ITS1, ITS2 and the intervening 5.8S rDNA), were studied for accurate identification of Hanseniaspora and Kloeckera species as well as for determining inter- and intraspecific relationships of 74 strains isolated from different sources and/or geographically distinct regions. Of these three methods, PCR-RFLP analysis of ITS regions with restriction enzymes DdeI and HinfI is proposed as a rapid identification method to discriminate unambiguously between all six Hanseniaspora species and the single non-ascospore-forming apiculate yeast species Kloeckera lindneri. Electrophoretic karyotyping produced chromosomal profiles by which the seven species could be divided into four groups sharing similar karyotypes. Although most of the 60 strains examined exhibited a common species-specific pattern, a different degree of chromosomal-length polymorphism and a variable number of chromosomal DNA fragments were observed within species. Cluster analysis of the combined RAPD-PCR fingerprints obtained with one 10-mer primer, two microsatellite primers and one minisatellite primer generated clusters which with a few exceptions are in agreement with the groups as earlier recognized in DNA-DNA homology studies.
Collapse
Affiliation(s)
- Neza Cadez
- Biotechnical Faculty, Department of Food Science and Technology, University of Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
41
|
|