1
|
Igere BE, Okoh AI, Nwodo UU. Non-serogroup O1/O139 agglutinable Vibrio cholerae: a phylogenetically and genealogically neglected yet emerging potential pathogen of clinical relevance. Arch Microbiol 2022; 204:323. [PMID: 35567650 PMCID: PMC9107296 DOI: 10.1007/s00203-022-02866-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 12/19/2022]
Abstract
Somatic antigen agglutinable type-1/139 Vibrio cholerae (SAAT-1/139-Vc) members or O1/O139 V. cholerae have been described by various investigators as pathogenic due to their increasing virulence potential and production of choleragen. Reported cholera outbreak cases around the world have been associated with these choleragenic V. cholerae with high case fatality affecting various human and animals. These virulent Vibrio members have shown genealogical and phylogenetic relationship with the avirulent somatic antigen non-agglutinable strains of 1/139 V. cholerae (SANAS-1/139- Vc) or O1/O139 non-agglutinating V. cholerae (O1/O139-NAG-Vc). Reports on implication of O1/O139-NAGVc members in most sporadic cholera/cholera-like cases of diarrhea, production of cholera toxin and transmission via consumption and/or contact with contaminated water/seafood are currently on the rise. Some reported sporadic cases of cholera outbreaks and observed change in nature has also been tracable to these non-agglutinable Vibrio members (O1/O139-NAGVc) yet there is a sustained paucity of research interest on the non-agglutinable V. cholerae members. The emergence of fulminating extraintestinal and systemic vibriosis is another aspect of SANAS-1/139- Vc implication which has received low attention in terms of research driven interest. This review addresses the need to appraise and continually expand research based studies on the somatic antigen non-serogroup agglutinable type-1/139 V. cholerae members which are currently prevalent in studies of water bodies, fruits/vegetables, foods and terrestrial environment. Our opinion is amassed from interest in integrated surveillance studies, management/control of cholera outbreaks as well as diarrhea and other disease-related cases both in the rural, suburban and urban metropolis.
Collapse
Affiliation(s)
- Bright E Igere
- Department of Microbiology and Biotechnology, Western Delta University, Oghara, Delta State, Nigeria.
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa.
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.
| | - Anthony I Okoh
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Uchechukwu U Nwodo
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
| |
Collapse
|
2
|
Aydanian A, Tang L, Morris JG, Johnson JA, Stine OC. Genetic diversity of O-antigen biosynthesis regions in Vibrio cholerae. Appl Environ Microbiol 2011; 77:2247-53. [PMID: 21317260 PMCID: PMC3067440 DOI: 10.1128/aem.01663-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 01/28/2011] [Indexed: 12/11/2022] Open
Abstract
O-antigen biosynthetic (wbf) regions for Vibrio cholerae serogroups O5, O8, and O108 were isolated and sequenced. Sequences were compared to those of other published V. cholerae O-antigen regions. These wbf regions showed a high degree of heterogeneity both in gene content and in gene order. Genes identified frequently showed greater similarities to polysaccharide biosynthesis genes from species other than V. cholerae. Our results demonstrate the plasticity of O-antigen genes in V. cholerae, the diversity of the genetic pool from which they are drawn, and the likelihood that new pandemic serogroups will emerge.
Collapse
Affiliation(s)
- Antonina Aydanian
- Department of Epidemiology and Preventive Medicine, University of Maryland School of Medicine, Baltimore, Maryland, Food and Drug Administration, Bethesda, Maryland, Emerging Pathogens Institute, Department of Pathology, College of Medicine, University of Florida, Gainesville, Florida
| | - Li Tang
- Department of Epidemiology and Preventive Medicine, University of Maryland School of Medicine, Baltimore, Maryland, Food and Drug Administration, Bethesda, Maryland, Emerging Pathogens Institute, Department of Pathology, College of Medicine, University of Florida, Gainesville, Florida
| | - J. Glenn Morris
- Department of Epidemiology and Preventive Medicine, University of Maryland School of Medicine, Baltimore, Maryland, Food and Drug Administration, Bethesda, Maryland, Emerging Pathogens Institute, Department of Pathology, College of Medicine, University of Florida, Gainesville, Florida
| | - Judith A. Johnson
- Department of Epidemiology and Preventive Medicine, University of Maryland School of Medicine, Baltimore, Maryland, Food and Drug Administration, Bethesda, Maryland, Emerging Pathogens Institute, Department of Pathology, College of Medicine, University of Florida, Gainesville, Florida
| | - O. Colin Stine
- Department of Epidemiology and Preventive Medicine, University of Maryland School of Medicine, Baltimore, Maryland, Food and Drug Administration, Bethesda, Maryland, Emerging Pathogens Institute, Department of Pathology, College of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
3
|
Li Q, Hobbs M, Reeves PR. The variation of dTDP-L-rhamnose pathway genes in Vibrio cholerae. MICROBIOLOGY (READING, ENGLAND) 2003; 149:2463-2474. [PMID: 12949172 DOI: 10.1099/mic.0.26382-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The genetic variation in the dTDP-L-rhamnose pathway genes (rmlA, rmlB, rmlC and rmlD) in Vibrio cholerae was investigated. The genes are part of the O antigen gene cluster and the aim was to study lateral gene transfer of O antigen gene clusters. The rml genes of an O6 strain were cloned using an Escherichia coli K-12 strain designed for selecting cloned rml genes. Thirty-three strains carrying the known rhamnose-containing O antigens were probed with O6-based rml gene probes, and 19 were positive with from one to all four of the gene probes. Nine rml gene sets from this group were sequenced and found to be in the order rmlBADC, at the 5' end of the gene clusters. A gradient in the level of variation was observed, with highly similar sequences at the 5' end rmlB gene, but very divergent and strain-specific sequences at the 3' end of the rml gene set. The change in level of similarity varied in position, but was always abrupt and coincided with a change in GC content, indicating that the 5' and 3' parts are of different origin, and that recombination within rml genes has occurred. The rml gene sets of two of the strains that did not hybridize with any O6 rml gene probes were also cloned and sequenced. Both gene sets were in the middle of the O antigen gene cluster and were very divergent from each other and all other rml gene sets. This supports the hypothesis that presence of rml genes at the end of the O antigen gene cluster facilitates lateral gene transfer of rml-containing O antigen gene clusters in V. cholerae. The sequence relationships make it possible to identify sites of recombination and to distinguish DNA that has long been in V. cholerae and DNA that probably came into the species with the O antigen gene cluster.
Collapse
Affiliation(s)
- Qun Li
- School of Molecular and Microbial Biosciences, Bldg G08, University of Sydney, NSW 2006, Australia
| | - Matthew Hobbs
- School of Molecular and Microbial Biosciences, Bldg G08, University of Sydney, NSW 2006, Australia
| | - Peter R Reeves
- School of Molecular and Microbial Biosciences, Bldg G08, University of Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Lipiński T, Zatonsky GV, Kocharova NA, Jaquinod M, Forest E, Shashkov AS, Gamian A, Knirel YA. Structures of two O-chain polysaccharides of Citrobacter gillenii O9a,9b lipopolysaccharide. A new homopolymer of 4-amino-4,6-dideoxy-D-mannose (perosamine). EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:93-9. [PMID: 11784302 DOI: 10.1046/j.0014-2956.2001.02638.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mild acid degradation of the lipopolysaccharide of Citro- bacter gillenii O9a,9b released a polysaccharide (PS), which was found to consist of a single monosaccharide, 4- acetamido-4,6-dideoxy-d-mannose (d-Rha4NAc, N-acetyl-d-perosamine). PS was studied by methylation analysis and (1)H-NMR and (13)C-NMR spectroscopy, using two-dimensional (1)H,(1)H COSY, TOCSY, NOESY, and H-detected (1)H,(13)C heteronuclear correlation experiments. It was found that PS includes two structurally different polysaccharides: an alpha1-->2-linked homopolymer of N-acetyl-d-perosamine [-->2)-alpha-d-Rhap4NAc-(1-->, PS2] and a polysaccharide composed of tetrasaccharide repeating units (PS1) with the following structure: -->3)-alpha-d-Rhap4NAc-(1-->2)-alpha-d-Rhap4NAc-(1-->2)-alpha-d-Rhap4NAc-(1-->3)-alpha-d-Rhap4 N Ac2Ac-(1--> where the degree of O-acetylation of a 3-substituted Rha4NAc residue at position 2 is approximately 70%. PS could be fractionated into PS1 and PS2 by gel-permeation chromatography on TSK HW-50S. Matrix-assisted laser desorption ionization MS data indicate sequential chain elongation of both PS1 and PS2 by a single sugar unit, with O-acetylation in PS1 beginning at a certain chain length. Anti-(C. gillenii O9a,9b) serum reacted with PS1 in double immunodiffusion and immunoblotting, whereas neither PS2 nor the lipopolysaccharide of Vibrio cholerae O1 with a structurally related O-chain polysaccharide were reactive.
Collapse
Affiliation(s)
- Tomasz Lipiński
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Yamasaki S, Garg S, Nair GB, Takeda Y. Distribution of Vibrio cholerae O1 antigen biosynthesis genes among O139 and other non-O1 serogroups of Vibrio cholerae. FEMS Microbiol Lett 1999; 179:115-21. [PMID: 10481095 DOI: 10.1111/j.1574-6968.1999.tb08716.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The organization and distribution of the genes responsible for O antigen biosynthesis in various serogroups of Vibrio cholerae were investigated using several DNA probes derived from various regions of the genes responsible for O1 antigen biosynthesis. Based on the reactivity pattern of the probes against the various serogroups, the cluster of genes responsible for the O1 antigen biosynthesis could be broadly divided into six groups, designated as class 1-6. The class 3 cluster of genes corresponding to gmd to wbeO, wbeT and a part of wbeU was specific for only the O1 serogroup. The other cluster of genes (class 1, 2, 4-6) reacted with other serogroups of V. cholerae. These data indicate that serotype conversion in V. cholerae does not depend on a simple mutational event but may involve horizontal gene transfer not only between V. cholerae strains but also between V. cholerae and species other than V. cholerae.
Collapse
Affiliation(s)
- S Yamasaki
- Research Institute, International Medical Center of Japan, 1-21-1, Toyama, Shinjuku, Tokyo, Japan.
| | | | | | | |
Collapse
|
6
|
Yamasaki S, Shimizu T, Hoshino K, Ho ST, Shimada T, Nair GB, Takeda Y. The genes responsible for O-antigen synthesis of vibrio cholerae O139 are closely related to those of vibrio cholerae O22. Gene 1999; 237:321-32. [PMID: 10521656 DOI: 10.1016/s0378-1119(99)00344-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Several studies have shown that the emergence of the O139 serogroup of Vibrio cholerae is a result of horizontal gene transfer of a fragment of DNA from a serogroup other than O1 into the region responsible for O-antigen biosynthesis of the seventh pandemic V. cholerae O1 biotype El Tor strain. In this study, we show that the gene cluster responsible for O-antigen biosynthesis of the O139 serogroup of V. cholerae is closely related to those of O22. When DNA fragments derived from O139 O-antigen biosynthesis gene region were used as probes, the entire O139 O-antigen biosynthesis gene region could be divided into five classes, designated as I-V based on the reactivity pattern of the probes against reference strains of V. cholerae representing serogroups O1-O193. Class IV was specific to O139 serogroup, while classes I-III and class V were homologous to varying extents to some of the non-O1, non-O139 serogroups. Interestingly, the regions other than class IV were also conserved in the O22 serogroup. Long and accurate PCR was employed to determine if a simple deletion or substitution was involved to account for the difference in class IV between O139 and O22. A product of approx. 15kb was amplified when O139 DNA was used as the template, while a product of approx. 12.5kb was amplified when O22 DNA was used as the template, indicating that substitution but not deletion could account for the difference in the region between O22 and O139 serogroups. In order to precisely compare between the genes responsible for O-antigen biosynthesis of O139 and O22, the region responsible for O-antigen biosynthesis of O22 serogroup was cloned and analyzed. In concurrence with the results of the hybridization test, all regions were well conserved in O22 and O139 serogroups, although wbfA and the five or six genes comprising class IV in O22 and O139 serogroups, respectively, were exceptions. Again the genes in class IV in O22 were confirmed to be specific to O22 among the 155 'O' serogroups of V. cholerae. These data suggest that the gene clusters responsible for O139 O-antigen biosynthesis are most similar to those of O22 and genes within class IV of O139, and O22 defines the unique O antigen of O139 or O22.
Collapse
Affiliation(s)
- S Yamasaki
- Research Institute, International Medical Center of Japan, Toyama, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
7
|
Cox AD, Brisson JR, Thibault P, Perry MB. Structural analysis of the lipopolysaccharide from Vibrio cholerae serotype O22. Carbohydr Res 1997; 304:191-208. [PMID: 9468625 DOI: 10.1016/s0008-6215(97)00207-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The structure of the lipopolysaccharide (LPS) from Vibrio cholerae serogroup O22 was elucidated. The LPS was subjected to a variety of degradative procedures, and the structures of the purified products were established by monosaccharide and methylation analyses, nuclear magnetic resonance (NMR) spectroscopy, and mass spectrometry. The following structure for the complete LPS molecule was determined on the basis of the combined data from these experiments. [formula: see text] The elucidation of this structure provided a chemical basis for the serological cross-reactions observed between this strain and V. cholerae serogroup O139.
Collapse
Affiliation(s)
- A D Cox
- Institute for Biological Sciences, National Research Council, Ottawa, ON, Canada.
| | | | | | | |
Collapse
|