1
|
Microbial communities play important roles in modulating paddy soil fertility. Sci Rep 2016; 6:20326. [PMID: 26841839 PMCID: PMC4740891 DOI: 10.1038/srep20326] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/30/2015] [Indexed: 11/13/2022] Open
Abstract
We studied microbial communities in two paddy soils, which did not receive nitrogen fertilization and were distinguished by the soil properties. The two microbial communities differed in the relative abundance of gram-negative bacteria and total microbial biomass. Variability in microbial communities between the two fields was related to the levels of phosphorus and soil moisture. Redundancy analysis for individual soils showed that the bacterial community dynamics in the high-yield soil were significantly correlated with total carbon, moisture, available potassium, and pH, and those in the low-yield cores were shaped by pH, and nitrogen factors. Biolog Eco-plate data showed a more active microbial community in the high yield soil. The variations of enzymatic activities in the two soils were significantly explained by total nitrogen, total potassium, and moisture. The enzymatic variability in the low-yield soil was significantly explained by potassium, available nitrogen, pH, and total carbon, and that in the high-yield soil was partially explained by potassium and moisture. We found the relative abundances of Gram-negative bacteria and Actinomycetes partially explained the spatial and temporal variations of soil enzymatic activities, respectively. The high-yield soil microbes are probably more active to modulate soil fertility for rice production.
Collapse
|
2
|
Butyric acid- and dimethyl disulfide-assimilating microorganisms in a biofilter treating air emissions from a livestock facility. Appl Environ Microbiol 2011; 77:8595-604. [PMID: 22003018 DOI: 10.1128/aem.06175-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofiltration has proven an efficient tool for the elimination of volatile organic compounds (VOCs) and ammonia from livestock facilities, thereby reducing nuisance odors and ammonia emissions to the local environment. The active microbial communities comprising these filter biofilms have not been well characterized. In this study, a trickle biofilter treating air from a pig facility was investigated and proved efficient in removing carboxylic acids (>70% reduction), mainly attributed to the primary filter section within which reduced organic sulfur compounds were also depleted (up to 50%). The secondary filter eliminated several aromatic compounds: phenol (81%), p-cresol (89%), 4-ethylphenol (68%), indole (48%), and skatole (69%). The active butyric acid degrading bacterial community of an air filter sample was identified by DNA stable-isotope probing (DNA-SIP) and microautoradiography, combined with fluorescence in situ hybridization (MAR-FISH). The predominant 16S rRNA gene sequences from a clone library derived from "heavy" DNA from [(13)C(4)]butyric acid incubations were Microbacterium, Gordonia, Dietzia, Rhodococcus, Propionibacterium, and Janibacter, all from the Actinobacteria. Actinobacteria were confirmed and quantified by MAR-FISH as being the major bacterial phylum assimilating butyric acid along with several Burkholderiales-related Betaproteobacteria. The active bacterial community assimilating dimethyl disulfide (DMDS) was characterized by DNA-SIP and MAR-FISH and found to be associated with the Actinobacteria, along with a few representatives of Flavobacteria and Sphingobacteria. Interestingly, ammonia-oxidizing Betaproteobacteria were also implicated in DMDS degradation, as were fungi. Thus, multiple isotope-based methods provided complementary data, enabling high-resolution identification and quantitative assessments of odor-eliminating Actinobacteria-dominated populations of these biofilter environments.
Collapse
|
3
|
Bacterial community structure of a full-scale biofilter treating pig house exhaust air. Syst Appl Microbiol 2011; 34:344-52. [DOI: 10.1016/j.syapm.2010.11.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 11/19/2010] [Indexed: 11/23/2022]
|
4
|
Integrating microbial ecology in bioprocess understanding: the case of gas biofiltration. Appl Microbiol Biotechnol 2011; 90:837-49. [PMID: 21424795 DOI: 10.1007/s00253-011-3191-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 02/25/2011] [Accepted: 02/27/2011] [Indexed: 10/18/2022]
Abstract
Biofilters are packed-bed bioreactors where contaminants, once transferred from the gas phase to the biofilm, are oxidized by diverse and complex communities of attached microorganisms. Over the last decade, more and more studies aimed at opening the back box of biofiltration by unraveling the biodiversity-ecosystem function relationship. In this review, we report the insights provided by the microbial ecology approach in biofilters and we emphasize the parallels existing with other engineered ecosystems used for wastewater treatment, as they all constitute relevant model ecosystems to explore ecological issues. We considered three characteristic ecological indicators: the density, the diversity, and the structure of the microbial community. Special attention was paid to the temporal and spatial dynamics of each indicator, insofar as it can disclose the potential relationship, or absence of relation, with any operating or functional parameter. We also focused on the impact of disturbance regime on the microbial community structure, in terms of resistance, resilience, and memory. This literature review led to mitigated conclusions in terms of biodiversity-ecosystem function relationship. Depending on the environmental system itself and the way it is investigated, the spatial and temporal dynamics of the microbial community can be either correlated (e.g., spatial stratification) or uncoupled (e.g., temporal instability) to the ecosystem function. This lack of generality shows the limits of current 16S approach in complex ecosystems, where a functional approach may be more suitable.
Collapse
|
5
|
Assessing the bias linked to DNA recovery from biofiltration woodchips for microbial community investigation by fingerprinting. Appl Microbiol Biotechnol 2010; 85:779-790. [PMID: 19826809 DOI: 10.1007/s00253-009-2253-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 09/04/2009] [Accepted: 09/07/2009] [Indexed: 10/20/2022]
Abstract
In this study, we explored methodological aspects of nucleic acid recovery from microbial communities involved in a gas biofilter filled with pine bark woodchips. DNA was recovered indirectly in two steps, comparing different methods: cell dispersion (crushing, shaking, and sonication) and DNA extraction (three commercial kits and a laboratory protocol). The objectives were (a) to optimize cell desorption from the packing material and (b) to compare the 12 combinations of desorption and extraction methods, according to three relevant criteria: DNA yield, DNA purity, and community structure representation by denaturing gradient gel electrophoresis (DGGE). Cell dispersion was not influenced by the operational parameters tested for shaking and blending, while it increased with time for sonication. DNA extraction by the laboratory protocol provided the highest DNA yields, whereas the best DNA purity was obtained by a commercial kit designed for DNA extraction from soil. After successful PCR amplification, the 12 methods did not generate the same bias in microbial community representation. Eight combinations led to high diversity estimation, independently of the experimental procedure. Among them, six provided highly similar DGGE profiles. Two protocols generated a significantly dissimilar community profile, with less diversity. This study highlighted the crucial importance of DNA recovery bias evaluation.
Collapse
|
6
|
Pombo SA, Pelz O, Schroth MH, Zeyer J. Field-scale C-labeling of phospholipid fatty acids (PLFA) and dissolved inorganic carbon: tracing acetate assimilation and mineralization in a petroleum hydrocarbon-contaminated aquifer. FEMS Microbiol Ecol 2009; 41:259-67. [PMID: 19709260 DOI: 10.1111/j.1574-6941.2002.tb00987.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
This study was conducted to determine the feasibility of labeling phospholipid-derived fatty acids (PLFA) of an active microbial population with a (13)C-labeled organic substrate in the denitrifying zone of a petroleum hydrocarbon-contaminated aquifer during a single-well push-pull test. Anoxic test solution was prepared from 500 l of groundwater with addition of 0.5 mM Br(-) as a conservative tracer, 0.5 mM NO(3) (-), and 0.25 mM [2-(13)C]acetate. At 4, 23 and 46 h after injection, 1000 l of test solution/groundwater mixture were sequentially extracted. During injection and extraction phases we measured Br(-), NO(3) (-) and acetate concentrations, characterized the microbial community structure by PLFA and fluorescent in situ hybridization (FISH) analyses, and determined (13)C/(12)C ratios in dissolved inorganic carbon (DIC) and PLFA. Computed first-order rate coefficients were 0.63+/-0.08 day(-1) for NO(3) (-) and 0.70+/-0.05 day(-1) for acetate consumption. Significant (13)C incorporation in DIC and PLFA was detected as early as 4 h after injection. At 46 h we measured delta(13)C values of up to 5614 per thousand in certain PLFA (especially monounsaturated fatty acids), and up to 59.8 per thousand in extracted DIC. Profiles of enriched PLFA and FISH analysis suggested the presence of active denitrifiers. Our results demonstrate the applicability of (13)C labeling of PLFA and DIC in combination with FISH to link microbial structure and activities at the field scale during a push-pull test.
Collapse
Affiliation(s)
- Silvina A Pombo
- Institute of Terrestrial Ecology, Soil Biology, Swiss Federal Institute of Technology Zurich (ETHZ), CH-8952 Schlieren, Switzerland.
| | | | | | | |
Collapse
|
7
|
Friedrich MM, Lipski A. Characterisation of hexane-degrading microorganisms in a biofilter by stable isotope-based fatty acid analysis, FISH and cultivation. Appl Microbiol Biotechnol 2009; 85:1189-99. [PMID: 19847422 DOI: 10.1007/s00253-009-2290-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 10/05/2009] [Accepted: 10/05/2009] [Indexed: 11/24/2022]
Abstract
The hexane-degrading bacterial community of a biofilter was characterised by a combination of stable isotope-based phospholipid fatty acid analyses, fluorescence in situ hybridisation and cultivation. About 70 bacterial strains were isolated from a full-scale biofilter used for treatment of hexane containing waste gas of an oil mill. The isolation approach led to 16 bacterial groups, which were identified as members of the Alpha-, Beta- and Gammaproteobacteria, Actinobacteria and Firmicutes. Three groups showed good growth on hexane as the sole source of carbon. These groups were allocated to the genera Gordonia and Sphingomonas and to the Nevskia-branch of the Gammaproteobacteria. Actively degrading populations in the filter material were characterised by incubation of filter material samples with deuterated hexane and subsequent phospholipid fatty acid analysis. Significant labelling of the fatty acids 16:1 cis10, 18:1 cis9 and 18:0 10methyl affiliated the hexane-degrading activity of the biofilter with the isolates of the genus Gordonia. In vitro growth on hexane and in situ labelling of characteristic fatty acids confirmed the central role of these organisms in the hexane degradation within the full-scale biofilter.
Collapse
Affiliation(s)
- Michèle M Friedrich
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, Osnabrück, Germany
| | | |
Collapse
|
8
|
Pandey J, Chauhan A, Jain RK. Integrative approaches for assessing the ecological sustainability ofin situbioremediation. FEMS Microbiol Rev 2009; 33:324-75. [PMID: 19178567 DOI: 10.1111/j.1574-6976.2008.00133.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
9
|
Sercu B, Boon N, Verstraete W, Van Langenhove H. H2S degradation is reflected by both the activity and composition of the microbial community in a compost biofilter. Appl Microbiol Biotechnol 2006; 72:1090-8. [PMID: 16575569 DOI: 10.1007/s00253-006-0382-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 02/15/2006] [Accepted: 02/15/2006] [Indexed: 10/24/2022]
Abstract
In this study, 16S rRNA- and rDNA-based denaturing gradient gel electrophoresis (DGGE) were used to study the temporal and spatial evolution of the microbial communities in a compost biofilter removing H(2)S and in a control biofilter without H(2)S loading. During the first 81 days of the experiment, the H(2)S removal efficiencies always exceeded 93% at loading rates between 4.1 and 30 g m(-3) h(-1). Afterwards, the H(2)S removal efficiency decreased to values between 44 and 71%. RNA-based DGGE analysis showed that H(2)S loading to the biofilter increased the stability of the active microbial community but decreased the activity-based diversity and evenness. The most intense band in both the RNA- and DNA-based DGGE patterns of the H(2)S-degrading biofilter represented the sulfur oxidizing bacterium Thiobacillus thioparus. This suggested that T. thioparus constituted a major part of the bacterial community and was an important primary degrader in the H(2)S-degrading biofilter. The decreasing H(2)S removal efficiencies near the end of the experiment were not accompanied by a substantial change of the DGGE patterns. Therefore, the decreased H(2)S removal was probably not caused by a failing microbiology but rather by a decrease of the mass transfer of substrates after agglutination of the compost particles.
Collapse
Affiliation(s)
- Bram Sercu
- Environmental Organic Chemistry & Technology Research Group (EnVOC), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | | | | | | |
Collapse
|
10
|
Malhautier L, Khammar N, Bayle S, Fanlo JL. Biofiltration of volatile organic compounds. Appl Microbiol Biotechnol 2005; 68:16-22. [PMID: 15803311 DOI: 10.1007/s00253-005-1960-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 03/10/2005] [Accepted: 03/12/2005] [Indexed: 10/25/2022]
Abstract
The removal of volatile organic compounds (VOCs) from contaminated airstreams has become a major air pollution concern. Improvement of the biofiltration process commonly used for the removal of odorous compounds has led to a better control of key parameters, enabling the application of biofiltration to be extended also to the removal of VOCs. Moreover, biofiltration, which is based on the ability of micro-organisms to degrade a large variety of compounds, proves to be economical and environmentally viable. In a biofilter, the waste gas is forced to rise through a layer of packed porous material. Thus, pollutants contained in the gaseous effluent are oxidised or converted into biomass by the action of microorganisms previously fixed on the packing material. The biofiltration process is then based on two principal phenomena: (1) transfer of contaminants from the air to the water phase or support medium, (2) bioconversion of pollutants to biomass, metabolic end-products, or carbon dioxide and water. The diversity of biofiltration mechanisms and their interaction with the microflora mean that the biofilter is defined as a complex and structured ecosystem. As a result, in addition to operating conditions, research into the microbial ecology of biofilters is required in order better to optimise the management of such biological treatment systems.
Collapse
Affiliation(s)
- Luc Malhautier
- Laboratoire Génie de l'Environnement Industriel, Ecole des Mines d'Alès, 6, avenue de Clavières, 30319, Ales cedex, France.
| | | | | | | |
Collapse
|
11
|
Pombo SA, Kleikemper J, Schroth MH, Zeyer J. Field-scale isotopic labeling of phospholipid fatty acids from acetate-degrading sulfate-reducing bacteria. FEMS Microbiol Ecol 2005; 51:197-207. [PMID: 16329868 DOI: 10.1016/j.femsec.2004.08.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 08/10/2004] [Accepted: 08/19/2004] [Indexed: 10/26/2022] Open
Abstract
Isotopic labeling of biomarker molecules is a technique applied to link microbial community structure with activity. Previously, we successfully labeled phospholipid fatty acids (PLFA) of suspended nitrate-reducing bacteria in an aquifer. However, the application of the method to low energy-yielding processes such as sulfate reduction, and extension of the analysis to attached communities remained to be studied. To test the feasibility of the latter application, an anoxic test solution of 500 l of groundwater with addition of 0.5 mM Br- as a conservative tracer, 1.1 mM SO4(2-), and 2.0 mM [2-13C]acetate was injected in the transition zone of a petroleum hydrocarbon-contaminated aquifer where sulfate-reducing and methanogenic conditions prevailed. Thousand liters of test solution/groundwater mixture were extracted in a stepwise fashion after 2-46 h incubation. Computed apparent first-order rate coefficients were 0.31+/-0.04 day(-1) for acetate and 0.34+/-0.05 day(-1) for SO4(2-) consumption. The delta13C increased from -71.03 per thousand to +3352.50 per thousand in CH4 and from -16.15 per thousand to +32.13 per thousand in dissolved inorganic carbon (DIC). A mass balance suggested that 43% of the acetate-derived (13)C appeared in DIC and 57% appeared in CH4. Thus, acetate oxidation coupled to sulfate reduction and acetoclastic methanogenesis occurred simultaneously. The delta13C of PLFA increased on average by 27 per thousand in groundwater samples and 4 per thousand in sediment samples. Hence, both suspended and attached communities actively degraded acetate. The PLFA labeling patterns and fluorescent in situ hybridization (FISH) analyses of sediment and groundwater samples suggested that the main sulfate-reducing bacteria degrading the acetate were Desulfotomaculum acetoxidans and Desulfobacter sp. in groundwater, and D. acetoxidans in sediment.
Collapse
Affiliation(s)
- Silvina A Pombo
- Institute of Terrestrial Ecology, Soil Biology, Swiss Federal Institute of Technology Zurich (ETHZ), CH-8952 Schlieren, Switzerland
| | | | | | | |
Collapse
|
12
|
Werker AG, Becker J, Huitema C. Assessment of activated sludge microbial community analysis in full-scale biological wastewater treatment plants using patterns of fatty acid isopropyl esters (FAPEs). WATER RESEARCH 2003; 37:2162-2172. [PMID: 12691902 DOI: 10.1016/s0043-1354(02)00625-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This investigation introduces the application of a relatively rapid technique to obtain information about the dynamic nature of microbial communities in activated sludge. The objective has been to consider variability due to measurement errors and protocol changes within the same quantitative framework as the analysis of systematic differences in microbial communities in large-scale aerobic activated sludge secondary wastewater treatment systems. Adjustments to the methodology were considered due to their potential for simplifying and shortening the analysis procedure. All modifications to the protocols used to assay the composition of microbial fatty acids (MFAs) of activated sludge imposed some bias to the chromatographic data. This methodological bias was similar in magnitude to the level of discrimination between activated sludge microbial community structures that were considered as part of the present study. MFA analysis supported the expectations of subtle but systematic community structure differences and shifts in activated sludge based on the current understanding of these wastewater treatment systems. A standardized MFA methodology was shown to be sensitive to minor systematic changes in activated sludge communities due the anticipated underlying factors of selective pressures from the process configuration, history, operational conditions and/or nutrient status. The chemometric approach of fatty acid isopropyl ester analysis of activated sludge can provide a routine tool for meaningful and quantitative information of changes in activated sludge quality in full-scale treatment systems.
Collapse
Affiliation(s)
- Alan G Werker
- Department of Civil Engineering, University of Waterloo, 200 University Avenue West, Ont., Canada N2L 3G1.
| | | | | |
Collapse
|
13
|
Friedrich U, Prior K, Altendorf K, Lipski A. High bacterial diversity of a waste gas-degrading community in an industrial biofilter as shown by a 16S rDNA clone library. Environ Microbiol 2002; 4:721-34. [PMID: 12460280 DOI: 10.1046/j.1462-2920.2002.00349.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The bacterial diversity of an industrial biofilter used for waste gas abatement in an animal-rendering plant was investigated. A 16S rDNA clone library was generated and 444 clones were screened using computer-aided amplified ribosomal DNA restriction analysis (ARDRA). Of the screened clones, 60.8% showed unique ARDRA patterns and the remaining 174 clones were clustered into 65 groups. Almost full-length 16S rDNA sequences of 106 clones were determined and 90.5% of the clones were affiliated with the two phyla Proteobacteria and Bacteroidetes. Alpha-, Beta-, and Gammaproteobacteria accounted for 22.1, 17.6 and 18.6% respectively. Minor portions were affiliated with the Actinobacteria (2.0%), Firmicutes and Verrucomicrobia (both 1.0%), and the Deltaproteobacteria and Thermomicrobia (each 0.5%). Only six out of the 106 16S rDNA sequences exhibited similarities of more than 97% to classified bacterial species indicating that a substantial fraction of the clone sequences were derived from unknown taxa. It was also evaluated whether a database containing 281 computer-simulated bacterial rDNA fragment patterns generated from published reference sequences can be used for identification purposes. The data analysis demonstrated that this was possible only for a small number of clones, which were closely related to described bacterial strains. Rarefaction analysis of ARDRA clusters demonstrated that the 444 clones screened are insufficient to describe the entire diversity of the clone library.
Collapse
Affiliation(s)
- Udo Friedrich
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, 49069 Osnabrück, Germany.
| | | | | | | |
Collapse
|
14
|
Kong Z, Farhana L, Fulthorpe RR, Allen DG. Treatment of volatile organic compounds in a biotrickling filter under thermophilic conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2001; 35:4347-4352. [PMID: 11718354 DOI: 10.1021/es010639i] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The objectives of this research were to investigate the potential to biologically treat volatile organic compounds emitted by the forest products industry at thermophilic conditions and to examine the microbial community developed at high temperatures. Three biotrickling filters were run in parallel at temperatures ranging from 40 degrees C (mesophilic control) to 70 degrees C. The first phase involved treatment of methanol, for a 3-month run, and the second phase involved a 260-day run on the treatment of alpha-pinene. Methanol removal rates over 100 g m(-3) h(-1) where achieved at temperatures up to 70 degrees C. Alpha-pinene removal was achieved at temperatures up to 60 degrees C with optimal treatment occurring at 55 degrees C at rates up to 60 g m(-3) h(-1). The time for acclimation increased with increasing temperature and was longer for pinene than for methanol. Filter performance was also able to quickly recover from a shutdown period of up to 2 weeks due to the robustness of the microbial communities as determined by DNA fingerprinting analysis. The high-temperature communities treating methanol or pinene were more similar to each other than the mesophilic communities (i.e., 40 degrees C). The mesophilic methanol community had a high degree of functional redundancy, while the mesophilic pinene community was more unique and very distinct from the others. These results show that biofiltration at high temperatures is achievable and opens up a range of possibilities for applying biofiltration to hot gas streams.
Collapse
Affiliation(s)
- Z Kong
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
15
|
Alexandrino M, Knief C, Lipski A. Stable-isotope-based labeling of styrene-degrading microorganisms in biofilters. Appl Environ Microbiol 2001; 67:4796-804. [PMID: 11571187 PMCID: PMC93234 DOI: 10.1128/aem.67.10.4796-4804.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2001] [Accepted: 07/16/2001] [Indexed: 11/20/2022] Open
Abstract
Deuterated styrene ([(2)H(8)]styrene) was used as a tracer in combination with phospholipid fatty acid (PLFA) analysis for characterization of styrene-degrading microbial populations of biofilters used for treatment of waste gases. Deuterated fatty acids were detected and quantified by gas chromatography-mass spectrometry. The method was evaluated with pure cultures of styrene-degrading bacteria and defined mixed cultures of styrene degraders and non-styrene-degrading organisms. Incubation of styrene degraders for 3 days with [(2)H(8)]styrene led to fatty acids consisting of up to 90% deuterated molecules. Mixed-culture experiments showed that specific labeling of styrene-degrading strains and only weak labeling of fatty acids of non-styrene-degrading organisms occurred after incubation with [(2)H(8)]styrene for up to 7 days. Analysis of actively degrading filter material from an experimental biofilter and a full-scale biofilter by this method showed that there were differences in the patterns of labeled fatty acids. For the experimental biofilter the fatty acids with largest amounts of labeled molecules were palmitic acid (16:0), 9,10-methylenehexadecanoic acid (17:0 cyclo9-10), and vaccenic acid (18:1 cis11). These lipid markers indicated that styrene was degraded by organisms with a Pseudomonas-like fatty acid profile. In contrast, the most intensively labeled fatty acids of the full-scale biofilter sample were palmitic acid and cis-11-hexadecenoic acid (16:1 cis11), indicating that an unknown styrene-degrading taxon was present. Iso-, anteiso-, and 10-methyl-branched fatty acids showed no or weak labeling. Therefore, we found no indication that styrene was degraded by organisms with methyl-branched fatty fatty acids, such as Xanthomonas, Bacillus, Streptomyces, or Gordonia spp.
Collapse
Affiliation(s)
- M Alexandrino
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, 49069 Osnabrück, Germany
| | | | | |
Collapse
|