1
|
Ramirez DM, Ramirez D, Dhiman S, Arora R, Lozeau C, Arthur G, Zhanel G, Schweizer F. Guanidinylated Amphiphilic Tobramycin Derivatives Synergize with β-Lactam/β-Lactamase Inhibitor Combinations against Pseudomonas aeruginosa. ACS Infect Dis 2023; 9:1754-1768. [PMID: 37603592 DOI: 10.1021/acsinfecdis.3c00217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Carbapenem-resistant Pseudomonas aeruginosa (P. aeruginosa) was designated as a critical priority pathogen by the World Health Organization for which new therapeutic solutions are required. With the rapid dissemination of β-lactamases in P. aeruginosa, β-lactam (BL) antibiotics are used in conjunction with β-lactamase inhibitors (BLI). The effectiveness of the BL/BLI combination could be further enhanced with the inclusion of an outer membrane (OM) permeabilizer, such as aminoglycosides and aminoglycoside-based adjuvants. Thus, the development of seven tobramycin derivatives reported herein focused on improving OM permeabilizing capabilities and reducing associated toxicity. The structure-activity relationship studies emphasized the effects of the nature of the cationic group; the number of polar head groups and positive charges; and flexibility, length, and steric bulk of the hydrophobic moiety. The optimized guanidinylated tobramycin-biphenyl derivative was noncytotoxic and demonstrated the ability to potentiate ceftazidime and aztreonam monotherapy and in dual combinations with avibactam against multidrug-resistant (MDR) and β-lactamase harboring isolates of P. aeruginosa. The triple combination of ceftazidime/avibactam plus guanidinylated tobramycin-biphenyl resulted in rapid bactericidal activity within 4-8 h of treatment, demonstrating the potential application of these guanidinylated amphiphilic tobramycin derivatives in augmenting BL/BLI combinations.
Collapse
Affiliation(s)
| | - Danyel Ramirez
- Department of Chemistry, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
| | - Shiv Dhiman
- Department of Chemistry, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
| | - Rajat Arora
- Department of Chemistry, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
| | - Christian Lozeau
- Department of Chemistry, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
| | - Gilbert Arthur
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MBR3E 0W2, Canada
| | - George Zhanel
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MBR3E 0J9, Canada
| | - Frank Schweizer
- Department of Chemistry, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MBR3E 0J9, Canada
| |
Collapse
|
2
|
Islam K, Sime FB, Wallis SC, Bauer MJ, Naicker S, Won H, Zowawi HM, Choudhury MA, Shirin T, Habib ZH, Harris PNA, Flora MS, Roberts JA. Pharmacodynamics of Piperacillin-Tazobactam/Amikacin Combination versus Meropenem against Extended-Spectrum β-Lactamase-Producing Escherichia coli in a Hollow Fiber Infection Model. Antimicrob Agents Chemother 2022; 66:e0016222. [PMID: 35924928 PMCID: PMC9487465 DOI: 10.1128/aac.00162-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
Carbapenems are recommended for the treatment of urosepsis caused by extended-spectrum β-lactamase (ESBL)-producing, multidrug-resistant Escherichia coli; however, due to selection of carbapenem resistance, there is an increasing interest in alternative treatment regimens including the use of β-lactam-aminoglycoside combinations. We compared the pharmacodynamic activity of piperacillin-tazobactam and amikacin as mono and combination therapy versus meropenem monotherapy against extended-spectrum β-lactamase (ESBL)-producing, piperacillin-tazobactam resistant E. coli using a dynamic hollow fiber infection model (HFIM) over 7 days. Broth-microdilution was performed to determine the MIC of E. coli isolates. Whole genome sequencing was conducted. Four E. coli isolates were tested in HFIM with an initial inoculum of ~107 CFU/mL. Dosing regimens tested were piperacillin-tazobactam 4.5 g, 6-hourly, plus amikacin 30 mg/kg, 24-hourly, as combination therapy, and piperacillin-tazobactam 4.5 g, 6-hourly, amikacin 30 mg/kg, 24-hourly, and meropenem 1 g, 8-hourly, each as monotherapy. We observed that piperacillin-tazobactam and amikacin monotherapy demonstrated initial rapid bacterial killing but then led to amplification of resistant subpopulations. The piperacillin-tazobactam/amikacin combination and meropenem experiments both attained a rapid bacterial killing (~4-5 log10) within 24 h and did not result in any emergence of resistant subpopulations. Genome sequencing demonstrated that all ESBL-producing E. coli clinical isolates carried multiple antibiotic resistance genes including blaCTX-M-15, blaOXA-1, blaEC, blaTEM-1, and aac(6')-Ib-cr. These results suggest that the combination of piperacillin-tazobactam/amikacin may have a potential role as a carbapenem-sparing regimen, which should be tested in future urosepsis clinical trials.
Collapse
Affiliation(s)
- Kamrul Islam
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Fekade B. Sime
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Steven C. Wallis
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Michelle J. Bauer
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Saiyuri Naicker
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Hayoung Won
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Hosam M. Zowawi
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Md Abu Choudhury
- School of Nursing, Midwifery & Public Health, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research, Mohakhali, Dhaka, Bangladesh
| | - Zakir H. Habib
- Institute of Epidemiology, Disease Control and Research, Mohakhali, Dhaka, Bangladesh
| | - Patrick N. A. Harris
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Queensland, Australia
- Pathology Queensland, Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia
| | - Meerjady S. Flora
- Directorate General of Health Services, Mohakhali, Dhaka, Bangladesh
| | - Jason A. Roberts
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Queensland, Australia
- Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| |
Collapse
|
3
|
Xu Z, Lin X, Soteyome T, Ye Y, Chen D, Yang L, Liu J. Significant downtrend of antimicrobial resistance rate and rare β-lactamase genes and plasmid replicons carriage in clinical Pseudomonas aeruginosa in Southern China. Microb Pathog 2021; 159:105124. [PMID: 34364978 DOI: 10.1016/j.micpath.2021.105124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Pseudomonas aeruginosa is a medically important pathogen showing intrinsic low permeability to various antimicrobial agents and its potential to acquire multiple resistance mechanism. A longitudinal surveillance aimed to investigate the antimicrobial resistance and its determinants of Pseudomonas aeruginosa in Southern China. A total of 2163 P. aeruginosa isolates were obtained from patients in Southern China during 2004-2016. METHODS The antimicrobial susceptibility of the isolates was performed by disk diffusion and Vitek 2 automated system and interpreted according to the Clinical and Laboratory Standard Institute (CLSI) 2015. RESULTS A significant downtrend of resistant rate (>10.0%) was observed for tested antibiotic agents including ciprofloxacin (>30.0%), gentamicin (29.0%), tobramycin (24.2%) and ceftazidime (24.0%) except for aztreonam and amikacin. A total of 269 randomly selected isolates were further studied on the carriage of β-lactam resistance genes by using 7 groups of multiplex PCRs targeting on 20 genes. β-lactam resistance genes were rarely detected with a rate lower than 8%. Among all β-lactam resistance genes, blaSHV acquired the highest identification rate (18/269, 6.7%), followed by blaOXA-1-like (6/269, 2.2%) and blaPER (6/269, 2.2%). In addition, 8 different plasmid replicons were amplified using 8 groups of multiplex PCRs including 18 sets of primers. Only five plasmid replicons were identified in 5 different P. aeruginosa isolates. Insignificant clonal relatedness among the positive strains identified by regular PCR were further verified by randomly amplified polymorphic DNA (RAPD)-PCR. CONCLUSION This study has provided comprehensive knowledge on current antimicrobial resistance, β-lactam resistance genes and plasmid replicons carriage in a large scale of clinical P. aeruginosa isolates.
Collapse
Affiliation(s)
- Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China; Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38103, USA; Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand; Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Xin Lin
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
| | - Thanapop Soteyome
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Yanrui Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Dingqiang Chen
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Ling Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, China
| | - Junyan Liu
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
4
|
Antimicrobials as Single and Combination Therapy for Colistin-Resistant Pseudomonas aeruginosa at a University Hospital in Thailand. Antibiotics (Basel) 2020; 9:antibiotics9080475. [PMID: 32756327 PMCID: PMC7459651 DOI: 10.3390/antibiotics9080475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 11/24/2022] Open
Abstract
Global infections with colistin-resistant Pseudomonas aeruginosa (CoR-PA) are increasing; there are currently very few studies focused on the antimicrobial susceptibility of CoR-PA isolates, and none from Thailand. Here, we investigated the impact of various antimicrobials, alone and in combination, via the in vitro testing of CoR-PA clinical isolates. Eighteen CoR-PA isolates were obtained from patients treated at Phramongkutklao Hospital from January 2010 through June 2019; these were classified into six different clonal types by using the enterobacterial repetitive intergenic consensus (ERIC)-PCR method, with a high prevalence of Group A (27.8%). The antimicrobial susceptibility was determined as the minimal inhibitory concentrations (MICs) using the epsilometer-test (E-test) method. The synergistic activities of six antimicrobial combinations were reported via the fractional-inhibitory-concentration index. All CoR-PA isolates were susceptible to amikacin, meropenem, and ceftolozane/tazobactam, but only 5.56% were susceptible to imipenem. In vitro synergistic activities were detected for amikacin with aztreonam, piperacillin/tazobactam, meropenem, and ceftazidime for 16.67%, 11.11%, 11.11%, and 5.55%, respectively. One CoR-PA isolate carried the blaVIM metallo-β-lactamase gene; none carried mcr-1 genes or detected plasmid-mediated AmpC β-lactamase or an overproduction of chromosomal AmpC β-lactamase. Seven CoR-PA isolates (38.89%) were capable of biofilm formation. In conclusion, CoR-PA isolates are highly susceptible to antimicrobials; the synergy observed in response to the various agents should be examined in a clinical setting.
Collapse
|
5
|
Sieberi BM, Omwenga GI, Wambua RK, Samoei JC, Ngugi MP. Screening of the Dichloromethane: Methanolic Extract of Centella asiatica for Antibacterial Activities against Salmonella typhi, Escherichia coli, Shigella sonnei, Bacillus subtilis, and Staphylococcus aureus. ScientificWorldJournal 2020; 2020:6378712. [PMID: 32694956 PMCID: PMC7350070 DOI: 10.1155/2020/6378712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/29/2020] [Accepted: 06/09/2020] [Indexed: 11/17/2022] Open
Abstract
Bacterial infections are responsible for a large number of deaths every year worldwide. On average, 80% of the African population cannot afford conventional drugs. Moreover, many synthetic antibiotics are associated with side effects and progressive increase in antimicrobial resistance. Currently, there is growing interest in discovering new antibacterial agents from ethnomedicinal plants. About 60% of the population living in developing countries depends on herbal drugs for healthcare needs. This study involved the screening of Centella asiatica commonly used by herbal medicine practitioners in Kisii County to treat symptoms related to bacterial infections. Standard bioassay methods were applied throughout the study. They included preliminary screening of dichloromethane: methanolic extract of Centella asiatica against human pathogenic bacteria including Salmonella typhi ATCC 19430, Escherichia coli ATCC 25922, Shigella sonnei ATCC 25931, Bacillus subtilis ATCC 21332, and Staphylococcus aureus ATCC 25923 using agar disc diffusion, broth microdilution method, and time-kill kinetics with tetracycline as a positive control. Phytochemical screening was carried out to determine the different classes of compounds in the crude extracts. Data were analyzed using one way ANOVA and means separated by Tukey's test. Dichloromethane: methanolic extract of Centella asiatica was screened against the selected bacterial strains. Time-kill kinetic studies of the extracts showed dose- and time-dependent kinetics of antibacterial properties. Phytochemical screening of the DCM-MeOH extract revealed the presence of alkaloids, flavonoids, phenolics, terpenoids, cardiac glycosides, saponins, steroids, and tannins. The present study indicates that the tested plant can be an important source of antibacterial agents and recommends that the active phytoconstituents be isolated, identified, and screened individually for activities and also subjected further for in vivo and toxicological studies.
Collapse
Affiliation(s)
- Berick Moturi Sieberi
- Department of Biochemistry, Microbiology and Biotechnology, School of Pure and Applied Sciences, Kenyatta University, 43844-00100 Nairobi, Kenya
| | - George Isanda Omwenga
- Department of Biochemistry, Microbiology and Biotechnology, School of Pure and Applied Sciences, Kenyatta University, 43844-00100 Nairobi, Kenya
| | - Rachael Kitondo Wambua
- Department of Biochemistry, Microbiology and Biotechnology, School of Pure and Applied Sciences, Kenyatta University, 43844-00100 Nairobi, Kenya
| | - Judith Chemutai Samoei
- Department of Biochemistry, Microbiology and Biotechnology, School of Pure and Applied Sciences, Kenyatta University, 43844-00100 Nairobi, Kenya
| | - Mathew Piero Ngugi
- Department of Biochemistry, Microbiology and Biotechnology, School of Pure and Applied Sciences, Kenyatta University, 43844-00100 Nairobi, Kenya
| |
Collapse
|
6
|
Srivastava P, Sivashanmugam K. Combinatorial Drug Therapy for Controlling Pseudomonas aeruginosa and Its Association With Chronic Condition of Diabetic Foot Ulcer. INT J LOW EXTR WOUND 2019; 19:7-20. [DOI: 10.1177/1534734619873785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetic foot ulcer (DFU) is a major complication of diabetes mellitus, major observations of DFU cases have reported on amputation of foot region, and microbial bioburden during DFU is a major cause that affects healing of the wound regions. Pathogenic microbes are routinely isolated from these wound regions, especially Staphylococcus, Pseudomonas, Klebsiella, and Escherichia coli have been reported, whereas higher prevalence of Pseudomonas species during chronic condition in the deeper part of the wound, when left untreated, leads to gangrene. Multiple drug-resistant Pseudomonas strains are a new threat because of their biofilm-forming ability, making it more potent and incurable. Acyl homoserine lactones (AHL) are a group of signaling molecules that can regulate biofilm growth, and Las and Rhl operon generally work in tandem to initiate biofilm formation by Pseudomonas species. These signaling molecules also initiate virulence factors that correlates upregulation of inflammatory responses, and AHL can be a therapeutic target in order to prevent the efficacy of multiple drug-resistant strains that form biofilm and also can be an alternative solution against control of multiple drug-resistant strains.
Collapse
|
7
|
Poole K, Gilmour C, Farha MA, Parkins MD, Klinoski R, Brown ED. Meropenem potentiation of aminoglycoside activity against Pseudomonas aeruginosa: involvement of the MexXY-OprM multidrug efflux system. J Antimicrob Chemother 2019; 73:1247-1255. [PMID: 29420743 DOI: 10.1093/jac/dkx539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/20/2017] [Indexed: 12/25/2022] Open
Abstract
Objectives To assess the ability of meropenem to potentiate aminoglycoside (AG) activity against laboratory and AG-resistant cystic fibrosis (CF) isolates of Pseudomonas aeruginosa and to elucidate its mechanism of action. Methods AG resistance gene deletions were engineered into P. aeruginosa laboratory and CF isolates using standard gene replacement technology. Susceptibility to AGs ± meropenem (at ½ MIC) was assessed using a serial 2-fold dilution assay. mexXY expression and MexXY-OprM efflux activity were quantified using quantitative PCR and an ethidium bromide accumulation assay, respectively. Results A screen for agents that rendered WT P. aeruginosa susceptible to a sub-MIC concentration of the AG paromomycin identified the carbapenem meropenem, which potentiated several additional AGs. Meropenem potentiation of AG activity was largely lost in a mutant lacking the MexXY-OprM multidrug efflux system, an indication that it was targeting this efflux system in enhancing P. aeruginosa susceptibility to AGs. Meropenem failed to block AG induction of mexXY expression or MexXY-OprM efflux activity, suggesting that it may be interfering with some MexXY-dependent process linked to AG susceptibility. Meropenem potentiated AG activity versus AG-resistant CF isolates, enhancing susceptibility to at least one AG in all isolates and susceptibility to all tested AGs in 50% of the isolates. Notably, meropenem potentiation of AG activity was linked to MexXY in some but not all CF isolates in which this was examined. Conclusions Meropenem potentiates AG activity against laboratory and CF strains of P. aeruginosa, both dependent on and independent of MexXY, highlighting the complexity of AG resistance in this organism.
Collapse
Affiliation(s)
- Keith Poole
- Department of Biomedical and Molecular Sciences, Botterell Hall, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Christie Gilmour
- Department of Biomedical and Molecular Sciences, Botterell Hall, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Maya A Farha
- M.G. DeGroote Institute for Infectious Disease Research and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Michael D Parkins
- Department of Microbiology Immunology and Infectious Diseases and Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rachael Klinoski
- Department of Biomedical and Molecular Sciences, Botterell Hall, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Eric D Brown
- M.G. DeGroote Institute for Infectious Disease Research and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
8
|
Heffernan AJ, Sime FB, Lipman J, Roberts JA. Individualising Therapy to Minimize Bacterial Multidrug Resistance. Drugs 2018; 78:621-641. [PMID: 29569104 DOI: 10.1007/s40265-018-0891-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The scourge of antibiotic resistance threatens modern healthcare delivery. A contributing factor to this significant issue may be antibiotic dosing, whereby standard antibiotic regimens are unable to suppress the emergence of antibiotic resistance. This article aims to review the role of pharmacokinetic and pharmacodynamic (PK/PD) measures for optimising antibiotic therapy to minimise resistance emergence. It also seeks to describe the utility of combination antibiotic therapy for suppression of resistance and summarise the role of biomarkers in individualising antibiotic therapy. Scientific journals indexed in PubMed and Web of Science were searched to identify relevant articles and summarise existing evidence. Studies suggest that optimising antibiotic dosing to attain defined PK/PD ratios may limit the emergence of resistance. A maximum aminoglycoside concentration to minimum inhibitory concentration (MIC) ratio of > 20, a fluoroquinolone area under the concentration-time curve to MIC ratio of > 285 and a β-lactam trough concentration of > 6 × MIC are likely required for resistance suppression. In vitro studies demonstrate a clear advantage for some antibiotic combinations. However, clinical evidence is limited, suggesting that the use of combination regimens should be assessed on an individual patient basis. Biomarkers, such as procalcitonin, may help to individualise and reduce the duration of antibiotic treatment, which may minimise antibiotic resistance emergence during therapy. Future studies should translate laboratory-based studies into clinical trials and validate the appropriate clinical PK/PD predictors required for resistance suppression in vivo. Other adjunct strategies, such as biomarker-guided therapy or the use of antibiotic combinations require further investigation.
Collapse
Affiliation(s)
- A J Heffernan
- School of Medicine, Griffith University, Gold Coast, Queensland, Australia
- Centre for Translational Anti-Infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - F B Sime
- Centre for Translational Anti-Infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Building 71/918, Herston Rd, Herston, Queensland, 4029, Australia
| | - J Lipman
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Building 71/918, Herston Rd, Herston, Queensland, 4029, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - J A Roberts
- Centre for Translational Anti-Infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia.
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Building 71/918, Herston Rd, Herston, Queensland, 4029, Australia.
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.
- Pharmacy Department, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.
| |
Collapse
|
9
|
Dhaese SAM, Roberts JA, Carlier M, Verstraete AG, Stove V, De Waele JJ. Population pharmacokinetics of continuous infusion of piperacillin in critically ill patients. Int J Antimicrob Agents 2017; 51:594-600. [PMID: 29277531 DOI: 10.1016/j.ijantimicag.2017.12.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/30/2017] [Accepted: 12/16/2017] [Indexed: 10/18/2022]
Abstract
Dosing recommendations for continuous infusion of piperacillin, a broad-spectrum beta-lactam antibiotic, are mainly guided by outputs from population pharmacokinetic models constructed with intermittent infusion data. However, the probability of target attainment in patients receiving piperacillin by continuous infusion may be overestimated when drug clearance estimates from population pharmacokinetic models based on intermittent infusion data are used, especially when higher doses (e.g. 16 g/24 h or more) are simulated. Therefore, the purpose of this study was to describe the population pharmacokinetics of piperacillin when infused continuously in critically ill patients. For this analysis, 270 plasma samples from 110 critically ill patients receiving piperacillin were available for population pharmacokinetic model building. A one-compartment model with linear clearance best described the concentration-time data. The mean ± standard deviation parameter estimates were 8.38 ± 9.91 L/h for drug clearance and 25.54 ± 3.65 L for volume of distribution. Creatinine clearance improved the model fit and was supported for inclusion as a covariate. In critically ill patients with renal clearance higher than 90 mL/min/1.73 m2, a high-dose continuous infusion of 24 g/24 h is insufficient to achieve adequate exposure (pharmacokinetic/pharmacodynamic target of 100% fT>4 x MIC) against susceptible Pseudomonas aerginosa isolates (MIC ≤16 mg/L). These findings suggest that merely increasing the dose of piperacillin, even with continuous infusion, may not always result in adequate piperacillin exposure. This should be confirmed by evaluating piperacillin target attainment rates in critically ill patients exhibiting high renal clearance.
Collapse
Affiliation(s)
| | - Jason A Roberts
- Faculty of Medicine and School of Pharmacy, University of Queensland, Brisbane, Australia; Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Mieke Carlier
- Ghent University Hospital, Laboratory Medicine, Ghent, Belgium
| | - Alain G Verstraete
- Ghent University Hospital, Laboratory Medicine, Ghent, Belgium; Ghent University, Clinical Chemistry, Microbiology and Immunology, Ghent, Belgium
| | - Veronique Stove
- Ghent University Hospital, Laboratory Medicine, Ghent, Belgium; Ghent University, Clinical Chemistry, Microbiology and Immunology, Ghent, Belgium
| | - Jan J De Waele
- Ghent University Hospital, Intensive Care, Ghent, Belgium
| |
Collapse
|
10
|
Nazli E, Zer Y, Eksi F. In vitro efficacy of various antibiotic combinations against Pseudomonas aeruginosa isolates. J Int Med Res 2014; 43:217-25. [PMID: 25547417 DOI: 10.1177/0300060514553490] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Pseudomonas aeruginosa is one of the leading causes of nosocomial infection. The present study tested the in vitro efficacy of ceftazidime or imipenem combined with amikacin, levofloxacin and colistin in P.aeruginosa isolates. METHODS P.aeruginosa strains, isolated from clinical samples, were assessed for antibiotic susceptibility using the disc diffusion method. Antibiotic combination tests were performed using minimum inhibitory concentration (MIC) test strips and the sum of the Fractional Inhibitory Concentration (ΣFIC) index was used to assess synergy. RESULTS Out of 60 isolated P.aeruginosa strains, 100% were susceptible to colistin and 26.7% (16 strains) were multidrug resistant. MIC50 and MIC90 values were 2 and 32 µg/ml for imipenem; 1.5 and 24 µg/ml for ceftazidime; 3 and 8 µg/ml for amikacin; 0.38 and 32 µg/ml for levofloxacin; 1 and 1.5 µg/ml for colistin, respectively. Antagonism was not found in any of the antibiotic combinations tested. The amikacin-ceftazidime combination was found to have a synergistic effect in 15% of the strains, but no synergistic effect was detected for other combinations. CONCLUSIONS In Pseudomonas infection, alternative treatment options using different antibiotic combinations should be tested in vitro and findings should be confirmed by clinical studies.
Collapse
Affiliation(s)
- Ebru Nazli
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Yasemin Zer
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Fahriye Eksi
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
11
|
Grossi P, Dalla Gasperina D. Treatment ofPseudomonas aeruginosainfection in critically ill patients. Expert Rev Anti Infect Ther 2014; 4:639-62. [PMID: 17009943 DOI: 10.1586/14787210.4.4.639] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Critically ill patients are on the increase in the present clinical setting. Aging of our population and increasingly aggressive medical and therapeutic interventions, including implanted foreign bodies, organ transplantation and advances in the chemotherapy of malignant diseases, have created a cohort of particularly vulnerable patients. Pseudomonas aeruginosa is one of the leading gram-negative organisms associated with nosocomial infections. This organism is frequently feared because it causes severe hospital-acquired infections, especially in immunocompromised hosts, and is often antibiotic resistant, complicating the choice of therapy. The epidemiology, microbiology, mechanisms of resistance and currently available and future treatment options for the most relevant infections caused by P. aeruginosa are reviewed.
Collapse
Affiliation(s)
- Paolo Grossi
- University of Insubria, Infectious Diseases Department, viale Borri 57, 21100 Varese, Italy.
| | | |
Collapse
|
12
|
Rizvi M, Ahmed J, Khan F, Shukla I, Malik A. Assessment of combination therapy by time kill curve analysis and chequerboard assay for treatment of multi-drug resistant Pseudomonas aeruginosa isolates. J Glob Antimicrob Resist 2013; 1:103-108. [DOI: 10.1016/j.jgar.2013.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/23/2013] [Accepted: 04/01/2013] [Indexed: 10/26/2022] Open
|
13
|
Boyd N, Nailor MD. Combination antibiotic therapy for empiric and definitive treatment of gram-negative infections: insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy 2012; 31:1073-84. [PMID: 22026395 DOI: 10.1592/phco.31.11.1073] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The widespread emergence of antibiotic-resistant gram-negative organisms has compromised the utility of current treatment options for severe infections caused by these pathogens. The rate of gram-negative multidrug resistance is worsening, threatening the effectiveness of newer broad-spectrum antibiotic agents. Infections associated with multidrug-resistant Pseudomonas aeruginosa, Acinetobacter baumannii, and Enterobacteriaceae are having a substantial impact on hospital costs and mortality rates. The potential for these resistant gram-negative nosocomial pathogens must always be a primary consideration when selecting antibiotic therapy for critically ill patients. Empiric combination therapy directed at gram-negative pathogens is a logical approach for patients with suspected health care-associated infections, particularly those with risk factors for infections caused by multidrug-resistant pathogens. Although in vitro synergy tests have shown potential benefits of continued combination therapy, convincing clinical data that demonstrate a need for combination therapy once susceptibilities are known are lacking. Thus, deescalation to a single agent once susceptibilities are known is recommended for most patients and pathogens. Use of polymyxins, often in combination with other antimicrobials, may be necessary for salvage therapy.
Collapse
Affiliation(s)
- Natalie Boyd
- Parkland Health and Hospital System, Dallas, Texas, USA
| | | |
Collapse
|
14
|
Traugott KA, Echevarria K, Maxwell P, Green K, Lewis JS. Monotherapy or Combination Therapy? ThePseudomonas aeruginosaConundrum. Pharmacotherapy 2011; 31:598-608. [DOI: 10.1592/phco.31.6.598] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Dundar D, Otkun M. In-vitro efficacy of synergistic antibiotic combinations in multidrug resistant Pseudomonas aeruginosa strains. Yonsei Med J 2010; 51:111-6. [PMID: 20046523 PMCID: PMC2799966 DOI: 10.3349/ymj.2010.51.1.111] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 03/17/2009] [Accepted: 03/24/2009] [Indexed: 12/02/2022] Open
Abstract
PURPOSE Combination antibiotic treatment is preferred in nosocomial infections caused by Pseudomonas aeruginosa (P. aeruginosa). In vitro synergism tests were used to choose the combinations which might be used in clinic. The aim of this study was to investigate the synergistic efficacy of synergistic antibiotic combinations in multidrug resistant P. aeruginosa strains. MATERIALS AND METHODS Synergistic efficacies of ceftazidime-tobramycin, piperacillin/tazobactam-tobramycin, imipenem-tobramycin, imipenem-isepamycin, imipenem-ciprofloxacin and ciprofloxacin-tobramycin combinations were investigated by checkerboard technique in 12 multiple-resistant and 13 susceptible P. aeruginosa strains. RESULTS The ratios of synergy were observed in ceftazidime-tobramycin and piperacillin/tazobactam-tobramycin combinations as 67%, and 50%, respectively, in resistant strains, whereas synergy was not detected in other combinations. The ratios of synergy were observed in ceftazidime-tobramycin, piperacillin/tazobactam-tobramycin, imipenem-tobramycin, imipenem-ciprofloxacin and imipenem-isepamycin combinations as 31%, 46%, 15%, 8%, 8%, and respectively, in susceptible strains, whereas synergy was not detected in ciprofloxacin-tobramycin combination. Antagonism was not observed in any of the combinations. CONCLUSION Although the synergistic ratios were high in combinations with ceftazidime or piperacillin/tazobactam and tobramycin, the concentrations in these combinations could not usually reach clinically available levels. Thus, the solution of the problems caused by multiple resistant P. aeruginosa should be based on the prevention of the development of resistance and spread of the causative agent between patients.
Collapse
Affiliation(s)
- Devrim Dundar
- Department of Clinical Microbiology, Kocaeli University, Faculty of Medicine, Kocaeli, Turkey.
| | | |
Collapse
|
16
|
Abstract
Defining the severity of an infection can play a central role for a correct therapeutic choice, avoiding inadequate antimicrobial treatments. Severe bacterial infections are, in fact, characterized by high morbidity and mortality rates so that the appropriateness of therapy can have a profound clinical impact. Indeed, initial inappropriate empirical therapies, and the further need to modify them, substantially increase the mortality risk. Several strategies have been suggested to improve the clinical outcome of patients affected by severe bacterial infections, such as the use of guidelines, use of antibiotics in combination, de-escalation therapy, cycling therapy and the use of infectious disease specialist consultation. A closer collaboration between the medical staff in the wards and infectious disease specialists can possibly bridge the gap between different strategies and individual needs of the patient, thereby improving the decision-making process.
Collapse
Affiliation(s)
- Silvano Esposito
- Department of Infectious Diseases, Second University of Naples, Via D. Cotugno, 1 80135, Naples, Italy.
| | | | | |
Collapse
|
17
|
Rossolini GM, Mantengoli E. Treatment and control of severe infections caused by multiresistant Pseudomonas aeruginosa. Clin Microbiol Infect 2005; 11 Suppl 4:17-32. [PMID: 15953020 DOI: 10.1111/j.1469-0691.2005.01161.x] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pseudomonas aeruginosa is one of the leading causes of nosocomial infections. Severe infections, such as pneumonia or bacteraemia, are associated with high mortality rates and are often difficult to treat, as the repertoire of useful anti-pseudomonal agents is limited (some beta-lactams, fluoroquinolones and aminoglycosides, and the polymyxins as last-resort drugs); moreover, P. aeruginosa exhibits remarkable ability to acquire resistance to these agents. Acquired resistance arises by mutation or acquisition of exogenous resistance determinants and can be mediated by several mechanisms (degrading enzymes, reduced permeability, active efflux and target modification). Overall, resistance rates are on the increase, and may be different in different settings, so that surveillance of P. aeruginosa susceptibility is essential for the definition of empirical regimens. Multidrug resistance is frequent, and clinical isolates resistant to virtually all anti-pseudomonal agents are increasingly being reported. Monotherapy is usually recommended for uncomplicated urinary tract infections, while combination therapy is normally recommended for severe infections, such as bacteraemia and pneumonia, although, at least in some cases, the advantage of combination therapy remains a matter of debate. Antimicrobial use is a risk factor for P. aeruginosa resistance, especially with some agents (fluoroquinolones and carbapenems), and interventions based on antimicrobial rotation and restriction of certain agents can be useful to control the spread of resistance. Similar measures, together with the prudent use of antibiotics and compliance with infection control measures, are essential to preserve the efficacy of the currently available anti-pseudomonal agents, in view of the dearth, in the near future, of new options against multidrug-resistant P. aeruginosa strains.
Collapse
Affiliation(s)
- G M Rossolini
- Dipartimento di Biologia Molecolare, Sezione di Microbiologia, Università degli Studi di Siena, I-53100 Siena, Italy.
| | | |
Collapse
|
18
|
Burgess DS. Use of Pharmacokinetics and Pharmacodynamics to Optimize Antimicrobial Treatment of Pseudomonas aeruginosa Infections. Clin Infect Dis 2005; 40 Suppl 2:S99-104. [PMID: 15712103 DOI: 10.1086/426189] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The study of pharmacodynamics has greatly enhanced our understanding of antimicrobials and has enabled us to optimize dosing regimens. Applying this knowledge to the clinical setting can be critical for the treatment of Pseudomonas aeruginosa infections. Because of its selectively permeable outer membrane and multiple efflux pump mechanisms, P. aeruginosa has high intrinsic resistance to many available antimicrobials. Numerous studies have established pharmacodynamic values for concentration-dependent agents (maximum serum concentration : minimum inhibitory concentration [MIC] and area under the serum concentration-time curve : MIC) and concentration-independent agents (i.e., percentage of time that the drug concentration remains greater than the MIC) that help predict the probability of a successful outcome. Current therapies attempt to meet these target values. However, to reduce the risk of clinical failures, combination therapy (typically, a beta -lactam with an aminoglycoside or fluoroquinolone) is commonly used to enhance eradication rates and decrease the risk of developing resistance. Although combination therapy ensures a greater chance of selection of appropriate treatment, timely initial administration of antimicrobial therapy remains a key factor for reducing the likelihood of death for these patients.
Collapse
Affiliation(s)
- David S Burgess
- College of Pharmacy, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
19
|
Chen YH, Peng CF, Lu PL, Tsai JJ, Chen TP. In vitro activities of antibiotic combinations against clincal isolates of Pseudomonas aeruginosa. Kaohsiung J Med Sci 2004; 20:261-7. [PMID: 15253466 DOI: 10.1016/s1607-551x(09)70116-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Combination therapy has been recommended to treat Pseudomonas aeruginosa infections worldwide. The purpose of the present study was to determine the in vitro activities of piperacillin, cefepime, aztreonam, amikacin, and ciprofloxacin alone and in combination against 100 clinical isolates of P. aeruginosa from one medical center in southern Taiwan. The combination susceptibility assay was performed using the checkerboard technique. The percentage of resistance of P. aeruginosa to single agents in our study was relatively high for the Asia-Pacific area, except to aztreonam. Piperacillin plus amikacin exhibited the highest potential for synergy (59/100) in this study. Moreover, a high percentage of synergism was also noted with amikacin combined with cefepime (7/100) or aztreonam (16/100). The combination of two beta-lactams, such as cefepime with piperacillin, and aztreonam with cefepime or piperacillin, showed synergistic effects against some P. aeruginosa isolates. Although ciprofloxacin is a good anti-pseudomonal agent, a very low potential for synergy with other antibiotics was demonstrated in this study. No antagonism was exhibited by any combination in our study. Among piperacillin-resistant strains, there was synergy with a beta-lactam plus amikacin, including the combination of piperacillin and amikacin. However, the combination of two beta-lactams, such as piperacillin and cefepime or aztreonam, did not have any synergistic activity against these strains. In summary, the combinations of amikacin with the tested beta-lactams (piperacillin, aztreonam, cefepime) had a greater synergistic effect against P. aeruginosa, even piperacillin-resistant strains, than other combinations. Understanding the synergistic effect on clinical strains may help clinicians choose better empirical therapy in an area with high prevalence of multidrug-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Yen-Hsu Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | | | | | | | | |
Collapse
|
20
|
Tredget EE, Shankowsky HA, Rennie R, Burrell RE, Logsetty S. Pseudomonas infections in the thermally injured patient. Burns 2004; 30:3-26. [PMID: 14693082 DOI: 10.1016/j.burns.2003.08.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pseudomonas aeruginosa, remains a serious cause of infection and septic mortality in burn patients, particularly when nosocomially acquired. A prototypic burn patient who developed serious nosocomially acquired Pseudomonas infection is described as an index case which initiated investigations and measures taken to identify the source of the infection. The effect of changes in wound care to avoid further nosocomial infections was measured to provide data on outcome and cost of care. The bacteriology of Pseudomonas is reviewed to increase the burn care providers understanding of the behaviour of this very common and serious pathogen in the burn care setting, before reviewing the approach to detection of the organism and treatment both medically and surgically. After controlling the nosocomial spread of Pseudomonas in our burn unit, we investigated the morbidity and mortality associated with nosocomial infection with an aminoglycoside resistant Pseudomonas and the associated costs compared to a group of case-matched control patients with similar severity of burn injury, that did not acquire resistant Pseudomonas during hospitalization at our institution. We found a significant increase in the mortality rate in the Pseudomonas group compared to controls. The morbidity in terms of length of stay, ventilator days, number of surgical procedures, and the amount of blood products used were all significantly higher in the Pseudomonas group compared to controls. Costs associated with antibiotic requirements were also significantly higher in the Pseudomonas group. Despite this increased resource consumption necessary to treat Pseudomonas infections, these efforts did not prevent significantly higher mortality rates when compared to control patients who avoided infection with the resistant organism. Thus, in addition to the specific measures required to identify and treat nosocomial Pseudomonas infections in burn patients, prevention of infection through modification of treatment protocols together with continuous infection control measures to afford early identification and eradication of nosocomial Pseudomonas infection are critical for cost-effective, successful burn care.
Collapse
Affiliation(s)
- Edward E Tredget
- Division of Plastic Surgery, Department of Surgery, Firefighters' Burn Treatment Unit, 2D3.81 WMSHC, 8440-112 Street, University of Alberta, Alta., T6G 2B7, Edmonton, Canada.
| | | | | | | | | |
Collapse
|
21
|
Burgess DS, Hall RG, Hardin TC. In vitro evaluation of the activity of two doses of Levofloxacin alone and in combination with other agents against Pseudomonas aeruginosa. Diagn Microbiol Infect Dis 2003; 46:131-7. [PMID: 12812717 DOI: 10.1016/s0732-8893(03)00036-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
P. aeruginosa is one of the most difficult to treat pathogens that generally requires combination therapy to prevent the development of resistance. This study evaluated the in vitro activity of two concentrations of levofloxacin (modeled for the 500 mg and 750 mg daily dose) in combination with ceftazidime, cefepime, piperacillin/tazobactam, imipenem, and tobramycin against P. aeruginosa. MICs and time-kill studies were performed against 12 non-duplicate clinical isolates of P. aeruginosa. The percent susceptible for levofloxacin, ceftazidime, cefepime, piperacillin/tazobactam, imipenem, and tobramycin were 67%, 58%, 58%, 67%, 75%, and 100%, respectively. Tobramycin was the most active single agent, killing and maintaining > or =99.9% killing over a 24 h period against all isolates. Levofloxacin 4 microg/mL(750 mg/day) alone reached 99.9% killing and maintain this killing over the time period more often than levofloxacin 2 microg/mL (500 mg/day). No combination was antagonistic and all combinations with tobramycin were indifferent. Overall, levofloxacin 2 microg/mL plus a beta-lactam was synergistic (65%) more often than levofloxacin 4 microg/mL combinations (46%). This was not unexpected due to the increased activity of levofloxacin 4 microg/mL. However, levofloxacin 4 microg/mL combinations maintained a > or =99.9% killing over the entire 24 h period more often than levofloxacin 2 microg/mL combinations (94% vs 83%). The findings from this work suggest that levofloxacin 750 mg/day in combination with another agent active against P. aeruginosa may prove to be clinically beneficial and superior to combinations using lower doses of levofloxacin. In vivo studies are needed to evaluate the clinical significance of these findings.
Collapse
Affiliation(s)
- David S Burgess
- College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.
| | | | | |
Collapse
|
22
|
Song W, Woo HJ, Kim JS, Lee KM. In vitro activity of beta-lactams in combination with other antimicrobial agents against resistant strains of Pseudomonas aeruginosa. Int J Antimicrob Agents 2003; 21:8-12. [PMID: 12507832 DOI: 10.1016/s0924-8579(02)00269-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using the chequerboard titration method, the activity in combination of beta-lactams, fluoroquinolones and aminoglycosides was investigated against 24 Pseudomonas aeruginosa isolates resistant to these antibiotics. Synergy was detected with one or more antimicrobial combinations against 15 of 24 (63%) isolates and partial synergy was detected with one or more combinations against all 24 isolates. No antagonism was seen with any combination. Ceftazidime and cefepime with aztreonam, amikacin and isepamicin showed synergy or partial synergy against 12-20 (50-80%) isolates. Imipenem and meropenem with amikacin and isepamicin showed synergy or partial synergy against eight to 12 (33-50%) isolates. The results of this study indicate that against P. aeruginosa, synergy may occur between beta-lactams, fluoroquinolones and aminoglycosides although the strains are resistant to the individual antibiotics.
Collapse
Affiliation(s)
- W Song
- Department of Clinical Pathology, Hallym University School of Medicine, Kangnam Sacred Heart Hospital, 948-1 Daelim-dong, Yungdeungpo-ku, Seoul 150-950, South Korea.
| | | | | | | |
Collapse
|
23
|
Burgess DS, Nathisuwan S. Cefepime, piperacillin/tazobactam, gentamicin, ciprofloxacin, and levofloxacin alone and in combination against Pseudomonas aeruginosa. Diagn Microbiol Infect Dis 2002; 44:35-41. [PMID: 12376029 DOI: 10.1016/s0732-8893(02)00420-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A beta-lactam plus an aminoglycoside is the standard for treating severe Pseudomonas aeruginosa infections. However, the fluoroquinolones are safer and have been widely used as an alternative to the aminoglycosides in this setting. In this study we compared the synergistic activities of piperacillin/tazobactam and cefepime when either drug was combined with gentamicin, ciprofloxacin, or levofloxacin against P. aeruginosa. Susceptibility testing and time-kill curves were performed against 12 clinical isolates of P. aeruginosa. All combinations were bactericidal and retained this activity over the 24 hr period except for piperacillin/tazobactam in combination with levofloxacin or ciprofloxacin against 2 isolates and cefepime in combination with levofloxacin against 1 isolate. None of the combinations were antagonistic. No statistical difference in the frequency of synergy exists between the beta-lactam plus gentamicin (79%) and the beta-lactams plus either ciprofloxacin or levofloxacin combinations (58%, 67%). Furthermore, no differences in synergistic activity were noted between ciprofloxacin combinations (58%) and levofloxacin combinations (67%). In conclusion, the degree of synergy between a beta-lactam plus aminoglycoside and a beta-lactam plus fluoroquinolone seem to be comparable. Furthermore, there is a similar rate of synergy among different fluoroquinolone-based combinations. However, faster killing, less regrowth, and decrease in the development of resistance were seen with the beta-lactam plus aminoglycoside combination.
Collapse
Affiliation(s)
- David S Burgess
- College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.
| | | |
Collapse
|
24
|
Burgess DS, Waldrep T. Pharmacokinetics and pharmacodynamics of piperacillin/tazobactam when administered by continuous infusion and intermittent dosing. Clin Ther 2002; 24:1090-104. [PMID: 12182254 DOI: 10.1016/s0149-2918(02)80021-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Although intermittent bolus dosing is currently the standard of practice for many antimicrobial agents, beta-lactams exhibit time-dependent bacterial killing. Maximizing the time above the minimum inhibitory concentration (MIC) for a pathogen is the best pharmacodynamic predictor of efficacy. Use of a continuous infusion has been advocated for maximizing the time above the MIC compared with intermittent bolus dosing. OBJECTIVE This study compared the pharmacokinetics and pharmacodynamics of piperacillin/tazobactam when administered as an intermittent bolus versus a continuous infusion against clinical isolates of Pseudomonas aeruginosa and Klebsiella pneumoniae. METHODS Healthy volunteers were randomly assigned to receive piperacillin 3 g/ tazobactam 0.375 g q6h for 24 hours, piperacillin 6 g/tazobactam 0.75 g continuous infusion over 24 hours, and piperacillin 12 g/tazobactam 1.5 g continuous infusion over 24 hours. Five clinical isolates each of P aeruginosa and K pneumoniae were used for pharmacodynamic analyses. RESULTS Eleven healthy subjects (7 men, 4 women; mean +/- SD age, 28 +/- 4.7 years) were enrolled. Mean steady-state serum concentrations of piperacillin were 16.0 +/- 5.0 and 37.2 +/- 6.8 microg/mL with piperacillin 6 and 12 g, respectively. Piperacillin/tazobactam 13.5 g continuous infusion (piperacillin 12 g/tazobactam 1.5 g) was significantly more likely to produce a serum inhibitory titer > or = 1:2 against P aeruginosa at 24 hours than either the 6.75 g continuous infusion (piperacillin 6 g/tazobactam 0.75 g) or 3.375 g q6h (piperacillin 3 g/ tazobactam 0.375 g). There were no statistical differences against K pneumoniae between regimens. The median area under the inhibitory activity-time curve (AUIC) for the 13.5 g continuous infusion was higher than that for 3.375 g q6h and the 6.75 g continuous infusion against both P aeruginosa and Kpneumoniae (P < or = 0.007, 13.5 g continuous infusion and 3.375 g q6h vs 6.75 g continuous infusion against K pneumoniae). The percentage of subjects with an AUIC > or = 125 was higher with both 3.375 g q6h and the 13.5 g continuous infusion than with the 6.75 g continuous infusion against P aeruginosa and K pneumoniae (both, P < 0.001 vs 6.75 g continuous infusion against K pneumoniae). CONCLUSIONS Piperacillin 12 g/tazobactam 1.5 g continuous infusion consistently resulted in serum concentrations above the breakpoint for Enterobacteriaceae and many of the susceptible strains of P aeruginosa in this study in 11 healthy subjects. Randomized controlled clinical trials are warranted to determine the appropriate dose of piperacillin/tazobactam.
Collapse
|