1
|
Liu X, Ecarnot M, Kontro MH. The physicochemical conditions of isolation source determine the occurrence of Pseudomonas fluorescens group species. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1078-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
2
|
Barbieri E, Guidi C, Bertaux J, Frey-Klett P, Garbaye J, Ceccaroli P, Saltarelli R, Zambonelli A, Stocchi V. Occurrence and diversity of bacterial communities in Tuber magnatum during truffle maturation. Environ Microbiol 2007; 9:2234-46. [PMID: 17686021 DOI: 10.1111/j.1462-2920.2007.01338.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tuber magnatum, an ascomycetous fungus and obligate ectomycorrhizal symbiont, forms hypogeous fruit bodies, commonly called Italian white truffles. The diversity of bacterial communities associated with T. magnatum truffles was investigated using culture-independent and -dependent 16S rRNA gene-based approaches. Eighteen truffles were classified in three groups, representing different degrees of ascocarp maturation, based on the percentage of asci containing mature spores. The culturable bacterial fraction was (4.17 +/- 1.61) x 10(7), (2.60 +/- 1.22) x 10(7) and (1.86 +/- 1.32) x 10(6) cfu g(-1) for immature, intermediate and mature ascocarps respectively. The total of bacteria count was two orders of magnitude higher than the cfu g(-1) count. Sequencing results from the clone library showed a significant presence of alpha-Proteobacteria (634 of the 771 total clones screened, c. 82%) affiliated with Sinorhizobium, Rhizobium and Bradyrhizobium spp. The bacterial culturable fraction was generally represented by gamma-Proteobacteria (210 of the 384 total strains isolated, c. 55%), which were mostly fluorescent pseudomonads. Fluorescent in situ hybridization confirmed that alpha-Proteobacteria (85.8%) were the predominant components of truffle bacterial communities with beta-Proteobacteria (1.5%), gamma-Proteobacteria (1.9%), Bacteroidetes (2.1%), Firmicutes (2.4%) and Actinobacteria (3%) only poorly represented. Molecular approaches made it possible to identify alpha-Proteobacteria as major constituents of a bacterial component associated with T. magnatum ascoma, independently from the degree of maturation.
Collapse
Affiliation(s)
- Elena Barbieri
- Istituto di Chimica Biologica Giorgio Fornaini, Via Saffi, 2, University of Urbino Carlo Bo, 61029 Urbino, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Popp N, Schlömann M, Mau M. Bacterial diversity in the active stage of a bioremediation system for mineral oil hydrocarbon-contaminated soils. Microbiology (Reading) 2006; 152:3291-3304. [PMID: 17074900 DOI: 10.1099/mic.0.29054-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Soils contaminated with mineral oil hydrocarbons are often cleaned in off-site bioremediation systems. In order to find out which bacteria are active during the degradation phase in such systems, the diversity of the active microflora in a degrading soil remediation system was investigated by small-subunit (SSU) rRNA analysis. Two sequential RNA extracts from one soil sample were generated by a procedure incorporating bead beating. Both extracts were analysed separately by generating individual SSU rDNA clone libraries from cDNA of the two extracts. The sequencing results showed moderate diversity. The two clone libraries were dominated by Gammaproteobacteria, especially Pseudomonas spp. Alphaproteobacteria and Betaproteobacteria were two other large groups in the clone libraries. Actinobacteria, Firmicutes, Bacteroidetes and Epsilonproteobacteria were detected in lower numbers. The obtained sequences were predominantly related to genera for which cultivated representatives have been described, but were often clustered together in the phylogenetic tree, and the sequences that were most similar were originally obtained from soils and not from pure cultures. Most of the dominant genera in the clone libraries, e.g. Pseudomonas, Acinetobacter, Sphingomonas, Acidovorax and Thiobacillus, had already been detected in (mineral oil hydrocarbon) contaminated environmental samples. The occurrence of the genera Zymomonas and Rhodoferax was novel in mineral oil hydrocarbon-contaminated soil.
Collapse
Affiliation(s)
- Nicole Popp
- Interdisziplinäres Ökologisches Zentrum, TU Bergakademie Freiberg, Leipziger Str. 29, D-09599 Freiberg, Germany
| | - Michael Schlömann
- Interdisziplinäres Ökologisches Zentrum, TU Bergakademie Freiberg, Leipziger Str. 29, D-09599 Freiberg, Germany
| | - Margit Mau
- Interdisziplinäres Ökologisches Zentrum, TU Bergakademie Freiberg, Leipziger Str. 29, D-09599 Freiberg, Germany
| |
Collapse
|
4
|
Flagan SF, Leadbetter JR. Utilization of capsaicin and vanillylamine as growth substrates by Capsicum (hot pepper)-associated bacteria. Environ Microbiol 2006; 8:560-5. [PMID: 16478462 DOI: 10.1111/j.1462-2920.2005.00938.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Capsaicin contributes to the organoleptic attributes of hot peppers. Here, we show that capsaicin is utilized as a growth nutrient by certain bacteria. Enrichment cultures utilizing capsaicin were successfully initiated using Capsicum-derived plant material or leaves of tomato (a related Solanaceae) as inocula. No other sources of inoculum examined yielded positive enrichments. Of 25 isolates obtained from enrichments: all utilized 8-methylnonanoic acid; nine were found capable of degrading capsaicin as sole carbon and energy source; 11 were found capable of utilizing vanillylamine; but only two strains could use either of these latter two compounds as sole nitrogen source. Phylogenetic analysis of capsaicin degraders revealed them to be strains of Variovorax and Ralstonia, whereas the vanillylamine degraders were strains of Pseudomonas and Variovorax. Neither of the two strains isolated from one enrichment culture originally inoculated with dried pepper fruit was capable of using capsaicin as sole carbon and nitrogen source. However, good growth was achieved under such conditions when the two isolates, a strain of Variovorax paradoxusThat degraded capsaicin when provided with ammonium, and a vanillylamine degrading strain of Pseudomonas putida, were cultured together. A cross-feeding of capsaicin-derived carbon and nitrogen between members of pepper-associated consortia is proposed.
Collapse
Affiliation(s)
- Suvi F Flagan
- Keck Laboratories, Mailcode 138-78, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
5
|
Barbieri E, Bertini L, Rossi I, Ceccaroli P, Saltarelli R, Guidi C, Zambonelli A, Stocchi V. New evidence for bacterial diversity in the ascoma of the ectomycorrhizal fungusTuber borchiiVittad. FEMS Microbiol Lett 2005; 247:23-35. [PMID: 15927744 DOI: 10.1016/j.femsle.2005.04.027] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 04/07/2005] [Accepted: 04/16/2005] [Indexed: 11/15/2022] Open
Abstract
The microbial community associated with ascocarps of the ectomycorrhizal fungus Tuber borchii Vittad. was studied by both cultivation and direct extraction of bacterial 16S rRNA gene (rDNA) sequence approaches. The inner part of six T. borchii ascoma collected in North-Central Italy was used to establish a bacterial culture collection and to extract the total genomic DNA to obtain a library of 16S rDNAs representative of the truffle bacterial community. Most of the isolates were affiliated to the gamma-Proteobacteria, mainly Fluorescent pseudomonads; some isolates were members of the Bacteroidetes group and Gram-positive bacteria, mostly Bacillaceae. The majority of the clones from the library were alpha-Proteobacteria showing significant similarity values, of greater than 97%, with members of the Sinorhizobium/Ensifer Group, Rhizobium and Bradyrhizobium spp. not previously identified as Tuber-associated bacteria. Only a few bacterial strains belonging to this bacterial subclass were found in the culture collection and isolated on a medium specific for Rhizobium-like organisms. A few clones were members of the beta- and gamma-Proteobacteria; as well as low and high G+C Gram-positive bacteria. Our findings clearly indicate that a dual approach increases the information obtained on the structural composition of a truffle bacterial community as compared to that derived via cultivation or direct recovery of 16S rDNA sequences alone.
Collapse
Affiliation(s)
- Elena Barbieri
- Istituto di Chimica Biologica Giorgio Fornaini, University of Urbino Carlo Bo, Urbino (PU), Italy.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Johansson PM, Wright SAI. Low-temperature isolation of disease-suppressive bacteria and characterization of a distinctive group of pseudomonads. Appl Environ Microbiol 2003; 69:6464-74. [PMID: 14602601 PMCID: PMC262323 DOI: 10.1128/aem.69.11.6464-6474.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Accepted: 08/06/2003] [Indexed: 11/20/2022] Open
Abstract
The influence of environmental factors during isolation on the composition of potential biocontrol isolates is largely unknown. Bacterial isolates that efficiently suppressed wheat seedling blight caused by Fusarium culmorum were found by isolating psychrotrophic, root-associated bacteria and by screening them in a bioassay that mimicked field conditions. The impact of individual isolation factors on the disease-suppressive index (DSI) of almost 600 isolates was analyzed. The bacteria originated from 135 samples from 62 sites in Sweden and Switzerland. The isolation factors that increased the probability of finding isolates with high DSIs were sampling from arable land, Swiss origin of samples, and origination of isolates from plants belonging to the family Brassicaceae. The colony morphology of the isolates was characterized and compared to DSIs, which led to identification of a uniform morphological group containing 57 highly disease-suppressive isolates. Isolates in this group were identified as Pseudomonas sp.; they were fluorescent on King's medium B and had characteristic crystalline structures in their colonies. These isolates were morphologically similar to seven strains that had previously been selected for suppression of barley net blotch caused by Drechslera teres. Members of this morphological group grow at 1.5 degrees C and produce an antifungal polyketide (2,3-deepoxy-2,3-didehydrorhizoxin [DDR]). They have similar two-dimensional polyacrylamide gel electrophoresis protein profiles, phenotypic characteristics, and in vitro inhibition spectra of pathogens. In summary, in this paper we describe some isolation factors that are important for obtaining disease-suppressive bacteria in our system, and we describe a novel group of biocontrol pseudomonads.
Collapse
Affiliation(s)
- P Maria Johansson
- Plant Pathology and Biocontrol Unit, Sveriges Lantbruksuniversitet, SE-750 07 Uppsala, Sweden.
| | | |
Collapse
|
7
|
LaMontagne MG, Schimel JP, Holden PA. Comparison of subsurface and surface soil bacterial communities in California grassland as assessed by terminal restriction fragment length polymorphisms of PCR-amplified 16S rRNA genes. MICROBIAL ECOLOGY 2003; 46:216-27. [PMID: 14708746 DOI: 10.1007/s00248-003-1006-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The integrated biomass beneath the surface horizon in unsaturated soils is large and potentially important in nutrient and carbon cycling. Compared to surface soils, the ecology of these subsurface soils is weakly understood, particularly in terms of the composition of bacterial communities. We compared soil bacterial communities along two vertical transects by terminal restriction fragment length polymorphisms (TRFLPs) of PCR-amplified 16S rRNA genes to determine how surface and deep bacterial communities differ. DNA yield from soils collected from two Mediterranean grassland transects decreased exponentially from the surface to 4 m deep. Richness, as assessed by the number of peaks obtained after restriction with HhaI, MspI, RsaI, or HaeIII, and diversity, as assessed by the Shannon diversity indices, were lowest in the deepest sample. Lower diversity at depth is consistent with species-energy theory, which would predict relatively low diversity in the low organic matter horizons. Principal components analysis suggested that, in terms of HhaI and HaeIII generated TRFLPs, bacterial communities differed between depths. The most abundant amplicons cloned from the deepest sample contained sequences with restriction sites consistent with the largest peaks observed in TRFLPs generated from deep samples. These more abundant operational taxonomic units (OTUs) appeared related to Pseudomonas and Variovorax. Several OTUs were more related to each other than any previously described ribotypes. These OTUs showed similarity to bacteria from the divisions Actinobacteria and Firmicutes.
Collapse
Affiliation(s)
- M G LaMontagne
- The Donald Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106-5131, USA.
| | | | | |
Collapse
|
8
|
Morris CE, Bardin M, Berge O, Frey-Klett P, Fromin N, Girardin H, Guinebretière MH, Lebaron P, Thiéry JM, Troussellier M. Microbial biodiversity: approaches to experimental design and hypothesis testing in primary scientific literature from 1975 to 1999. Microbiol Mol Biol Rev 2002; 66:592-616, table of contents. [PMID: 12456784 PMCID: PMC134657 DOI: 10.1128/mmbr.66.4.592-616.2002] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Research interest in microbial biodiversity over the past 25 years has increased markedly as microbiologists have become interested in the significance of biodiversity for ecological processes and as the industrial, medical, and agricultural applications of this diversity have evolved. One major challenge for studies of microbial habitats is how to account for the diversity of extremely large and heterogeneous populations with samples that represent only a very small fraction of these populations. This review presents an analysis of the way in which the field of microbial biodiversity has exploited sampling, experimental design, and the process of hypothesis testing to meet this challenge. This review is based on a systematic analysis of 753 publications randomly sampled from the primary scientific literature from 1975 to 1999 concerning the microbial biodiversity of eight habitats related to water, soil, plants, and food. These publications illustrate a dominant and growing interest in questions concerning the effect of specific environmental factors on microbial biodiversity, the spatial and temporal heterogeneity of this biodiversity, and quantitative measures of population structure for most of the habitats covered here. Nevertheless, our analysis reveals that descriptions of sampling strategies or other information concerning the representativeness of the sample are often missing from publications, that there is very limited use of statistical tests of hypotheses, and that only a very few publications report the results of multiple independent tests of hypotheses. Examples are cited of different approaches and constraints to experimental design and hypothesis testing in studies of microbial biodiversity. To prompt a more rigorous approach to unambiguous evaluation of the impact of microbial biodiversity on ecological processes, we present guidelines for reporting information about experimental design, sampling strategies, and analyses of results in publications concerning microbial biodiversity.
Collapse
Affiliation(s)
- Cindy E Morris
- Station de Pathologie Végétale, Station de Technologie de Produits Végétaux, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chow ML, Radomski CC, McDermott JM, Davies J, Axelrood PE. Molecular characterization of bacterial diversity in Lodgepole pine (Pinus contorta) rhizosphere soils from British Columbia forest soils differing in disturbance and geographic source. FEMS Microbiol Ecol 2002; 42:347-57. [DOI: 10.1111/j.1574-6941.2002.tb01024.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
10
|
Axelrood PE, Chow ML, Radomski CC, McDermott JM, Davies J. Molecular characterization of bacterial diversity from British Columbia forest soils subjected to disturbance. Can J Microbiol 2002; 48:655-74. [PMID: 12224564 DOI: 10.1139/w02-059] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteria from forest soils were characterized by DNA sequence analysis of cloned 16S rRNA gene fragments (16S clones). Surface organic matter and mineral soil samples from a British Columbia Ministry of Forests Long-Term Soil Productivity (LTSP) installation were collected during winter and summer from two disturbance treatments: whole-tree harvesting with no soil compaction (plot N) and whole-tree harvesting plus complete surface organic matter removal with heavy soil compaction (plot S). Phylogenetic analyses revealed that 87% of 580 16S clones were classified as Proteobacteria, Actinobacteria, Acidobacterium, Verrucomicrobia, Bacillus/Clostridium group, Cytophaga-Flexibacter-Bacteroides group, green nonsulfur bacteria, Planctomyces, and candidate divisions TM6 and OP10. Seventy-five 16S clones could not be classified into known bacterial divisions, and five 16S clones were related to chloroplast DNA. Members of Proteobacteria represented 46% of the clone library. A higher proportion of 16S clones affiliated with y-Proteobacteria were from plot N compared with plot S. 16S rRNA gene fragments amplified with Pseudomonas-specific primers and cloned (Ps clones) were examined from mineral-soil samples from plots N and S from three LTSP installations. A significantly greater proportion of sequenced Ps clones from plot N contained Pseudomonas 16S rRNA gene fragments compared with Ps clones from plot S.
Collapse
|
11
|
Brown JH, Whitham TG, Morgan Ernest SK, Gehring CA. Complex species interactions and the dynamics of ecological systems: long-term experiments. Science 2001; 293:643-50. [PMID: 11474100 DOI: 10.1126/science.293.5530.643] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Studies that combine experimental manipulations with long-term data collection reveal elaborate interactions among species that affect the structure and dynamics of ecosystems. Research programs in U.S. desert shrubland and pinyon-juniper woodland have shown that (i) complex dynamics of species populations reflect interactions with other organisms and fluctuating climate; (ii) genotype x environment interactions affect responses of species to environmental change; (iii) herbivore-resistance traits of dominant plant species and impacts of "keystone" animal species cascade through the system to affect many organisms and ecosystem processes; and (iv) some environmental perturbations can cause wholesale reorganization of ecosystems because they exceed the ecological tolerances of dominant or keystone species, whereas other changes may be buffered because of the compensatory dynamics of complementary species.
Collapse
Affiliation(s)
- J H Brown
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | | | | | | |
Collapse
|
12
|
Shim H, Chauhan S, Ryoo D, Bowers K, Thomas SM, Canada KA, Burken JG, Wood TK. Rhizosphere competitiveness of trichloroethylene-degrading, poplar-colonizing recombinant bacteria. Appl Environ Microbiol 2000; 66:4673-8. [PMID: 11055909 PMCID: PMC92365 DOI: 10.1128/aem.66.11.4673-4678.2000] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Indigenous bacteria from poplar tree (Populus canadensis var. eugenei 'Imperial Carolina') and southern California shrub rhizospheres, as well as two tree-colonizing Rhizobium strains (ATCC 10320 and ATCC 35645), were engineered to express constitutively and stably toluene o-monooxygenase (TOM) from Burkholderia cepacia G4 by integrating the tom locus into the chromosome. The poplar and Rhizobium recombinant bacteria degraded trichloroethylene at a rate of 0.8 to 2.1 nmol/min/mg of protein and were competitive against the unengineered hosts in wheat and barley rhizospheres for 1 month (colonization occurred at a level of 1.0 x 10(5) to 23 x 10(5) CFU/cm of root). In addition, six of these recombinants colonized poplar roots stably and competitively with populations as large as 79% +/- 12% of all rhizosphere bacteria after 28 days (0.2 x 10(5) to 31 x 10(5) CFU/cm of root). Furthermore, five of the most competitive poplar recombinants (e.g., Pb3-1 and Pb5-1, which were identified as Pseudomonas sp. strain PsK recombinants) retained the ability to express TOM for 29 days as 100% +/- 0% of the recombinants detected in the poplar rhizosphere expressed TOM constitutively.
Collapse
Affiliation(s)
- H Shim
- Department of Chemical Engineering, University of Connecticut, Storrs, Connecticut 06269-3222, USA
| | | | | | | | | | | | | | | |
Collapse
|