1
|
Martin JB, Sappo CR, Hardy BM, Grissom WA. A Minibatch Alternating Projections Algorithm for Robust and Efficient Magnitude Least-Squares RF Pulse Design in MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:1556-1567. [PMID: 40030470 PMCID: PMC12020449 DOI: 10.1109/tmi.2024.3515035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
A magnitude-least-squares radiofrequency pulse design algorithm is reported which uses interleaved exact and stochastically-generated inexact updates to escape local minima and find low-cost solutions. Inexact updates are performed using a small randomly selected minibatch of the available measurements to update RF pulse weights, which perturbs the sequence of alternating projections. Applications to RF shimming, parallel transmit spokes RF pulse design, and spectral-spatial RF pulse design are considered. Numerical and simulation studies characterized the optimal minibatch size, which was found to consistently produce lower power and lower RMSE solutions across subjects, coil geometries, resolutions and orientations. The method was validated in-vivo at 7 Tesla and produced improvements in image quality in a slice-by-slice RF-shimmed imaging sequence. Compared to conventional methods, the pulse design method can more robustly design RF pulses that correct for inhomogeneities at ultra-high field strengths, and enable pulse designs to be completed with increased computational efficiency.
Collapse
|
2
|
Choi CH, Webb A, Orzada S, Kelenjeridze M, Shah NJ, Felder J. A Review of Parallel Transmit Arrays for Ultra-High Field MR Imaging. IEEE Rev Biomed Eng 2024; 17:351-368. [PMID: 37022919 DOI: 10.1109/rbme.2023.3244132] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Parallel transmission (pTX) techniques are required to tackle a number of challenges, e.g., the inhomogeneous distribution of the transmit field and elevated specific absorption rate (SAR), in ultra-high field (UHF) MR imaging. Additionally, they offer multiple degrees of freedom to create temporally- and spatially-tailored transverse magnetization. Given the increasing availability of MRI systems at 7 T and above, it is anticipated that interest in pTX applications will grow accordingly. One of the key components in MR systems capable of pTX is the design of the transmit array, as this has a major impact on performance in terms of power requirements, SAR and RF pulse design. While several reviews on pTX pulse design and the clinical applicability of UHF exist, there is currently no systematic review of pTX transmit/transceiver coils and their associated performance. In this article, we analyze transmit array concepts to determine the strengths and weaknesses of different types of design. We systematically review the different types of individual antennas employed for UHF, their combination into pTX arrays, and methods to decouple the individual elements. We also reiterate figures-of-merit (FoMs) frequently employed to describe the performance of pTX arrays and summarize published array designs in terms of these FoMs.
Collapse
|
3
|
Rios NL, Gilbert KM, Papp D, Cereza G, Foias A, Rangaprakash D, May MW, Guerin B, Wald LL, Keil B, Stockmann JP, Barry RL, Cohen-Adad J. An 8-channel Tx dipole and 20-channel Rx loop coil array for MRI of the cervical spinal cord at 7 Tesla. NMR IN BIOMEDICINE 2023; 36:e5002. [PMID: 37439129 PMCID: PMC10733907 DOI: 10.1002/nbm.5002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/10/2023] [Accepted: 06/15/2023] [Indexed: 07/14/2023]
Abstract
The quality of cervical spinal cord images can be improved by the use of tailored radiofrequency (RF) coil solutions for ultrahigh field imaging; however, very few commercial and research 7-T RF coils currently exist for the spinal cord, and in particular, those with parallel transmission (pTx) capabilities. This work presents the design, testing, and validation of a pTx/Rx coil for the human neck and cervical/upper thoracic spinal cord. The pTx portion is composed of eight dipoles to ensure high homogeneity over this large region of the spinal cord. The Rx portion is made up of twenty semiadaptable overlapping loops to produce high signal-to-noise ratio (SNR) across the patient population. The coil housing is designed to facilitate patient positioning and comfort, while also being tight fitting to ensure high sensitivity. We demonstrate RF shimming capabilities to optimize B1 + uniformity, power efficiency, and/or specific absorption rate efficiency. B1 + homogeneity, SNR, and g-factor were evaluated in adult volunteers and demonstrated excellent performance from the occipital lobe down to the T4-T5 level. We compared the proposed coil with two state-of-the-art head and head/neck coils, confirming its superiority in the cervical and upper thoracic regions of the spinal cord. This coil solution therefore provides a convincing platform for producing the high image quality necessary for clinical and research scanning of the upper spinal cord.
Collapse
Affiliation(s)
- Nibardo Lopez Rios
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Kyle M. Gilbert
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, ON, Canada
| | - Daniel Papp
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Gaspard Cereza
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Alexandru Foias
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - D. Rangaprakash
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Markus W. May
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
- High Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bastien Guerin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lawrence L. Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard-Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, MA, USA
| | - Boris Keil
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences Mittelhessen, Giessen, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Marburg, Philipps University of Marburg, Marburg, Germany
| | - Jason P. Stockmann
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Robert L. Barry
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard-Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, MA, USA
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada
- Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada
- Mila – Quebec AI Institute, Montreal, QC, Canada
- Centre de recherche du CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
4
|
Ladd ME, Quick HH, Speck O, Bock M, Doerfler A, Forsting M, Hennig J, Ittermann B, Möller HE, Nagel AM, Niendorf T, Remy S, Schaeffter T, Scheffler K, Schlemmer HP, Schmitter S, Schreiber L, Shah NJ, Stöcker T, Uder M, Villringer A, Weiskopf N, Zaiss M, Zaitsev M. Germany's journey toward 14 Tesla human magnetic resonance. MAGMA (NEW YORK, N.Y.) 2023; 36:191-210. [PMID: 37029886 PMCID: PMC10140098 DOI: 10.1007/s10334-023-01085-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023]
Abstract
Multiple sites within Germany operate human MRI systems with magnetic fields either at 7 Tesla or 9.4 Tesla. In 2013, these sites formed a network to facilitate and harmonize the research being conducted at the different sites and make this technology available to a larger community of researchers and clinicians not only within Germany, but also worldwide. The German Ultrahigh Field Imaging (GUFI) network has defined a strategic goal to establish a 14 Tesla whole-body human MRI system as a national research resource in Germany as the next progression in magnetic field strength. This paper summarizes the history of this initiative, the current status, the motivation for pursuing MR imaging and spectroscopy at such a high magnetic field strength, and the technical and funding challenges involved. It focuses on the scientific and science policy process from the perspective in Germany, and is not intended to be a comprehensive systematic review of the benefits and technical challenges of higher field strengths.
Collapse
Affiliation(s)
- Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany.
- Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany.
| | - Harald H Quick
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Oliver Speck
- Department of Biomedical Magnetic Resonance, Otto von Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioural Brain Sciences, Magdeburg, Germany
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Michael Bock
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Michael Forsting
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Jürgen Hennig
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Bernd Ittermann
- Medical Physics and Metrological Information Technology, Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Harald E Möller
- Methods and Development Group Nuclear Magnetic Resonance, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Armin M Nagel
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Stefan Remy
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Tobias Schaeffter
- Medical Physics and Metrological Information Technology, Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Klaus Scheffler
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | | | - Sebastian Schmitter
- Medical Physics and Metrological Information Technology, Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Laura Schreiber
- Department of Cardiovascular Imaging, Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Jülich, Germany
| | - Tony Stöcker
- MR Physics, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Moritz Zaiss
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Maxim Zaitsev
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Özen AC, Spreter F, Schimpf W, Fischer J, Ilbey S, Reiss S, Maier A, von Elverfeldt D, Heidt T, von Zur Mühlen C, Bock M. Scalable and modular 8-channel transmit and 8-channel flexible receive coil array for 19 F MRI of large animals. Magn Reson Med 2023; 89:1237-1250. [PMID: 36226654 DOI: 10.1002/mrm.29490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 02/02/2023]
Abstract
PURPOSE To introduce an RF coil system consisting of an 8-channel transmit (Tx) and 8-channel receive (Rx) coil arrays for 19 F MRI of large animals. METHODS The Tx efficiency and homogeneity of the 8-element loop coil array (loop size: 6 × 15 cm2 ) were simulated for two different pig models rendered from MR images. An 8-channel Rx coil array consisting of a flexible 6-channel posterior and a 2-channel planar anterior array was designed to fit on the abdomen of an average-sized pig in supine position. Measurements were performed in a grid phantom and ex vivo on a pig model with perfluoroctylbromide (PFOB)-filled tubes inserted in the thorax. RESULTS Measured and simulated Tx efficiency and homogeneity for the 8-channel and 5-channel arrays were in good agreement: 1.87 ± 0.22μT/√kW versus 1.96 ± 0.29μT/√kW, and 2.29 ± 0.39μT/√kW versus 2.41 ± 0.37μT/√kW. An isolation of 38 ± 8 dB is achieved between the 19 F Tx and Rx elements, and over 30 dB between the 1 H and 19 F elements. The PFOB-filled vials could be clearly identified within the cadaver abdomen with an SNR of 275 ± 51 for a 3D gradient-echo sequence with 2-mm isotropic resolution and 12 averages, acquired in 9:52 min:s. Performance of the Tx array was robust against phase and amplitude mismatches at the input ports. CONCLUSIONS A modular and scalable Tx array offers improved Tx efficiency in 19 F MRI of large animals with various sizes. Although conventional birdcage coils have superior Tx efficiency within the target region of interest, scalability of the Tx array to animal size is a major benefit. The described 19 F coil provides homogeneous excitation and high sensitivity detection in large pig models.
Collapse
Affiliation(s)
- Ali Caglar Özen
- Department of Radiology, Medical Physics, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Felix Spreter
- Department of Radiology, Medical Physics, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Waldemar Schimpf
- Department of Radiology, Medical Physics, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Johannes Fischer
- Department of Radiology, Medical Physics, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Serhat Ilbey
- Department of Radiology, Medical Physics, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Simon Reiss
- Department of Radiology, Medical Physics, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Alexander Maier
- Department of Cardiology and Angiology I, University Heart Center, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Dominik von Elverfeldt
- Department of Radiology, Medical Physics, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Timo Heidt
- Department of Cardiology and Angiology I, University Heart Center, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Constantin von Zur Mühlen
- Department of Cardiology and Angiology I, University Heart Center, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Michael Bock
- Department of Radiology, Medical Physics, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Rios NL, Gilbert KM, Papp D, Cereza G, Foias A, Rangaprakash D, May MW, Guerin B, Wald LL, Keil B, Stockmann JP, Barry RL, Cohen-Adad J. 8-channel Tx dipole and 20-channel Rx loop coil array for MRI of the cervical spinal cord at 7 Tesla. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527664. [PMID: 36798276 PMCID: PMC9934596 DOI: 10.1101/2023.02.08.527664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The quality of cervical spinal cord images can be improved by the use of tailored radiofrequency coil solutions for ultra-high field imaging; however, very few commercial and research 7 Tesla radiofrequency coils currently exist for the spinal cord, and in particular those with parallel transmit capabilities. This work presents the design, testing and validation of a pTx/Rx coil for the human neck and cervical/upper-thoracic spinal cord. The pTx portion is composed of 8 dipoles to ensure high homogeneity over this large region of the spinal cord. The Rx portion is made of 20 semi-adaptable overlapping loops to produce high Signal-to-noise ratio (SNR) across the patient population. The coil housing is designed to facilitate patient positioning and comfort, while being tight fitting to ensure high sensitivity. We demonstrate RF shimming capabilities to optimize B 1 + uniformity, power efficiency and/or specific absorption rate (SAR) efficiency. B 1 + homogeneity, SNR and g-factor was evaluated in adult volunteers and demonstrated excellent performance from the occipital lobe down to the T4-T5 level. We compared the proposed coil with two state-of-the-art head and head/neck coils, confirming its superiority in the cervical and upper-thoracic regions of the spinal cord. This coil solution therefore provides a convincing platform for producing the high image quality necessary for clinical and research scanning of the upper spinal cord.
Collapse
Affiliation(s)
- Nibardo Lopez Rios
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montreal, QC, Canada
| | - Kyle M. Gilbert
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, ON, Canada
| | - Daniel Papp
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montreal, QC, Canada
| | - Gaspard Cereza
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montreal, QC, Canada
| | - Alexandru Foias
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montreal, QC, Canada
| | - D. Rangaprakash
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Markus W. May
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
- High Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bastien Guerin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lawrence L. Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard-Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, MA, USA
| | - Boris Keil
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences Mittelhessen, Giessen, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Marburg, Philipps University of Marburg, Marburg, Germany
| | - Jason P. Stockmann
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Robert L. Barry
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard-Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, MA, USA
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montreal, QC, Canada
- Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada
- Mila – Quebec AI Institute, Montreal, QC, Canada
- Centre de recherche du CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
7
|
Williams SN, McElhinney P, Gunamony S. Ultra-high field MRI: parallel-transmit arrays and RF pulse design. Phys Med Biol 2023; 68. [PMID: 36410046 DOI: 10.1088/1361-6560/aca4b7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/21/2022] [Indexed: 11/22/2022]
Abstract
This paper reviews the field of multiple or parallel radiofrequency (RF) transmission for magnetic resonance imaging (MRI). Currently the use of ultra-high field (UHF) MRI at 7 tesla and above is gaining popularity, yet faces challenges with non-uniformity of the RF field and higher RF power deposition. Since its introduction in the early 2000s, parallel transmission (pTx) has been recognized as a powerful tool for accelerating spatially selective RF pulses and combating the challenges associated with RF inhomogeneity at UHF. We provide a survey of the types of dedicated RF coils used commonly for pTx and the important modeling of the coil behavior by electromagnetic (EM) field simulations. We also discuss the additional safety considerations involved with pTx such as the specific absorption rate (SAR) and how to manage them. We then describe the application of pTx with RF pulse design, including a practical guide to popular methods. Finally, we conclude with a description of the current and future prospects for pTx, particularly its potential for routine clinical use.
Collapse
Affiliation(s)
- Sydney N Williams
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
| | - Paul McElhinney
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
| | - Shajan Gunamony
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom.,MR CoilTech Limited, Glasgow, United Kingdom
| |
Collapse
|
8
|
May MW, Hansen SLJD, Mahmutovic M, Scholz A, Kutscha N, Guerin B, Stockmann JP, Barry RL, Kazemivalipour E, Gumbrecht R, Kimmlingen R, Adriany M, Chang Y, Triantafyllou C, Knake S, Wald LL, Keil B. A patient-friendly 16-channel transmit/64-channel receive coil array for combined head-neck MRI at 7 Tesla. Magn Reson Med 2022; 88:1419-1433. [PMID: 35605167 PMCID: PMC9675905 DOI: 10.1002/mrm.29288] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE To extend the coverage of brain coil arrays to the neck and cervical-spine region to enable combined head and neck imaging at 7 Tesla (T) ultra-high field MRI. METHODS The coil array structures of a 64-channel receive coil and a 16-channel transmit coil were merged into one anatomically shaped close-fitting housing. Transmit characteristics were evaluated in a B1+ -field mapping study and an electromagnetic model. Receive SNR and the encoding capability for accelerated imaging were evaluated and compared with a commercially available 7 T brain array coil. The performance of the head-neck array coil was demonstrated in human volunteers using high-resolution accelerated imaging. RESULTS In the brain, the SNR matches the commercially available 32-channel brain array and showed improvements in accelerated imaging capabilities. More importantly, the constructed coil array improved the SNR in the face area, neck area, and cervical spine by a factor of 1.5, 3.4, and 5.2, respectively, in regions not covered by 32-channel brain arrays at 7 T. The interelement coupling of the 16-channel transmit coil ranged from -14 to -44 dB (mean = -19 dB, adjacent elements <-18 dB). The parallel 16-channel transmit coil greatly facilitates B1+ field shaping required for large FOV neuroimaging at 7 T. CONCLUSION This new head-neck array coil is the first demonstration of a device of this nature used for combined full-brain, head-neck, and cervical-spine imaging at 7 T. The array coil is well suited to provide large FOV images, which potentially improves ultrahigh field neuroimaging applications for clinical settings.
Collapse
Affiliation(s)
- Markus W May
- Institute of Medical Physics and Radiation Protection, Department of Life Science Engineering, Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Sam-Luca J D Hansen
- Institute of Medical Physics and Radiation Protection, Department of Life Science Engineering, Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Mirsad Mahmutovic
- Institute of Medical Physics and Radiation Protection, Department of Life Science Engineering, Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Alina Scholz
- Institute of Medical Physics and Radiation Protection, Department of Life Science Engineering, Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Nicolas Kutscha
- Institute of Medical Physics and Radiation Protection, Department of Life Science Engineering, Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Bastien Guerin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Jason P Stockmann
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Robert L Barry
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Ehsan Kazemivalipour
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | - Yulin Chang
- Siemens Medical Solutions USA, Inc., Malvern, Pennsylvania, USA
| | | | - Susanne Knake
- Department of Neurology, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Health Sciences and Technology, Harvard - Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Boris Keil
- Institute of Medical Physics and Radiation Protection, Department of Life Science Engineering, Mittelhessen University of Applied Sciences, Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
9
|
Herz S, Stefanescu MR, Lohr D, Vogel P, Kosmala A, Terekhov M, Weng AM, Grunz JP, Bley TA, Schreiber LM. Effects of image homogeneity on stenosis visualization at 7 T in a coronary artery phantom study: With and without B1-shimming and parallel transmission. PLoS One 2022; 17:e0270689. [PMID: 35767553 PMCID: PMC9242506 DOI: 10.1371/journal.pone.0270689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/15/2022] [Indexed: 11/18/2022] Open
Abstract
Background To investigate the effects of B1-shimming and radiofrequency (RF) parallel transmission (pTX) on the visualization and quantification of the degree of stenosis in a coronary artery phantom using 7 Tesla (7 T) magnetic resonance imaging (MRI). Methods Stenosis phantoms with different grades of stenosis (0%, 20%, 40%, 60%, 80%, and 100%; 5 mm inner vessel diameter) were produced using 3D printing (clear resin). Phantoms were imaged with four different concentrations of diluted Gd-DOTA representing established arterial concentrations after intravenous injection in humans. Samples were centrally positioned in a thorax phantom of 30 cm diameter filled with a custom-made liquid featuring dielectric properties of muscle tissue. MRI was performed on a 7 T whole-body system. 2D-gradient-echo sequences were acquired with an 8-channel transmit 16-channel receive (8 Tx / 16 Rx) cardiac array prototype coil with and without pTX mode. Measurements were compared to those obtained with identical scan parameters using a commercially available 1 Tx / 16 Rx single transmit coil (sTX). To assess reproducibility, measurements (n = 15) were repeated at different horizontal angles with respect to the B0-field. Results B1-shimming and pTX markedly improved flip angle homogeneity across the thorax phantom yielding a distinctly increased signal-to-noise ratio (SNR) averaged over a whole slice relative to non-manipulated RF fields. Images without B1-shimming showed shading artifacts due to local B1+-field inhomogeneities, which hampered stenosis quantification in severe cases. In contrast, B1-shimming and pTX provided superior image homogeneity. Compared with a conventional sTX coil higher grade stenoses (60% and 80%) were graded significantly (p<0.01) more precise. Mild to moderate grade stenoses did not show significant differences. Overall, SNR was distinctly higher with B1-shimming and pTX than with the conventional sTX coil (inside the stenosis phantoms 14%, outside the phantoms 32%). Both full and half concentration (10.2 mM and 5.1 mM) of a conventional Gd-DOTA dose for humans were equally suitable for stenosis evaluation in this phantom study. Conclusions B1-shimming and pTX at 7 T can distinctly improve image homogeneity and therefore provide considerably more accurate MR image analysis, which is beneficial for imaging of small vessel structures.
Collapse
Affiliation(s)
- Stefan Herz
- Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
- * E-mail:
| | - Maria R. Stefanescu
- Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany
| | - David Lohr
- Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany
| | - Patrick Vogel
- Department of Experimental Physics V, University of Würzburg, Würzburg, Germany
| | - Aleksander Kosmala
- Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Maxim Terekhov
- Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany
| | - Andreas M. Weng
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Jan-Peter Grunz
- Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Thorsten A. Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Laura M. Schreiber
- Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
10
|
Hangel G, Niess E, Lazen P, Bednarik P, Bogner W, Strasser B. Emerging methods and applications of ultra-high field MR spectroscopic imaging in the human brain. Anal Biochem 2022; 638:114479. [PMID: 34838516 DOI: 10.1016/j.ab.2021.114479] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/15/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022]
Abstract
Magnetic Resonance Spectroscopic Imaging (MRSI) of the brain enables insights into the metabolic changes and fluxes in diseases such as tumors, multiple sclerosis, epilepsy, or hepatic encephalopathy, as well as insights into general brain functionality. However, the routine application of MRSI is mostly hampered by very low signal-to-noise ratios (SNR) due to the low concentrations of metabolites, about 10000 times lower than water. Furthermore, MRSI spectra have a dense information content with many overlapping metabolite resonances, especially for proton MRSI. MRI scanners at ultra-high field strengths, like 7 T or above, offer the opportunity to increase SNR, as well as the separation between resonances, thus promising to solve both challenges. Yet, MRSI at ultra-high field strengths is challenged by decreased B0- and B1-homogeneity, shorter T2 relaxation times, stronger chemical shift displacement errors, and aggravated lipid contamination. Therefore, to capitalize on the advantages of ultra-high field strengths, these challenges must be overcome. This review focuses on the challenges MRSI of the human brain faces at ultra-high field strength, as well as the possible applications to this date.
Collapse
Affiliation(s)
- Gilbert Hangel
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria; Department of Neurosurgery, Medical University of Vienna, Austria
| | - Eva Niess
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Philipp Lazen
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Petr Bednarik
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Wolfgang Bogner
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Bernhard Strasser
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria.
| |
Collapse
|
11
|
Deelchand DK, Henry PG, Joers JM, Auerbach EJ, Park YW, Kara F, Ratai EM, Kantarci K, Öz G. Plug-and-play advanced magnetic resonance spectroscopy. Magn Reson Med 2022; 87:2613-2620. [PMID: 35092085 DOI: 10.1002/mrm.29164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/09/2021] [Accepted: 01/04/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Advanced MRS protocols improve data quality and reproducibility relative to vendor-provided protocols; however, they are challenging to incorporate into the clinical workflow and require local MRS expertise for successful implementation. Here, we developed an automated advanced MRS acquisition protocol at 3T to facilitate acquisition of high-quality spectroscopic data without local MRS expertise. METHODS First, a B0 shimming protocol was selected for automation by comparing 3 widely used B0 algorithms (2 vendor protocols and FAST(EST)MAP). Next, voxel-based B0 and B1 calibrations were incorporated into the consensus-recommended semi-LASER sequence and combined with an automated VOI prescription tool, a recently developed method for automated voxel prescription. The efficiency of collecting single-voxel data from a clinical cohort (N = 40) with the automated protocol (calibration time and fraction of usable datasets) was compared with the nonautomated semi-LASER protocol (N = 35) whereby all prescan calibrations were executed manually in the academic hospital setting with rotating MR technologists in the neuroradiology unit. RESULTS A multi-iteration FAST(EST)MAP protocol resulted in narrower water linewidths than vendor's B0 shim protocols for data acquired from 6 brain locations (p < 1e-5) and was selected for automation. The automated B0 and B1 calibrations resulted in a time saving of ~4.5 minutes per voxel relative to the same advanced protocol executed manually. All spectra acquired with the automated protocol were usable, whereas only 86% of those collected with the manual protocol were usable and spectral quality was more variable. CONCLUSION The plug-and-play advanced MRS protocol allows automated acquisition of high-quality MRS data with high success rate and consistency on a clinical 3T platform.
Collapse
Affiliation(s)
- Dinesh K Deelchand
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - James M Joers
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Edward J Auerbach
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Young Woo Park
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Firat Kara
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Eva-Maria Ratai
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
12
|
Gilbert KM, Klassen LM, Mashkovtsev A, Zeman P, Menon RS, Gati JS. Radiofrequency coil for routine ultra-high-field imaging with an unobstructed visual field. NMR IN BIOMEDICINE 2021; 34:e4457. [PMID: 33305466 DOI: 10.1002/nbm.4457] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Many neuroscience applications have adopted functional MRI as a tool to investigate the healthy and diseased brain during the completion of a task. While ultra-high-field MRI has allowed for improved contrast and signal-to-noise ratios during functional MRI studies, it remains a challenge to create local radiofrequency coils that can accommodate an unobstructed visual field and be suitable for routine use, while at the same time not compromise performance. Performance (both during transmission and reception) can be improved by using close-fitting coils; however, maintaining sensitivity over the whole brain often requires the introduction of coil elements proximal to the eyes, thereby partially occluding the subject's visual field. This study presents a 7 T head coil, with eight transmit dipoles and 32 receive loops, that is designed to remove visual obstructions from the subject's line of sight, allowing for an unencumbered view of visual stimuli, the reduction of anxiety induced from small enclosures, and the potential for eye-tracking measurements. The coil provides a practical solution for routine imaging, including a split design (anterior and posterior halves) that facilitates subject positioning, including those with impaired mobility, and the placement of devices required for patient comfort and motion reduction. The transmit and receive coils displayed no degradation of performance due to adaptions to the design topology (both mechanical and electrical) required to create an unobstructed visual field. All computer-aided design files, electromagnetic simulation models, transmit field maps and local specific absorption rate matrices are provided to promote reproduction.
Collapse
Affiliation(s)
- Kyle M Gilbert
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - L Martyn Klassen
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, Ontario, Canada
| | - Alexander Mashkovtsev
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, Ontario, Canada
| | - Peter Zeman
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, Ontario, Canada
| | - Ravi S Menon
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - Joseph S Gati
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
13
|
Improved 7 Tesla transmit field homogeneity with reduced electromagnetic power deposition using coupled Tic Tac Toe antennas. Sci Rep 2021; 11:3370. [PMID: 33564013 PMCID: PMC7873125 DOI: 10.1038/s41598-020-79807-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/26/2020] [Indexed: 12/28/2022] Open
Abstract
Recently cleared by the FDA, 7 Tesla (7 T) MRI is a rapidly growing technology that can provide higher resolution and enhanced contrast in human MRI images. However, the increased operational frequency (~ 297 MHz) hinders its full potential since it causes inhomogeneities in the images and increases the power deposition in the tissues. This work describes the optimization of an innovative radiofrequency (RF) head coil coupled design, named Tic Tac Toe, currently used in large scale human MRI scanning at 7 T; to date, this device was used in more than 1,300 neuro 7 T MRI scans. Electromagnetic simulations of the coil were performed using the finite-difference time-domain method. Numerical optimizations were used to combine the calculated electromagnetic fields produced by these antennas, based on the superposition principle, resulting in homogeneous magnetic field distributions at low levels of power deposition in the tissues. The simulations were validated in-vivo using the Tic Tac Toe RF head coil system on a 7 T MRI scanner.
Collapse
|
14
|
Barisano G, Law M, Custer RM, Toga AW, Sepehrband F. Perivascular Space Imaging at Ultrahigh Field MR Imaging. Magn Reson Imaging Clin N Am 2020; 29:67-75. [PMID: 33237016 DOI: 10.1016/j.mric.2020.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The recent Food and Drug Administration approval of 7 T MR imaging scanners for clinical use has introduced the possibility to study the brain not only in physiologic but also in pathologic conditions at ultrahigh field (UHF). Because UHF MR imaging offers higher signal-to-noise ratio and spatial resolution compared with lower field clinical scanners, the benefits of UHF MR imaging are particularly evident for imaging small anatomic structures, such as the cerebral perivascular spaces (PVS). In this article, the authors describe the application of UHF MR imaging for the investigation of PVS.
Collapse
Affiliation(s)
- Giuseppe Barisano
- Neuroscience Graduate Program, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA.
| | - Meng Law
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Health, Level 6, 99 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Rachel M Custer
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA
| | - Arthur W Toga
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA
| | - Farshid Sepehrband
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA
| |
Collapse
|
15
|
Georgakis IP, Polimeridis AG, Lattanzi R. A formalism to investigate the optimal transmit efficiency in radiofrequency shimming. NMR IN BIOMEDICINE 2020; 33:e4383. [PMID: 32725650 PMCID: PMC7539236 DOI: 10.1002/nbm.4383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/18/2019] [Accepted: 06/09/2020] [Indexed: 05/12/2023]
Abstract
Transmit efficiency specifies the amplitude of the magnetic resonance excitation field produced over a region of interest with respect to the radiofrequency (RF) power deposited in the sample. This metric is highly important at ultra-high field magnetic resonance imaging (≥7 T), where excitation inhomogeneities and electric field interference effects could prevent achieving the desired flip angle distribution while satisfying the power safety limits. The aim of this work was to introduce an approach to calculate a theoretical upper bound on the transmit efficiency (OPTXE) for RF shimming, independent from any particular coil design. We computed the OPTXE for head-mimicking uniform spherical samples and a realistic heterogeneous head model by maximizing the square of the net transmit field per unit power deposition. The corresponding RF shimming weights were used to combine the analytical surface current modes into ideal current patterns. OPTXE grew monotonically as the target excitation voxel approached the surface of the object, and overall decreased at higher field strengths, presenting similar trends in both the uniform sphere and heterogeneous head model. Arrays with an increasing number of loops could closely approach OPTXE in the central region of the object, but performance decreased closer to the surface and at higher magnetic field strengths. The performance of 32 loops for a two-dimensional excitation region at 7 T increased from 34% to 93% when they were arranged based on the shape of the ideal current patterns. OPTXE provides an absolute reference to evaluate coil designs and RF shimming algorithms, whereas ideal current patterns could serve as guidelines for novel coil designs at ultra-high field. The uniform sphere model enables rapid analytic simulations and provides a good approximation of the OPTXE distribution in a realistic heterogeneous head model with comparable dimensions.
Collapse
Affiliation(s)
- Ioannis P. Georgakis
- Center for Computational and Data-Intensive Science and Engineering (CDISE), Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| | | | - Riccardo Lattanzi
- Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY USA
- The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY USA
| |
Collapse
|
16
|
Abstract
Magnetic resonance imaging (MRI) has been driven toward ultrahigh magnetic fields (UHF) in order to benefit from correspondingly higher signal-to-noise ratio and spectral resolution. Technological challenges associated with UHF, such as increased radiofrequency (RF) energy deposition and RF excitation inhomogeneity, limit realization of the full potential of these benefits. Parallel RF transmission (pTx) enables decreases in the inhomogeneity of RF excitations and in RF energy deposition by using multiple-transmit RF coils driven independently and operating simultaneously. pTx plays a fundamental role in UHF MRI by bringing the potential applications of UHF into reality. In this review article, we review the recent developments in pTx pulse design and RF safety in pTx. Simultaneous multislice imaging and inner volume imaging using pTx are reviewed with a focus on UHF applications. Emerging pTx design approaches using improved pTx design frameworks and calibrations are reviewed together with calibration-free approaches that remove the necessity of time-consuming calibrations necessary for successful pTx. Lastly, we focus on the safety of pTx that is improved by using intersubject variability analysis, proactively managing pTx and temperature-based pTx approaches.
Collapse
Affiliation(s)
- Cem M. Deniz
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY
- RF Test Labs, LLC, New York, NY
| |
Collapse
|
17
|
McElcheran CE, Golestanirad L, Iacono MI, Wei PS, Yang B, Anderson KJT, Bonmassar G, Graham SJ. Numerical Simulations of Realistic Lead Trajectories and an Experimental Verification Support the Efficacy of Parallel Radiofrequency Transmission to Reduce Heating of Deep Brain Stimulation Implants during MRI. Sci Rep 2019; 9:2124. [PMID: 30765724 PMCID: PMC6375985 DOI: 10.1038/s41598-018-38099-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
Patients with deep brain stimulation (DBS) implants may be subject to heating during MRI due to interaction with excitatory radiofrequency (RF) fields. Parallel RF transmit (pTx) has been proposed to minimize such RF-induced heating in preliminary proof-of-concept studies. The present work evaluates the efficacy of pTx technique on realistic lead trajectories obtained from nine DBS patients. Electromagnetic simulations were performed using 4- and 8-element pTx coils compared with a standard birdcage coil excitation using patient models and lead trajectories obtained by segmentation of computed tomography data. Numerical optimization was performed to minimize local specific absorption rate (SAR) surrounding the implant tip while maintaining spatial homogeneity of the transmitted RF magnetic field (B1+), by varying the input amplitude and phase for each coil element. Local SAR was significantly reduced at the lead tip with both 4-element and 8-element pTx (median decrease of 94% and 97%, respectively), whereas the median coefficient of spatial variation of B1+ inhomogeneity was moderately increased (30% for 4-element pTx and 20% for 8-element pTx) compared to that of the birdcage coil (17%). Furthermore, the efficacy of optimized 4-element pTx was verified experimentally by imaging a head phantom that included a wire implanted to approximate the worst-case lead trajectory for localized heating, based on the simulations. Negligible temperature elevation was observed at the lead tip, with reasonable image uniformity in the surrounding region. From this experiment and the simulations based on nine DBS patient models, optimized pTx provides a robust approach to minimizing local SAR with respect to lead trajectory.
Collapse
Affiliation(s)
- C E McElcheran
- Physical Sciences Platform, Sunnybrook Health Sciences Institute, Toronto, Ontario, M4N 3M5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - L Golestanirad
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - M I Iacono
- Division of Biomedical Physic, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - P-S Wei
- Physical Sciences Platform, Sunnybrook Health Sciences Institute, Toronto, Ontario, M4N 3M5, Canada
| | - B Yang
- Physical Sciences Platform, Sunnybrook Health Sciences Institute, Toronto, Ontario, M4N 3M5, Canada
| | - K J T Anderson
- Physical Sciences Platform, Sunnybrook Health Sciences Institute, Toronto, Ontario, M4N 3M5, Canada
| | - G Bonmassar
- Athinoula A. Martinos Center For Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - S J Graham
- Physical Sciences Platform, Sunnybrook Health Sciences Institute, Toronto, Ontario, M4N 3M5, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
18
|
McElcheran CE, Golestanirad L, Iacono MI, Wei PS, Yang B, Anderson KJT, Bonmassar G, Graham SJ. Numerical Simulations of Realistic Lead Trajectories and an Experimental Verification Support the Efficacy of Parallel Radiofrequency Transmission to Reduce Heating of Deep Brain Stimulation Implants during MRI. Sci Rep 2019. [PMID: 30765724 DOI: 10.1038/s41598-01838099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
Patients with deep brain stimulation (DBS) implants may be subject to heating during MRI due to interaction with excitatory radiofrequency (RF) fields. Parallel RF transmit (pTx) has been proposed to minimize such RF-induced heating in preliminary proof-of-concept studies. The present work evaluates the efficacy of pTx technique on realistic lead trajectories obtained from nine DBS patients. Electromagnetic simulations were performed using 4- and 8-element pTx coils compared with a standard birdcage coil excitation using patient models and lead trajectories obtained by segmentation of computed tomography data. Numerical optimization was performed to minimize local specific absorption rate (SAR) surrounding the implant tip while maintaining spatial homogeneity of the transmitted RF magnetic field (B1+), by varying the input amplitude and phase for each coil element. Local SAR was significantly reduced at the lead tip with both 4-element and 8-element pTx (median decrease of 94% and 97%, respectively), whereas the median coefficient of spatial variation of B1+ inhomogeneity was moderately increased (30% for 4-element pTx and 20% for 8-element pTx) compared to that of the birdcage coil (17%). Furthermore, the efficacy of optimized 4-element pTx was verified experimentally by imaging a head phantom that included a wire implanted to approximate the worst-case lead trajectory for localized heating, based on the simulations. Negligible temperature elevation was observed at the lead tip, with reasonable image uniformity in the surrounding region. From this experiment and the simulations based on nine DBS patient models, optimized pTx provides a robust approach to minimizing local SAR with respect to lead trajectory.
Collapse
Affiliation(s)
- C E McElcheran
- Physical Sciences Platform, Sunnybrook Health Sciences Institute, Toronto, Ontario, M4N 3M5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - L Golestanirad
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - M I Iacono
- Division of Biomedical Physic, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - P-S Wei
- Physical Sciences Platform, Sunnybrook Health Sciences Institute, Toronto, Ontario, M4N 3M5, Canada
| | - B Yang
- Physical Sciences Platform, Sunnybrook Health Sciences Institute, Toronto, Ontario, M4N 3M5, Canada
| | - K J T Anderson
- Physical Sciences Platform, Sunnybrook Health Sciences Institute, Toronto, Ontario, M4N 3M5, Canada
| | - G Bonmassar
- Athinoula A. Martinos Center For Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - S J Graham
- Physical Sciences Platform, Sunnybrook Health Sciences Institute, Toronto, Ontario, M4N 3M5, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
19
|
Krishnamurthy N, Santini T, Wood S, Kim J, Zhao T, Aizenstein HJ, Ibrahim TS. Computational and experimental evaluation of the Tic-Tac-Toe RF coil for 7 Tesla MRI. PLoS One 2019; 14:e0209663. [PMID: 30629618 PMCID: PMC6328242 DOI: 10.1371/journal.pone.0209663] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 12/10/2018] [Indexed: 01/18/2023] Open
Abstract
A variety of 7 Tesla RF coil systems have been proposed to produce spin excitation (B1+ field) and MR image acquisition. Different groups have attempted to mitigate the challenges at high and ultra-high field MRI by proposing novel hardware and software solutions to obtain uniformly high spin excitation at acceptable RF absorption levels. In this study, we extensively compare the designs of two distributed-circuit based RF coils: the Tic-Tac-Toe (TTT) head coil and TEM head coil on multiple anatomically detailed head models and in-vivo. Bench measurements of s-parameters and experimental B1+ field distribution were obtained in volunteers and compared with numerical simulations. RF absorption, quantified by both average and peak SAR, and B1+ field intensity and homogeneity, calculated/measured in terms of maximum over minimum and coefficient of variation (CV) in the region of interest (ROI), are presented for both coils. A study of the RF consistency of both coils across multiple head models for different RF excitation strategies is also presented.
Collapse
Affiliation(s)
- Narayanan Krishnamurthy
- University of Pittsburgh, Department of Bioengineering, Pittsburgh, PA, United States of America
| | - Tales Santini
- University of Pittsburgh, Department of Bioengineering, Pittsburgh, PA, United States of America
| | - Sossena Wood
- University of Pittsburgh, Department of Bioengineering, Pittsburgh, PA, United States of America
| | - Junghwan Kim
- University of Pittsburgh, Department of Bioengineering, Pittsburgh, PA, United States of America
| | - Tiejun Zhao
- Siemens Medical Solutions, New York, NY, United States of America
| | - Howard J. Aizenstein
- University of Pittsburgh, Department of Bioengineering, Pittsburgh, PA, United States of America
- University of Pittsburgh, Department of Psychiatry, Pittsburgh, PA, United States of America
| | - Tamer S. Ibrahim
- University of Pittsburgh, Department of Bioengineering, Pittsburgh, PA, United States of America
- University of Pittsburgh, Department of Psychiatry, Pittsburgh, PA, United States of America
- University of Pittsburgh, Department of Radiology, Pittsburgh, PA, United States of America
| |
Collapse
|
20
|
Santini T, Zhao Y, Wood S, Krishnamurthy N, Kim J, Farhat N, Alkhateeb S, Martins T, Koo M, Zhao T, Aizenstein HJ, Ibrahim TS. In-vivo and numerical analysis of the eigenmodes produced by a multi-level Tic-Tac-Toe head transmit array for 7 Tesla MRI. PLoS One 2018; 13:e0206127. [PMID: 30481187 PMCID: PMC6258503 DOI: 10.1371/journal.pone.0206127] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 10/08/2018] [Indexed: 11/18/2022] Open
Abstract
Radio-frequency (RF) field inhomogeneities and higher levels of specific absorption rate (SAR) still present great challenges in ultrahigh-field (UHF) MRI. In this study, an in-depth analysis of the eigenmodes of a 20-channel transmit Tic-Tac-Toe (TTT) RF array for 7T neuro MRI is presented. The eigenmodes were calculated for five different Z levels (along the static magnetic field direction) of the coil. Four eigenmodes were obtained for each Z level (composed of 4 excitation ports), and they were named based on the characteristics of their field distributions: quadrature, opposite-phase, anti-quadrature, and zero-phase. Corresponding finite-difference time-domain (FDTD) simulations were performed and experimental B1+ field maps were acquired using a homogeneous spherical phantom and human head (in-vivo). The quadrature mode is the most efficient and it excites the central brain regions; the opposite-phase mode excites the brain peripheral regions; anti-quadrature mode excites the head periphery; and the zero-phase mode excites cerebellum and temporal lobes. Using this RF array, up to five eigenmodes (from five different Z levels) can be simultaneously excited. The superposition of these modes has the potential to produce homogeneous excitation with full brain coverage and low levels of SAR at 7T MRI.
Collapse
Affiliation(s)
- Tales Santini
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Yujuan Zhao
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Sossena Wood
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Narayanan Krishnamurthy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Junghwan Kim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Nadim Farhat
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Salem Alkhateeb
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Tiago Martins
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Minseok Koo
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Tiejun Zhao
- Siemens Medical Solutions, Pittsburgh, PA, United States of America
| | - Howard J. Aizenstein
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
| | - Tamer S. Ibrahim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
21
|
Barisano G, Sepehrband F, Ma S, Jann K, Cabeen R, Wang DJ, Toga AW, Law M. Clinical 7 T MRI: Are we there yet? A review about magnetic resonance imaging at ultra-high field. Br J Radiol 2018; 92:20180492. [PMID: 30359093 DOI: 10.1259/bjr.20180492] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In recent years, ultra-high field MRI (7 T and above) has received more interest for clinical imaging. Indeed, a number of studies have shown the benefits from the application of this powerful tool not only for research purposes, but also in realms of improved diagnostics and patient management. The increased signal-to-noise ratio and higher spatial resolution compared with conventional and high-field clinical scanners allow imaging of small anatomical detail and subtle pathological findings. Furthermore, greater spectral resolution achieved at ultra-high field allows the resolution of metabolites for MR spectroscopic imaging. All these advantages have a significant impact on many neurological diseases, including multiple sclerosis, cerebrovascular disease, brain tumors, epilepsy and neurodegenerative diseases, in part because the pathology can be subtle and lesions small in these diseases, therefore having higher signal and resolution will help lesion detection. In this review, we discuss the main clinical neurological applications and some technical challenges which remain with ultra-high field MRI.
Collapse
Affiliation(s)
- Giuseppe Barisano
- 1 Department of Radiology, Keck Medical Center of University of Southern California , Los Angeles, CA , USA.,2 Stevens Neuroimaging and Informatics Institute, University of Southern California , Los Angeles, CA , USA
| | - Farshid Sepehrband
- 2 Stevens Neuroimaging and Informatics Institute, University of Southern California , Los Angeles, CA , USA
| | - Samantha Ma
- 2 Stevens Neuroimaging and Informatics Institute, University of Southern California , Los Angeles, CA , USA
| | - Kay Jann
- 2 Stevens Neuroimaging and Informatics Institute, University of Southern California , Los Angeles, CA , USA
| | - Ryan Cabeen
- 2 Stevens Neuroimaging and Informatics Institute, University of Southern California , Los Angeles, CA , USA
| | - Danny J Wang
- 2 Stevens Neuroimaging and Informatics Institute, University of Southern California , Los Angeles, CA , USA
| | - Arthur W Toga
- 2 Stevens Neuroimaging and Informatics Institute, University of Southern California , Los Angeles, CA , USA
| | - Meng Law
- 1 Department of Radiology, Keck Medical Center of University of Southern California , Los Angeles, CA , USA.,2 Stevens Neuroimaging and Informatics Institute, University of Southern California , Los Angeles, CA , USA
| |
Collapse
|
22
|
New method for establishing a 3D subject-specific numerical electromagnetic model using hybrid imaging modalities. Comput Biol Med 2018; 101:33-38. [PMID: 30099237 DOI: 10.1016/j.compbiomed.2018.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 11/22/2022]
Abstract
Numerical electromagnetic models that can mimic the dielectric properties of human tissues have been widely used for dosimetry-related studies in bio-electromagnetics, particularly for the calculation of electromagnetic field distribution inside the human body, which is subject specific. Reports indicated that considerable electromagnetic field variations may occur inside different human subjects even when existing differences in the geometrical dimensions of these subjects are minimal. Therefore, a subject-specific three-dimensional (3D) electromagnetic model is crucially required to calculate the electromagnetic field distribution accurately. However, the manner in which a precise subject-specific 3D electromagnetic model is established has not been fully explored in the literature yet. In this study, a new method was proposed for the establishment of a subject-specific 3D electromagnetic model using hybrid imaging modalities, with computed tomography (CT) and magnetic resonance (MR) images as sources. The exemplary application was provided by using the established subject-specific model to calculate the local specific absorption rates in MR imaging. Comparison studies indicated that detailed information was obtained using the proposed model.
Collapse
|
23
|
Garwood M, Uğurbil K. RF pulse methods for use with surface coils: Frequency-modulated pulses and parallel transmission. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 291:84-93. [PMID: 29705035 PMCID: PMC5943143 DOI: 10.1016/j.jmr.2018.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/24/2018] [Indexed: 06/08/2023]
Abstract
The first use of a surface coil to obtain a 31P NMR spectrum from an intact rat by Ackerman and colleagues initiated a revolution in magnetic resonance imaging (MRI) and spectroscopy (MRS). Today, we take it for granted that one can detect signals in regions external to an RF coil; at the time, however, this concept was most unusual. In the approximately four decade long period since its introduction, this simple idea gave birth to an increasing number of innovations that has led to transformative changes in the way we collect data in an in vivo magnetic resonance experiment, particularly with MRI of humans. These innovations include spatial localization and/or encoding based on the non-uniform B1 field generated by the surface coil, leading to new spectroscopic localization methods, image acceleration, and unique RF pulses that deal with B1 inhomogeneities and even reduce power deposition. Without the surface coil, many of the major technological advances that define the extraordinary success of MRI in clinical diagnosis and in biomedical research, as exemplified by projects like the Human Connectome Project, would not have been possible.
Collapse
Affiliation(s)
- Michael Garwood
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN 55455 USA.
| | - Kamil Uğurbil
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
24
|
Chen G, Zhang B, Cloos MA, Sodickson DK, Wiggins GC. A highly decoupled transmit-receive array design with triangular elements at 7T. Magn Reson Med 2018; 80:2267-2274. [PMID: 29572959 DOI: 10.1002/mrm.27186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 02/25/2018] [Accepted: 02/28/2018] [Indexed: 11/10/2022]
Abstract
PURPOSE Transmit arrays are essential tools for various RF shimming or parallel excitation techniques at 7T. Here we present an array design with triangular coils to improve diversity in the B1 profiles in the longitudinal (z) direction and allow for next-nearest neighbor decoupling. METHODS Two cylindrical 8-channel arrays having the same length and diameter, 1 of triangular coils and the other of rectangular coils, were constructed and compared in phantom imaging experiments using measures of excitation distribution for a variety of RF shim settings and geometry factor maps for different accelerations on different planes. RESULTS Coupling between elements was -20 dB or better for all triangular coil pairs, but worse than -12 dB for several of the rectangular coil pairs. Both coils could produce adequate shims on a central transverse plane, but the same shim produced worse results off center for the triangular coil array than for the rectangular coil array. Compared to the rectangular coil array, the maximum geometry factor for the triangular coil array was reduced by a factor of 13.1 when using a 2-fold acceleration in the z-direction. CONCLUSION An array design with triangular coils provides effective decoupling mechanisms for nearest and next-nearest neighboring elements, as well as diversity in B1 profiles along the z-direction, although this also means that individual slices must be shimmed separately. This design is well suited for parallel transmit applications while also having high receive sensitivity.
Collapse
Affiliation(s)
- Gang Chen
- Center for Advanced Imaging Innovation and Research (CAI2 R) and Bernard and Irene Schwartz Center for Biomedical Imaging (CBI), Department of Radiology, New York University School of Medicine, New York, New York.,Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York
| | - Bei Zhang
- Center for Advanced Imaging Innovation and Research (CAI2 R) and Bernard and Irene Schwartz Center for Biomedical Imaging (CBI), Department of Radiology, New York University School of Medicine, New York, New York
| | - Martijn A Cloos
- Center for Advanced Imaging Innovation and Research (CAI2 R) and Bernard and Irene Schwartz Center for Biomedical Imaging (CBI), Department of Radiology, New York University School of Medicine, New York, New York.,Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York
| | - Daniel K Sodickson
- Center for Advanced Imaging Innovation and Research (CAI2 R) and Bernard and Irene Schwartz Center for Biomedical Imaging (CBI), Department of Radiology, New York University School of Medicine, New York, New York.,Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York
| | - Graham C Wiggins
- Center for Advanced Imaging Innovation and Research (CAI2 R) and Bernard and Irene Schwartz Center for Biomedical Imaging (CBI), Department of Radiology, New York University School of Medicine, New York, New York
| |
Collapse
|
25
|
Ianni JD, Cao Z, Grissom WA. Machine learning RF shimming: Prediction by iteratively projected ridge regression. Magn Reson Med 2018; 80:1871-1881. [PMID: 29572990 DOI: 10.1002/mrm.27192] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/22/2018] [Accepted: 03/05/2018] [Indexed: 11/11/2022]
Abstract
PURPOSE To obviate online slice-by-slice RF shim optimization and reduce B1+ mapping requirements for patient-specific RF shimming in high-field magnetic resonance imaging. THEORY AND METHODS RF Shim Prediction by Iteratively Projected Ridge Regression (PIPRR) predicts patient-specific, SAR-efficient RF shims with a machine learning approach that merges learning with training shim design. To evaluate it, a set of B1+ maps was simulated for 100 human heads for a 24-element coil at 7T. Features were derived from tissue masks and the DC Fourier coefficients of the coils' B1+ maps in each slice, which were used for kernelized ridge regression prediction of SAR-efficient RF shim weights. Predicted shims were compared to directly designed shims, circularly polarized mode, and nearest-neighbor shims predicted using the same features. RESULTS PIPRR predictions had 87% and 13% lower B1+ coefficients of variation compared to circularly polarized mode and nearest-neighbor shims, respectively, and achieved homogeneity and SAR similar to that of directly designed shims. Predictions were calculated in 4.92 ms on average. CONCLUSION PIPRR predicted uniform, SAR-efficient RF shims, and could save a large amount of B1+ mapping and computation time in RF-shimmed ultra-high field magnetic resonance imaging.
Collapse
Affiliation(s)
- Julianna D Ianni
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Zhipeng Cao
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - William A Grissom
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee.,Department of Radiology, Vanderbilt University, Nashville, Tennessee.,Department of Electrical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
26
|
Uğurbil K. Imaging at ultrahigh magnetic fields: History, challenges, and solutions. Neuroimage 2018; 168:7-32. [PMID: 28698108 PMCID: PMC5758441 DOI: 10.1016/j.neuroimage.2017.07.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 01/06/2023] Open
Abstract
Following early efforts in applying nuclear magnetic resonance (NMR) spectroscopy to study biological processes in intact systems, and particularly since the introduction of 4 T human scanners circa 1990, rapid progress was made in imaging and spectroscopy studies of humans at 4 T and animal models at 9.4 T, leading to the introduction of 7 T and higher magnetic fields for human investigation at about the turn of the century. Work conducted on these platforms has provided numerous technological solutions to challenges posed at these ultrahigh fields, and demonstrated the existence of significant advantages in signal-to-noise ratio and biological information content. Primary difference from lower fields is the deviation from the near field regime at the radiofrequencies (RF) corresponding to hydrogen resonance conditions. At such ultrahigh fields, the RF is characterized by attenuated traveling waves in the human body, which leads to image non-uniformities for a given sample-coil configuration because of destructive and constructive interferences. These non-uniformities were initially considered detrimental to progress of imaging at high field strengths. However, they are advantageous for parallel imaging in signal reception and transmission, two critical technologies that account, to a large extend, for the success of ultrahigh fields. With these technologies and improvements in instrumentation and imaging methods, today ultrahigh fields have provided unprecedented gains in imaging of brain function and anatomy, and started to make inroads into investigation of the human torso and extremities. As extensive as they are, these gains still constitute a prelude to what is to come given the increasingly larger effort committed to ultrahigh field research and development of ever better instrumentation and techniques.
Collapse
Affiliation(s)
- Kamil Uğurbil
- Center for Magnetic Resonance Research (CMRR), University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
27
|
Beqiri A, Hoogduin H, Sbrizzi A, Hajnal JV, Malik SJ. Whole-brain 3D FLAIR at 7T using direct signal control. Magn Reson Med 2018; 80:1533-1545. [PMID: 29476551 PMCID: PMC6120540 DOI: 10.1002/mrm.27149] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 11/10/2022]
Abstract
Purpose Image quality obtained for brain imaging at 7T can be hampered by inhomogeneities in the static magnetic field, B0, and the RF electromagnetic field, B1. In imaging sequences such as fluid‐attenuated inversion recovery (FLAIR), which is used to assess neurological disorders, these inhomogeneities cause spatial variations in signal that can reduce clinical efficacy. In this work, we aim to correct for signal inhomogeneities to ensure whole‐brain coverage with 3D FLAIR at 7T. Methods The direct signal control (DSC) framework was used to optimize channel weightings applied to the 8 transmit channels used in this work on a pulse‐by‐pulse basis through the echo train in the FLAIR sequences. 3D FLAIR brain images were acquired on 5 different subjects and compared with imaging using a quadrature‐like mode of the transmit array. Precomputed “universal” DSC solutions calculated from a separate set of 5 subjects were also explored. Results DSC consistently enabled improved imaging across all subjects, with no dropouts in signal seen over the entire brain volume, which contrasted with imaging in quadrature mode. Further, the universal DSC solutions also consistently improved imaging despite not being optimized specifically for the subject being imaged. Conclusion 3D FLAIR brain imaging at 7T is substantially improved using DSC and is able to recover regions of low signal without increasing imaging time or interecho spacing.
Collapse
Affiliation(s)
- Arian Beqiri
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, United Kingdom
| | - Hans Hoogduin
- Center for Image Sciences, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Alessandro Sbrizzi
- Center for Image Sciences, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Joseph V Hajnal
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, United Kingdom.,Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London, United Kingdom
| | - Shaihan J Malik
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, United Kingdom
| |
Collapse
|
28
|
Haemer GG, Vaidya M, Collins CM, Sodickson DK, Wiggins GC, Lattanzi R. Approaching ultimate intrinsic specific absorption rate in radiofrequency shimming using high-permittivity materials at 7 Tesla. Magn Reson Med 2017; 80:391-399. [PMID: 29193307 DOI: 10.1002/mrm.27022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/18/2017] [Accepted: 10/31/2017] [Indexed: 11/07/2022]
Abstract
PURPOSE The aim of this study was to evaluate the effect of integrated high-permittivity materials (HPMs) on excitation homogeneity and global specific absorption rate (SAR) for transmit arrays at 7T. METHODS A rapid electrodynamic simulation framework was used to calculate L-curves associated with excitation of a uniform 2D profile in a dielectric sphere. We used ultimate intrinsic SAR as an absolute performance reference to compare different transmit arrays in the presence and absence of a layer of HPM. We investigated the optimal permittivity for the HPM as a function of its thickness, the sample size, and the number of array elements. RESULTS Adding a layer of HPM can improve the performance of a 24-element array to match that of a 48-element array without HPM, whereas a 48-element array with HPM can perform as well as a 64-element array without HPM. Optimal relative permittivity values changed based on sample and coil geometry, but were always within a range obtainable with readily available materials (εr = 100-200). CONCLUSION Integration of HPMs could be a practical method to improve RF shimming performance, alternative to increasing the number of coils. The proposed simulation framework could be used to explore the design of novel transmit arrays for head imaging at ultra-high field strength. Magn Reson Med 80:391-399, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Gillian G Haemer
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, New York University Tandon School of Engineering, Brooklyn, New York, USA.,The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| | - Manushka Vaidya
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, New York University Tandon School of Engineering, Brooklyn, New York, USA.,The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| | - Christopher M Collins
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, New York University Tandon School of Engineering, Brooklyn, New York, USA.,The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| | - Daniel K Sodickson
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, New York University Tandon School of Engineering, Brooklyn, New York, USA.,The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| | - Graham C Wiggins
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Riccardo Lattanzi
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, New York University Tandon School of Engineering, Brooklyn, New York, USA.,The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
29
|
Vaidya MV, Deniz CM, Collins CM, Sodickson DK, Lattanzi R. Manipulating transmit and receive sensitivities of radiofrequency surface coils using shielded and unshielded high-permittivity materials. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017; 31:355-366. [PMID: 29110240 DOI: 10.1007/s10334-017-0657-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To use high-permittivity materials (HPM) positioned near radiofrequency (RF) surface coils to manipulate transmit/receive field patterns. MATERIALS AND METHODS A large HPM pad was placed below the RF coil to extend the field of view (FOV). The resulting signal-to-noise ratio (SNR) was compared with that of other coil configurations covering the same FOV in simulations and experiments at 7 T. Transmit/receive efficiency was evaluated when HPM discs with or without a partial shield were positioned at a distance from the coil. Finally, we evaluated the increase in transmit homogeneity for a four-channel array with HPM discs interposed between adjacent coil elements. RESULTS Various configurations of HPM increased SNR, transmit/receive efficiency, excitation/reception sensitivity overlap, and FOV when positioned near a surface coil. For a four-channel array driven in quadrature, shielded HPM discs enhanced the field below the discs as well as at the center of the sample as compared with other configurations with or without unshielded HPM discs. CONCLUSION Strategically positioning HPM at a distance from a surface coil or array can increase the overlap between excitation/reception sensitivities, and extend the FOV of a single coil for reduction of the number of channels in an array while minimally affecting the SNR.
Collapse
Affiliation(s)
- Manushka V Vaidya
- Center for Advanced Imaging Innovation and Research and the Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave, Fourth Floor, New York, NY, 10016, USA. .,The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA. .,NYU WIRELESS, 2 Metro Tech Center, Brooklyn, NY, 11201, USA.
| | - Cem M Deniz
- Center for Advanced Imaging Innovation and Research and the Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave, Fourth Floor, New York, NY, 10016, USA.,NYU WIRELESS, 2 Metro Tech Center, Brooklyn, NY, 11201, USA
| | - Christopher M Collins
- Center for Advanced Imaging Innovation and Research and the Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave, Fourth Floor, New York, NY, 10016, USA.,The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA.,NYU WIRELESS, 2 Metro Tech Center, Brooklyn, NY, 11201, USA
| | - Daniel K Sodickson
- Center for Advanced Imaging Innovation and Research and the Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave, Fourth Floor, New York, NY, 10016, USA.,The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA.,NYU WIRELESS, 2 Metro Tech Center, Brooklyn, NY, 11201, USA
| | - Riccardo Lattanzi
- Center for Advanced Imaging Innovation and Research and the Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave, Fourth Floor, New York, NY, 10016, USA.,The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA.,NYU WIRELESS, 2 Metro Tech Center, Brooklyn, NY, 11201, USA
| |
Collapse
|
30
|
Weingärtner S, Zimmer F, Metzger GJ, Uğurbil K, Van de Moortele PF, Akçakaya M. Motion-robust cardiac B1+ mapping at 3T using interleaved bloch-siegert shifts. Magn Reson Med 2017; 78:670-677. [PMID: 27599782 PMCID: PMC5340643 DOI: 10.1002/mrm.26395] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/15/2016] [Accepted: 08/06/2016] [Indexed: 12/25/2022]
Abstract
PURPOSE To develop and evaluate a robust motion-insensitive Bloch-Siegert shift based B1+ mapping method in the heart. METHODS Cardiac Bloch-Siegert B1+ mapping was performed with interleaved positive and negative off-resonance shifts and diastolic spoiled gradient echo imaging in 12 heartbeats. Numerical simulations were performed to study the impact of respiratory motion. The method was compared with three-dimensional (3D) actual flip angle imaging (AFI) and two-dimensional (2D) saturated double angle method (SDAM) in phantom scans. Cardiac B1+ maps of three different views were acquired in six healthy volunteers using Bloch-Siegert and SDAM during breath-hold and free breathing. In vivo maps were evaluated for inter-view consistency using the correlation coefficients of the B1+ profiles along the lines of intersection between the views. RESULTS For the Bloch-Siegert sequence, numerical simulations indicated high similarity between breath-hold and free breathing scans, and phantom results indicated low deviation from the 3D AFI reference (normalized root mean square error [NRMSE] = 2.0%). Increased deviation was observed with 2D SDAM (NRMSE = 5.0%) due to underestimation caused by imperfect excitation slice profiles. Breath-hold and free breathing Bloch-Siegert in vivo B1+ maps were visually comparable with no significant difference in the inter-view consistency (P > 0.36). SDAM showed strongly impaired B1+ map quality during free breathing. Inter-view consistency was significantly lower than with the Bloch-Siegert method (breath-hold: P = 0.014, free breathing: P < 0.0001). CONCLUSION The proposed interleaved Bloch-Siegert sequence enables cardiac B1+ mapping with improved inter-view consistency and high resilience to respiratory motion. Magn Reson Med 78:670-677, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Sebastian Weingärtner
- Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
- Computer Assisted Clinical Medicine, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Fabian Zimmer
- Computer Assisted Clinical Medicine, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Mehmet Akçakaya
- Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
31
|
Hsu YC, Lattanzi R, Chu YH, Cloos MA, Sodickson DK, Lin FH. Mitigation of B1+ inhomogeneity using spatially selective excitation with jointly designed quadratic spatial encoding magnetic fields and RF shimming. Magn Reson Med 2017; 78:577-587. [PMID: 27696518 PMCID: PMC5538365 DOI: 10.1002/mrm.26397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/05/2016] [Accepted: 08/06/2016] [Indexed: 11/05/2022]
Abstract
PURPOSE The inhomogeneity of flip angle distribution is a major challenge impeding the application of high-field MRI. We report a method combining spatially selective excitation using generalized spatial encoding magnetic fields (SAGS) with radiofrequency (RF) shimming to achieve homogeneous excitation. This method can be an alternative approach to address the challenge of B1+ inhomogeneity using nonlinear gradients. METHODS We proposed a two-step algorithm that jointly optimizes the combination of nonlinear spatial encoding magnetic fields and the combination of multiple RF transmitter coils and then optimizes the locations, RF amplitudes, and phases of the spokes. RESULTS Our results show that jointly designed SAGS and RF shimming can provide a more homogeneous flip angle distribution than using SAGS or RF shimming alone. Compared with RF shimming alone, our approach can reduce the relative standard deviation of flip angle by 56% and 52% using phantom and human head data, respectively. CONCLUSION The jointly designed SAGS and RF shimming method can be used to achieve homogeneous flip angle distributions when fully parallel RF transmission is not available. Magn Reson Med 78:577-587, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Yi-Cheng Hsu
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Riccardo Lattanzi
- Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 1 Ave. New York, NY 10016 USA
| | - Ying-Hua Chu
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Martijn A. Cloos
- Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 1 Ave. New York, NY 10016 USA
| | - Daniel K. Sodickson
- Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 1 Ave. New York, NY 10016 USA
| | - Fa-Hsuan Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| |
Collapse
|
32
|
Raval SB, Britton CA, Zhao T, Krishnamurthy N, Santini T, Gorantla VS, Ibrahim TS. Ultra-high field upper extremity peripheral nerve and non-contrast enhanced vascular imaging. PLoS One 2017; 12:e0175629. [PMID: 28662061 PMCID: PMC5490941 DOI: 10.1371/journal.pone.0175629] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 03/29/2017] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE The purpose of this study was to explore the efficacy of Ultra-high field [UHF] 7 Tesla [T] MRI as compared to 3T MRI in non-contrast enhanced [nCE] imaging of structural anatomy in the elbow, forearm, and hand [upper extremity]. MATERIALS AND METHOD A wide range of sequences including T1 weighted [T1] volumetric interpolate breath-hold exam [VIBE], T2 weighted [T2] double-echo steady state [DESS], susceptibility weighted imaging [SWI], time-of-flight [TOF], diffusion tensor imaging [DTI], and diffusion spectrum imaging [DSI] were optimized and incorporated with a radiofrequency [RF] coil system composed of a transverse electromagnetic [TEM] transmit coil combined with an 8-channel receive-only array for 7T upper extremity [UE] imaging. In addition, Siemens optimized protocol/sequences were used on a 3T scanner and the resulting images from T1 VIBE and T2 DESS were compared to that obtained at 7T qualitatively and quantitatively [SWI was only qualitatively compared]. DSI studio was utilized to identify nerves based on analysis of diffusion weighted derived fractional anisotropy images. Images of forearm vasculature were extracted using a paint grow manual segmentation method based on MIPAV [Medical Image Processing, Analysis, and Visualization]. RESULTS High resolution and high quality signal-to-noise ratio [SNR] and contrast-to-noise ratio [CNR]-images of the hand, forearm, and elbow were acquired with nearly homogeneous 7T excitation. Measured [performed on the T1 VIBE and T2 DESS sequences] SNR and CNR values were almost doubled at 7T vs. 3T. Cartilage, synovial fluid and tendon structures could be seen with higher clarity in the 7T T1 and T2 weighted images. SWI allowed high resolution and better quality imaging of large and medium sized arteries and veins, capillary networks and arteriovenous anastomoses at 7T when compared to 3T. 7T diffusion weighted sequence [not performed at 3T] demonstrates that the forearm nerves are clearly delineated by fiber tractography. The proper digital palmar arteries and superficial palmar arch could also be clearly visualized using TOF nCE 7T MRI. CONCLUSION Ultra-high resolution neurovascular imaging in upper extremities is possible at 7T without use of renal toxic intravenous contrast. 7T MRI can provide superior peripheral nerve [based on fiber anisotropy and diffusion coefficient parameters derived from diffusion tensor/spectrum imaging] and vascular [nCE MRA and vessel segmentation] imaging.
Collapse
Affiliation(s)
- Shailesh B. Raval
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pittsburgh, United States of America
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pittsburgh, United States of America
| | - Cynthia A. Britton
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pittsburgh, United States of America
| | - Tiejun Zhao
- Siemens Medical Solutions, New York, United States of America
| | - Narayanan Krishnamurthy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pittsburgh, United States of America
| | - Tales Santini
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pittsburgh, United States of America
| | - Vijay S. Gorantla
- Department of Plastic Surgery, Pittsburgh, Pittsburgh, United States of America
- * E-mail: (TSI); (VSG)
| | - Tamer S. Ibrahim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pittsburgh, United States of America
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pittsburgh, United States of America
- * E-mail: (TSI); (VSG)
| |
Collapse
|
33
|
An open 8-channel parallel transmission coil for static and dynamic 7T MRI of the knee and ankle joints at multiple postures. Magn Reson Med 2017. [DOI: 10.1002/mrm.26804] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Beqiri A, Price AN, Padormo F, Hajnal JV, Malik SJ. Extended RF shimming: Sequence-level parallel transmission optimization applied to steady-state free precession MRI of the heart. NMR IN BIOMEDICINE 2017; 30:e3701. [PMID: 28195684 PMCID: PMC5484304 DOI: 10.1002/nbm.3701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 12/23/2016] [Accepted: 12/30/2016] [Indexed: 05/12/2023]
Abstract
Cardiac magnetic resonance imaging (MRI) at high field presents challenges because of the high specific absorption rate and significant transmit field (B1+ ) inhomogeneities. Parallel transmission MRI offers the ability to correct for both issues at the level of individual radiofrequency (RF) pulses, but must operate within strict hardware and safety constraints. The constraints are themselves affected by sequence parameters, such as the RF pulse duration and TR, meaning that an overall optimal operating point exists for a given sequence. This work seeks to obtain optimal performance by performing a 'sequence-level' optimization in which pulse sequence parameters are included as part of an RF shimming calculation. The method is applied to balanced steady-state free precession cardiac MRI with the objective of minimizing TR, hence reducing the imaging duration. Results are demonstrated using an eight-channel parallel transmit system operating at 3 T, with an in vivo study carried out on seven male subjects of varying body mass index (BMI). Compared with single-channel operation, a mean-squared-error shimming approach leads to reduced imaging durations of 32 ± 3% with simultaneous improvement in flip angle homogeneity of 32 ± 8% within the myocardium.
Collapse
Affiliation(s)
- Arian Beqiri
- Division of Imaging Sciences and Biomedical EngineeringKing's College LondonLondonUK
| | - Anthony N. Price
- Division of Imaging Sciences and Biomedical EngineeringKing's College LondonLondonUK
- Centre for the Developing BrainKing's College LondonLondonUK
| | - Francesco Padormo
- Division of Imaging Sciences and Biomedical EngineeringKing's College LondonLondonUK
| | - Joseph V. Hajnal
- Division of Imaging Sciences and Biomedical EngineeringKing's College LondonLondonUK
- Centre for the Developing BrainKing's College LondonLondonUK
| | - Shaihan J. Malik
- Division of Imaging Sciences and Biomedical EngineeringKing's College LondonLondonUK
| |
Collapse
|
35
|
Koolstra K, Börnert P, Brink W, Webb A. Improved image quality and reduced power deposition in the spine at 3 T using extremely high permittivity materials. Magn Reson Med 2017; 79:1192-1199. [PMID: 28543615 PMCID: PMC5811912 DOI: 10.1002/mrm.26721] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/06/2017] [Accepted: 03/27/2017] [Indexed: 11/22/2022]
Abstract
Purpose To explore the effect of using extremely high permittivity (εr∼1,000) materials on image quality and power requirements of spine imaging at 3 T. Theory and Methods A linear array of high permittivity dielectric blocks made of lead zirconate titanate (PZT) was designed and characterized by electromagnetic simulations and experiments. Their effect on the transmit efficiency, receive sensitivity, power deposition, and diagnostic image quality was analyzed in vivo in 10 healthy volunteers. Results Simulation results showed that for quadrature mode excitation, the PZT blocks improve the transmit efficiency by 75% while reducing the maximum 10g average specific absorption rate (SAR10) by 20%. In vivo experiments in 10 healthy volunteers showed statistically significant improvements for the transmit efficiency, and image quality. Compared to active radiofrequency shimming, image quality was similar, but the required system input power was significantly lower for quadrature excitation using the PZT blocks. Conclusion For single‐channel transmit systems, using high permittivity PZT blocks offer a way to improve transmit efficiency and image quality in the spine. Results show that the effect, and therefore optimal design, is body mass index and sex specific. Magn Reson Med 79:1192–1199, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Collapse
Affiliation(s)
- Kirsten Koolstra
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Börnert
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Wyger Brink
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew Webb
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
36
|
Chen X, Steckner M. Electromagnetic computation and modeling in MRI. Med Phys 2017; 44:1186-1203. [PMID: 28079264 DOI: 10.1002/mp.12103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 09/26/2016] [Accepted: 01/07/2017] [Indexed: 12/13/2022] Open
Abstract
Electromagnetic (EM) computational modeling is used extensively during the development of a Magnetic Resonance Imaging (MRI) scanner, its installation, and use. MRI, which relies on interactions between nuclear magnetic moments and the applied magnetic fields, uses a range of EM tools to optimize all of the magnetic fields required to produce the image. The main field magnet is designed to exacting specifications but challenges in manufacturing, installation, and use require additional tools to maintain target operational performance. The gradient magnetic fields, which provide the primary signal localization mechanism, are designed under another set of complex design trade-offs which include conflicting imaging performance specifications and patient physiology. Gradients are largely impervious to external influences, but are also used to enhance main field operational performance. The radiofrequency (RF) magnetic fields, which are used to elicit the signals fundamental to the MR image, are a challenge to optimize for a host of reasons that include patient safety, image quality, cost optimization, and secondary signal localization capabilities. This review outlines these issues and the EM modeling used to optimize MRI system performance.
Collapse
Affiliation(s)
- Xin Chen
- Toshiba Medical Research Institute USA, Inc. 777 Beta Drive, Mayfield Village, OH, 44143, USA
| | - Michael Steckner
- Toshiba Medical Research Institute USA, Inc. 777 Beta Drive, Mayfield Village, OH, 44143, USA
| |
Collapse
|
37
|
Li C, Yu W, Huang SY. An MR-Based Viscosity-Type Regularization Method for Electrical Property Tomography. ACTA ACUST UNITED AC 2017; 3:50-59. [PMID: 30042971 PMCID: PMC6024427 DOI: 10.18383/j.tom.2016.00283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Here, a method based on viscosity-type regularization is proposed for magnetic resonance electrical property tomography (MREPT) to mitigate persistent artifacts when it is used to reconstruct a map of electrical properties based on data from a magnetic resonance imaging scanner. The challenges for solving the corresponding partial differential equation (PDE) are discussed in detail. The existing artifacts in the numerical results are pointed out and classified. The methods in the literature for MREPT are mainly based on an assumption of local homogeneity, which makes the approach simple but leads to artifacts in the transition region where electrical properties vary rapidly. Recent work has focused on eliminating the assumption of local homogeneity, and one of the solutions is convection–reaction MREPT that is based on a first-order PDE. Numerical solutions of the PDE have persistent artifacts in certain regions and global spurious oscillations. Here, a method based on viscosity-type regularization is proposed to effectively mitigate the aforementioned problems. Finite difference method is used for discretizing the governing PDE. Numerical experiments are presented to analyze the problem in detail. Electrical properties of different phantoms are successfully retrieved. The efficiency, accuracy, and noise tolerance of the proposed method are illustrated with numerical results.
Collapse
Affiliation(s)
- Changyou Li
- School of Electronics and Information, Northwestern Polytechnical University, China
| | - Wenwei Yu
- Center for Frontier Medical Engineering, Chiba University, Japan; and
| | - Shao Ying Huang
- Bio-Medical Group, Engineering Product Development, Singapore University of Technology and Design, Singapore
| |
Collapse
|
38
|
Guérin B, Villena JF, Polimeridis AG, Adalsteinsson E, Daniel L, White JK, Wald LL. The ultimate signal-to-noise ratio in realistic body models. Magn Reson Med 2016; 78:1969-1980. [PMID: 27917528 DOI: 10.1002/mrm.26564] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/01/2016] [Accepted: 11/05/2016] [Indexed: 11/08/2022]
Abstract
PURPOSE We compute the ultimate signal-to-noise ratio (uSNR) and G-factor (uGF) in a realistic head model from 0.5 to 21 Tesla. METHODS We excite the head model and a uniform sphere with a large number of electric and magnetic dipoles placed at 3 cm from the object. The resulting electromagnetic fields are computed using an ultrafast volume integral solver, which are used as basis functions for the uSNR and uGF computations. RESULTS Our generalized uSNR calculation shows good convergence in the sphere and the head and is in close agreement with the dyadic Green's function approach in the uniform sphere. In both models, the uSNR versus B0 trend was linear at shallow depths and supralinear at deeper locations. At equivalent positions, the rate of increase of the uSNR with B0 was greater in the sphere than in the head model. The uGFs were lower in the realistic head than in the sphere for acceleration in the anterior-posterior direction, but similar for the left-right direction. CONCLUSION The uSNR and uGFs are computable in nonuniform body models and provide fundamental performance limits for human imaging with close-fitting MRI array coils. Magn Reson Med 78:1969-1980, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Bastien Guérin
- Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard Medical School, Boston Massachusetts, USA
| | - Jorge F Villena
- Dept of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge Massachusetts, USA
| | | | - Elfar Adalsteinsson
- Dept of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge Massachusetts, USA.,Harvard-MIT Division of Health Sciences Technology, Cambridge Massachusetts, USA.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge Massachusetts, USA
| | - Luca Daniel
- Dept of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge Massachusetts, USA
| | - Jacob K White
- Dept of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge Massachusetts, USA
| | - Lawrence L Wald
- Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard Medical School, Boston Massachusetts, USA.,Harvard-MIT Division of Health Sciences Technology, Cambridge Massachusetts, USA
| |
Collapse
|
39
|
Cao Z, Yan X, Grissom WA. Array-compressed parallel transmit pulse design. Magn Reson Med 2016; 76:1158-69. [PMID: 26510117 PMCID: PMC4848238 DOI: 10.1002/mrm.26020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/27/2015] [Accepted: 09/28/2015] [Indexed: 11/06/2022]
Abstract
PURPOSE To design array-compressed parallel transmit radiofrequency (RF) pulses and compare them to pulses designed with existing transmit array compression strategies. THEORY AND METHODS Array-compressed parallel RF pulse design is proposed as the joint optimization of a matrix of complex-valued compression weights that relate a full-channel physical array to a reduced-channel virtual array, along with a set of RF pulses for the virtual array. In this way, the physics of the RF pulse application determine the coil combination weights. Array-compressed pulse design algorithms are described for four parallel transmit applications: accelerated two-dimensional spiral excitation, multislice RF shimming, small-tip-angle kT -points excitation, and slice-selective spokes refocusing. Array-compressed designs are compared in simulations and an experiment to pulses designed using four existing array compression strategies. RESULTS In all cases, array-compressed pulses achieved the lowest root-mean-square excitation error among the array compression approaches. Low errors were generally achieved without increasing root-mean-square RF amplitudes or maximum local 10-gram specific absorption rate. Leave-one-out multisubject shimming simulations demonstrated that array-compressed RF shimming can identify useful fixed coil combination weights that perform well across a population. CONCLUSION Array-compressed pulse design jointly identifies the transmit coil array compression weights and RF pulses that perform best for a specific parallel excitation application. Magn Reson Med 76:1158-1169, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zhipeng Cao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Xinqiang Yan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
- Department of Radiology, Vanderbilt University, Nashville, Tennessee, USA
| | - William A Grissom
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.
- Department of Radiology, Vanderbilt University, Nashville, Tennessee, USA.
- Department of Electrical Engineering, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
40
|
Padormo F, Beqiri A, Hajnal JV, Malik SJ. Parallel transmission for ultrahigh-field imaging. NMR IN BIOMEDICINE 2016; 29:1145-61. [PMID: 25989904 PMCID: PMC4995736 DOI: 10.1002/nbm.3313] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 03/27/2015] [Accepted: 03/29/2015] [Indexed: 05/24/2023]
Abstract
The development of MRI systems operating at or above 7 T has provided researchers with a new window into the human body, yielding improved imaging speed, resolution and signal-to-noise ratio. In order to fully realise the potential of ultrahigh-field MRI, a range of technical hurdles must be overcome. The non-uniformity of the transmit field is one of such issues, as it leads to non-uniform images with spatially varying contrast. Parallel transmission (i.e. the use of multiple independent transmission channels) provides previously unavailable degrees of freedom that allow full spatial and temporal control of the radiofrequency (RF) fields. This review discusses the many ways in which these degrees of freedom can be used, ranging from making more uniform transmit fields to the design of subject-tailored RF pulses for both uniform excitation and spatial selection, and also the control of the specific absorption rate. © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Francesco Padormo
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Arian Beqiri
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Joseph V Hajnal
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Shaihan J Malik
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| |
Collapse
|
41
|
Kim J, Krishnamurthy N, Santini T, Zhao Y, Zhao T, Bae KT, Ibrahim TS. Experimental and numerical analysis of B1(+) field and SAR with a new transmit array design for 7T breast MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 269:55-64. [PMID: 27240143 PMCID: PMC4979605 DOI: 10.1016/j.jmr.2016.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 05/15/2023]
Abstract
Developing a radiofrequency (RF) coil system that produces a uniform B1(+) field (circularly polarized component of the transverse magnetic field responsible for excitation) and low specific absorption rate (SAR) is critical for high performance ultrahigh field human imaging. In this study, we provide the design of a new eight channel radiofrequency (RF) transmit (Tx) array for breast MRI at 7T. A numerical analysis utilizing an in-house finite difference time domain (FDTD) package was carried out in (1) four breast models, (2) homogeneous spherical model and (3) full body model to calculate the B1(+) intensity (μT) and homogeneity represented by coefficient of variation (CoV=standard deviation/mean) in the proposed RF array design. The numerical results were compared with that measured in breast phantom (Bphantom) and homogeneous spherical phantom at 7T MRI and showed very good agreement. Average and peak SARs were also calculated in the four breast models and the temperature rises due to the operation of the RF array were also measured in the Bphantom. The proposed RF array; which can operate in a single or multi transmit modes, demonstrates homogeneous RF field excitation with acceptable local/average SAR levels for breast MRI at 7T.
Collapse
Affiliation(s)
- Junghwan Kim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | - Tales Santini
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yujuan Zhao
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Tiejun Zhao
- MR Research Support, Siemens Healthcare, Pittsburgh, PA 15213, USA
| | - Kyongtae Ty Bae
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Tamer S Ibrahim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
42
|
Vaidya MV, Collins CM, Sodickson DK, Brown R, Wiggins GC, Lattanzi R. Dependence of B1+ and B1- Field Patterns of Surface Coils on the Electrical Properties of the Sample and the MR Operating Frequency. CONCEPTS IN MAGNETIC RESONANCE. PART B, MAGNETIC RESONANCE ENGINEERING 2016; 46:25-40. [PMID: 27795697 PMCID: PMC5082994 DOI: 10.1002/cmr.b.21319] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In high field MRI, the spatial distribution of the radiofrequency magnetic ( B1) field is usually affected by the presence of the sample. For hardware design and to aid interpretation of experimental results, it is important both to anticipate and to accurately simulate the behavior of these fields. Fields generated by a radiofrequency surface coil were simulated using dyadic Green's functions, or experimentally measured over a range of frequencies inside an object whose electrical properties were varied to illustrate a variety of transmit [Formula: see text] and receive [Formula: see text] field patterns. In this work, we examine how changes in polarization of the field and interference of propagating waves in an object can affect the B1 spatial distribution. Results are explained conceptually using Maxwell's equations and intuitive illustrations. We demonstrate that the electrical conductivity alters the spatial distribution of distinct polarized components of the field, causing "twisted" transmit and receive field patterns, and asymmetries between [Formula: see text] and [Formula: see text]. Additionally, interference patterns due to wavelength effects are observed at high field in samples with high relative permittivity and near-zero conductivity, but are not present in lossy samples due to the attenuation of propagating EM fields. This work provides a conceptual framework for understanding B1 spatial distributions for surface coils and can provide guidance for RF engineers.
Collapse
Affiliation(s)
- Manushka V Vaidya
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, NY 10016; The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY 10016; NYU WIRELESS, Polytechnic Institute of New York University, Brooklyn, NY 11201
| | - Christopher M Collins
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, NY 10016; The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY 10016; NYU WIRELESS, Polytechnic Institute of New York University, Brooklyn, NY 11201
| | - Daniel K Sodickson
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, NY 10016; The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY 10016; NYU WIRELESS, Polytechnic Institute of New York University, Brooklyn, NY 11201
| | - Ryan Brown
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, NY 10016; NYU WIRELESS, Polytechnic Institute of New York University, Brooklyn, NY 11201
| | - Graham C Wiggins
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI R) and Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, NY 10016
| | - Riccardo Lattanzi
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, NY 10016; The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY 10016; NYU WIRELESS, Polytechnic Institute of New York University, Brooklyn, NY 11201
| |
Collapse
|
43
|
Schmitter S, Wu X, Adriany G, Auerbach EJ, Uğurbil K, Moortele PF. Cerebral TOF angiography at 7T: Impact of B1 (+) shimming with a 16-channel transceiver array. Magn Reson Med 2015; 71:966-77. [PMID: 23640915 DOI: 10.1002/mrm.24749] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE Time-of-flight (TOF) MR imaging is clinically among the most common cerebral noncontrast enhanced MR angiography techniques allowing for high spatial resolution. As shown by several groups TOF contrast significantly improves at ultrahigh field of B0 = 7T, however, spatially varying transmit B1 (B1 (+)) fields at 7T reduce TOF contrast uniformity, typically resulting in suboptimal contrast and reduced vessel conspicuity in the brain periphery. METHODS Using a 16-channel B1 (+) shimming system, we compare different dynamically applied B1 (+) phase shimming approaches on the radiofrequency excitation to improve contrast homogeneity for a (0.5 mm)(3) resolution multislab TOF acquisition. In addition, B1 (+) shimming applied on the venous saturation pulse was investigated to improve venous suppression, subcutaneous fat signal reduction and enhanced background suppression originating from MT effect. RESULTS B1 (+) excitation homogeneity was improved by a factor 2.2-2.6 on average depending on the shimming approach, compared to a standard CP-like phase setting, leading to improved vessel conspicuity particularly in the periphery. Stronger saturation, higher fat suppression and improved background suppression were observed when dynamically applying B1 (+) shimming on the venous saturation pulse. CONCLUSION B1+ shimming can significantly improve high resolution TOF vascular investigations at ultrahigh field, holding strong promise for non contrast-enhanced clinical applications.
Collapse
Affiliation(s)
- Sebastian Schmitter
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Sohn SM, DelaBarre L, Gopinath A, Vaughan JT. Design of an Electrically Automated RF Transceiver Head Coil in MRI. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2015; 9:725-32. [PMID: 25361512 PMCID: PMC4412778 DOI: 10.1109/tbcas.2014.2360383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Magnetic resonance imaging (MRI) is a widely used nonionizing and noninvasive diagnostic instrument to produce detailed images of the human body. The radio-frequency (RF) coil is an essential part of MRI hardware as an RF front-end. RF coils transmit RF energy to the subject and receive the returning MR signal. This paper presents an MRI-compatible hardware design of the new automatic frequency tuning and impedance matching system. The system automatically corrects the detuned and mismatched condition that occurs due to loading effects caused by the variable subjects (i.e., different human heads or torsos). An eight-channel RF transceiver head coil with the automatic system has been fabricated and tested at 7 Tesla (T) MRI system. The automatic frequency tuning and impedance matching system uses digitally controlled capacitor arrays with real-time feedback control capability. The hardware design is not only compatible with current MRI scanners in all aspects but also it operates the tuning and matching function rapidly and accurately. The experimental results show that the automatic function increases return losses from 8.4 dB to 23.7 dB (maximum difference) and from 12.7 dB to 19.6 dB (minimum difference) among eight channels within 550 ms . The reflected RF power decrease from 23.1% to 1.5% (maximum difference) and from 5.3% to 1.1% (minimum difference). Therefore, these results improve signal-to-noise ratio (SNR) in MR images with phantoms.
Collapse
Affiliation(s)
- Sung-Min Sohn
- Department of Electrical and Computer Engineering, University of Minnesota; Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| | - Lance DelaBarre
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55454
| | - Anand Gopinath
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - John Thomas Vaughan
- Department of Electrical and Computer Engineering and with the Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
46
|
Experience with magnetic resonance imaging of human subjects with passive implants and tattoos at 7 T: a retrospective study. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2015; 28:577-90. [DOI: 10.1007/s10334-015-0499-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 07/25/2015] [Accepted: 08/19/2015] [Indexed: 10/23/2022]
|
47
|
Padormo F, Hess AT, Aljabar P, Malik SJ, Jezzard P, Robson MD, Hajnal JV, Koopmans PJ. Large dynamic range relative B1+ mapping. Magn Reson Med 2015; 76:490-9. [PMID: 26308375 PMCID: PMC4949544 DOI: 10.1002/mrm.25884] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 07/02/2015] [Accepted: 07/21/2015] [Indexed: 11/16/2022]
Abstract
Purpose Parallel transmission (PTx) requires knowledge of the
B1+ produced by each element. However,
B1+ mapping can be challenging when transmit fields exhibit large dynamic range. This study presents a method to produce high quality relative
B1+ maps when this is the case. Theory and Methods The proposed technique involves the acquisition of spoiled gradient echo (SPGR) images at multiple radiofrequency drive levels for each transmitter. The images are combined using knowledge of the SPGR signal equation using maximum likelihood estimation, yielding an image for each channel whose signal is proportional to the
B1+ field strength. Relative
B1+ maps are then obtained by taking image ratios. The method was tested using numerical simulations, phantom imaging, and through in vivo experiments. Results The numerical simulations demonstrated that the proposed method can reconstruct relative transmit sensitivities over a wide range of
B1+ amplitudes and at several SNR levels. The method was validated at 3 Tesla (T) by comparing it with an alternative
B1+ mapping method, and demonstrated in vivo at 7T. Conclusion Relative
B1+ mapping in the presence of large dynamic range has been demonstrated through numerical simulations, phantom imaging at 3T and experimentally at 7T. The method will enable PTx to be applied in challenging imaging scenarios at ultrahigh field. Magn Reson Med 76:490–499, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Francesco Padormo
- King's College London, Division of Imaging Sciences and Biomedical Engineering, The Rayne Institute, St Thomas' Hospital, London, United Kingdom
| | - Aaron T Hess
- University of Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Paul Aljabar
- King's College London, Division of Imaging Sciences and Biomedical Engineering, The Rayne Institute, St Thomas' Hospital, London, United Kingdom
| | - Shaihan J Malik
- King's College London, Division of Imaging Sciences and Biomedical Engineering, The Rayne Institute, St Thomas' Hospital, London, United Kingdom
| | - Peter Jezzard
- Centre for Functional Magnetic Resonance Imaging of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Matthew D Robson
- University of Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Joseph V Hajnal
- King's College London, Division of Imaging Sciences and Biomedical Engineering, The Rayne Institute, St Thomas' Hospital, London, United Kingdom.,King's College London, Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, The Rayne Institute, St Thomas' Hospital, London, United Kingdom
| | - Peter J Koopmans
- Centre for Functional Magnetic Resonance Imaging of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
48
|
Umesh Rudrapatna S, Juchem C, Nixon TW, de Graaf RA. Dynamic multi-coil tailored excitation for transmit B1 correction at 7 Tesla. Magn Reson Med 2015. [PMID: 26223503 DOI: 10.1002/mrm.25856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
PURPOSE Tailored excitation (TEx) based on interspersing multiple radio frequency pulses with linear gradient and higher-order shim pulses can be used to obtain uniform flip angle in the presence of large radio frequency transmission (B 1+) inhomogeneity. Here, an implementation of dynamic, multislice tailored excitation using the recently developed multi-coil nonlinear shim hardware (MC-DTEx) is reported. METHODS MC-DTEx was developed and tested both in a phantom and in vivo at 7 T, and its efficacy was quantitatively assessed. Predicted outcomes of MC-DTEx and DTEx based on spherical harmonic shims (SH-DTEx) were also compared. RESULTS For a planned 30 ° flip angle, in a phantom, the standard deviation in excitation improved from 28% (regular excitation) to 12% with MC-DTEx. The SD in in vivo excitation improved from 22 to 12%. The improvements achieved with experimental MC-DTEx closely matched the theoretical predictions. Simulations further showed that MC-DTEx outperforms SH-DTEx for both scenarios. CONCLUSION Successful implementation of multislice MC-DTEx is presented and is shown to be capable of homogenizing excitation over more than twofold B 1+ variations. Its benefits over SH-DTEx are also demonstrated. A distinct advantage of MC hardware over SH shim hardware is the absence of significant eddy current effects, which allows for a straightforward, multislice implementation of MC-DTEx. Magn Reson Med 76:83-93, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- S Umesh Rudrapatna
- Department of Diagnostic Radiology, Yale University School of Medicine, Magnetic Resonance Research Center, 300 Cedar Street, New Haven, Connecticut, USA
| | - Christoph Juchem
- Department of Diagnostic Radiology, Yale University School of Medicine, Magnetic Resonance Research Center, 300 Cedar Street, New Haven, Connecticut, USA
| | - Terence W Nixon
- Department of Diagnostic Radiology, Yale University School of Medicine, Magnetic Resonance Research Center, 300 Cedar Street, New Haven, Connecticut, USA
| | - Robin A de Graaf
- Department of Diagnostic Radiology, Yale University School of Medicine, Magnetic Resonance Research Center, 300 Cedar Street, New Haven, Connecticut, USA
| |
Collapse
|
49
|
Connell IRO, Gilbert KM, Abou-Khousa MA, Menon RS. Design of a parallel transmit head coil at 7T with magnetic wall distributed filters. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:836-845. [PMID: 25415982 DOI: 10.1109/tmi.2014.2370533] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ultra-high field magnetic resonance imaging (MRI) scanners ( ≥ 7T) require radio-frequency (RF) coils to operate in the range of the electromagnetic spectrum where the effective wavelength in the tissue approaches the patient dimensions. Multi-channel transmit arrays, driven in parallel, have been developed to increase the transmit field (B1(+)) uniformity in this wavelength regime. However, the closely packed array elements interact through mutual coupling. This paper expands on the ability of a distributed planar filter (the "magnetic wall") to decouple individual elements in an entire array. A transmit RF coil suitable for neuroimaging at 7T was constructed. The transmit coil, composed of 10 individual surface coil elements, was decoupled with magnetic walls. A separate receive coil array was used for signal reception. The hardware and imaging performance of the transmit coil was validated with electromagnetic simulation, bench-top measurements, and in vivo MRI experiments. Analysis and measurements confirmed that the magnetic wall decoupling method provides high isolation between transmit channels, while minimally affecting the B1(+) field profiles. Electromagnetic simulations confirmed that the decoupling method did not correlate to local specific absorption rate (SAR) "hot spots" or increase local-to-global SAR fractions in comparison to previously reported 7T multi-channel transmit arrays employing different decoupling methods.
Collapse
|
50
|
Li M, Jin J, Zuo Z, Liu F, Trakic A, Weber E, Zhuo Y, Xue R, Crozier S. In vivo sensitivity estimation and imaging acceleration with rotating RF coil arrays at 7 Tesla. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 252:29-40. [PMID: 25635352 DOI: 10.1016/j.jmr.2014.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 12/11/2014] [Accepted: 12/13/2014] [Indexed: 06/04/2023]
Abstract
Using a new rotating SENSitivity Encoding (rotating-SENSE) algorithm, we have successfully demonstrated that the rotating radiofrequency coil array (RRFCA) was capable of achieving a significant reduction in scan time and a uniform image reconstruction for a homogeneous phantom at 7 Tesla. However, at 7 Tesla the in vivo sensitivity profiles (B1(-)) become distinct at various angular positions. Therefore, sensitivity maps at other angular positions cannot be obtained by numerically rotating the acquired ones. In this work, a novel sensitivity estimation method for the RRFCA was developed and validated with human brain imaging. This method employed a library database and registration techniques to estimate coil sensitivity at an arbitrary angular position. The estimated sensitivity maps were then compared to the acquired sensitivity maps. The results indicate that the proposed method is capable of accurately estimating both magnitude and phase of sensitivity at an arbitrary angular position, which enables us to employ the rotating-SENSE algorithm to accelerate acquisition and reconstruct image. Compared to a stationary coil array with the same number of coil elements, the RRFCA was able to reconstruct images with better quality at a high reduction factor. It is hoped that the proposed rotation-dependent sensitivity estimation algorithm and the acceleration ability of the RRFCA will be particularly useful for ultra high field MRI.
Collapse
Affiliation(s)
- Mingyan Li
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Jin Jin
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Centre for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Feng Liu
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Adnan Trakic
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ewald Weber
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yan Zhuo
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Centre for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rong Xue
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Centre for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Stuart Crozier
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|