1
|
Grbić E, Letonja J, Petrovič D. The VEGFA rs2010963 Gene Polymorphism Is a Potential Genetic Risk Factor for Myocardial Infarction in Slovenian Subjects with Type 2 Diabetes Mellitus. Biomolecules 2024; 14:1584. [PMID: 39766291 PMCID: PMC11674656 DOI: 10.3390/biom14121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Coronary artery disease (CAD) is a life-threatening condition caused by the chronic gradual narrowing of the lumen of the blood vessels of the heart by atherosclerotic plaque with a strong genetic component. The aim of our study was to investigate the association between the VEGFA polymorphism rs2010963 and myocardial infarction in patients with type 2 diabetes, as well as the expression of VEGFA. A total of 1589 unrelated Caucasians with T2DM lasting longer than 10 years were divided into two groups: case group subjects with MI (484) and a control group without a history of CAD (1105). A total of 25 endarterectomy sequesters were immunohistochemically stained to assess VEGFA expression. The rs2010963 polymorphism of the VEGFA gene was genotyped using a KBioscience Ltd. competitive allele-specific fluorescence-based PCR (KASPar) assay. The C allele was significantly more common in the case group according to the dominant model of inheritance (CC + CG vs. GG) (OR: 1.32; 95% CI: 1.05-1.66; p = 0.0197). A statistically significantly higher numerical areal density of VEGFA-positive cells was found in subjects with the C allele (CC + CG genotypes) in comparison to the GG genotype (117 ± 35/mm2 vs. 58 ± 21/mm2; p < 0.001). To conclude, the rs2010963 polymorphism is a potential genetic risk factor for myocardial infarction in Slovenian patients with T2DM.
Collapse
Affiliation(s)
- Emin Grbić
- Department of Physiology, Faculty of Medicine, University of Tuzla, 75000 Tuzla, Bosnia and Herzegovina;
| | - Jernej Letonja
- Laboratory for Histology and Genetics of Atherosclerosis and Microvascular Diseases, Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia;
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Danijel Petrovič
- Laboratory for Histology and Genetics of Atherosclerosis and Microvascular Diseases, Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia;
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Dietz M, Kamani CH, Bousige C, Dunet V, Delage J, Rubimbura V, Nicod Lalonde M, Treglia G, Schaefer N, Nammas W, Saraste A, Knuuti J, Mewton N, Prior JO. Natural History of Myocardial α vβ 3 Integrin Expression After Acute Myocardial Infarction: Correlation with Changes in Myocardial Blood Flow. J Nucl Med 2024; 65:1107-1112. [PMID: 38724280 PMCID: PMC11218729 DOI: 10.2967/jnumed.124.267514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/13/2024] [Indexed: 07/03/2024] Open
Abstract
Angiogenesis is an essential part of the cardiac repair process after myocardial infarction, but its spatiotemporal dynamics remain to be fully deciphered.68Ga-NODAGA-Arg-Gly-Asp (RGD) is a PET tracer targeting αvβ3 integrin expression, which is a marker of angiogenesis. Methods: In this prospective single-center trial, we aimed to monitor angiogenesis through myocardial integrin αvβ3 expression in 20 patients with ST-segment elevation myocardial infarction (STEMI). In addition, the correlations between the expression levels of myocardial αvβ3 integrin and the subsequent changes in 82Rb PET/CT parameters, including rest and stress myocardial blood flow (MBF), myocardial flow reserve (MFR), and wall motion abnormalities, were assessed. The patients underwent 68Ga-NODAGA-RGD PET/CT and rest and stress 82Rb-PET/CT at 1 wk, 1 mo, and 3 mo after STEMI. To assess 68Ga-NODAGA-RGD uptake, the summed rest 82Rb and 68Ga-NODAGA-RGD images were coregistered, and segmental SUVs were calculated (RGD SUV). Results: At 1 wk after STEMI, 19 participants (95%) presented increased 68Ga-NODAGA-RGD uptake in the infarcted myocardium. Seventeen participants completed the full imaging series. The values of the RGD SUV in the infarcted myocardium were stable 1 mo after STEMI (1 wk vs. 1 mo, 1.47 g/mL [interquartile range (IQR), 1.37-1.64 g/mL] vs. 1.47 g/mL [IQR, 1.30-1.66 g/mL]; P = 0.9), followed by a significant partial decrease at 3 mo (1.32 g/mL [IQR, 1.12-1.71 g/mL]; P = 0.011 vs. 1 wk and 0.018 vs. 1 mo). In segment-based analysis, positive correlations were found between RGD SUV at 1 wk and the subsequent changes in stress MBF (Spearman ρ: r = 0.17, P = 0.0033) and MFR (Spearman ρ: r = 0.31, P < 0.0001) at 1 mo. A negative correlation was found between RGD SUV at 1 wk and the subsequent changes in wall motion abnormalities at 3 mo (Spearman ρ: r = -0.12, P = 0.035). Conclusion: The present study found that αvβ3 integrin expression is significantly increased in the infarcted myocardium 1 wk after STEMI. This expression remains stable after 1 mo and partially decreases after 3 mo. Initial αvβ3 integrin expression at 1 wk is significantly weakly correlated with subsequent improvements in stress MBF, MFR, and wall motion analysis.
Collapse
Affiliation(s)
- Matthieu Dietz
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland
- Institut de Cardiologie des Hospices Civils de Lyon, CarMeN Laboratory INSERM 1060, Université Claude Bernard Lyon 1, Lyon, France
- Service de Médecine Nucléaire, Hospices Civils de Lyon, Lyon, France
| | - Christel H Kamani
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland
- Department of Cardiology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Colin Bousige
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Vincent Dunet
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland
- University of Lausanne, Lausanne, Switzerland
| | - Judith Delage
- University of Lausanne, Lausanne, Switzerland
- Radiopharmacy Unit, Department of Pharmacy, University Hospital of Lausanne, Lausanne, Switzerland
| | - Vladimir Rubimbura
- Department of Cardiology, University Hospital of Lausanne, Lausanne, Switzerland
- Department of Cardiology, Ensemble Hospitalier de la Côte, Morges, Switzerland
| | - Marie Nicod Lalonde
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland
- University of Lausanne, Lausanne, Switzerland
| | - Giorgio Treglia
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland
- University of Lausanne, Lausanne, Switzerland
- Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Niklaus Schaefer
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland
- University of Lausanne, Lausanne, Switzerland
| | - Wail Nammas
- Heart Center, Turku University Hospital, Turku, Finland; and
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Antti Saraste
- Heart Center, Turku University Hospital, Turku, Finland; and
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Juhani Knuuti
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Nathan Mewton
- Institut de Cardiologie des Hospices Civils de Lyon, CarMeN Laboratory INSERM 1060, Université Claude Bernard Lyon 1, Lyon, France
| | - John O Prior
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland;
- University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Zhang X, Hu X, Fang S, Li J, Liu Z, Xie W, Xu R, Dmytriw AA, Yang K, Ma Y, Jiao L, Wang T. Vascular Endothelial Growth Factor and Ischemic Stroke Risk: A Mendelian Randomization Study. Neurol Ther 2024; 13:727-737. [PMID: 38619804 PMCID: PMC11136897 DOI: 10.1007/s40120-024-00601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/07/2024] [Indexed: 04/16/2024] Open
Abstract
INTRODUCTION Previous studies have reported controversial relationships between circulating vascular endothelial growth factors (VEGF) and ischemic stroke (IS). This study aims to demonstrate the causal effect between VEGF and IS using Mendelian randomization (MR). METHODS Summary statistics data from two large-scale genome-wide association studies (GWAS) for 16,112 patients with measured VEGF levels and 40,585 patients with IS were downloaded from public databases and included in this study. A published calculator was adopted for MR power calculation. The primary outcome was any ischemic stroke, and the secondary outcomes were large-artery stroke, cardioembolic stroke, and small-vessel stroke. We used the inverse variance-weighted (IVW) method for primary analysis, supplemented by MR-Egger regression and the weighted median method. RESULTS Nine SNPs were included to represent serum VEGF levels. The IVW method revealed no strong causal association between VEGF and any ischemic stroke (odds ratio [OR] 1.01, 95% CI 0.99-1.04, p = 0.39), cardioembolic stroke (OR 1.04, 95% CI 0.97-1.12, p = 0.28), large-artery stroke (OR 1.02, 95% CI 0.95-1.09, p = 0.62), and small-vessel stroke (OR 0.98, 95% CI 0.91-1.04, p = 0.46). These findings remained robust in sensitivity analyses. MR-Egger regression suggested no horizontal pleiotropy. CONCLUSIONS This Mendelian randomization study found no relationship between genetically predisposed serum VEGF levels and risks of IS or its subtypes.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
- China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China
| | - Xinzhi Hu
- Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Shiyuan Fang
- Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
- Department of Neurology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Jiayao Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
- China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China
| | - Zhichao Liu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Weidun Xie
- Department of Computer Science, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR
| | - Ran Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
- China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China
| | - Adam A Dmytriw
- Neuroendovascular Program, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Kun Yang
- Department of Neurosurgery, Tai'an Central Hospital, 29 Longtan Road, Tai'an, 271000, Shandong, China
| | - Yan Ma
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
- China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
- China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China.
- Department of Interventional Neuroradiology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District Beijing, 100053, China.
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
- China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China.
| |
Collapse
|
4
|
Mahmoud Refaie MM, Bayoumi AM, Mokhemer SA, Shehata S, Abd El-Hameed NM. Role of hypoxia inducible factor/vascular endothelial growth factor/endothelial nitric oxide synthase signaling pathway in mediating the cardioprotective effect of dapagliflozin in cyclophosphamide-induced cardiotoxicity. Hum Exp Toxicol 2023; 42:9603271231193392. [PMID: 37526264 DOI: 10.1177/09603271231193392] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
BACKGROUND Cyclophosphamide (CP) is a commonly used chemotherapeutic and immunosuppressive alkylating agent. However, cardiac adverse effects of CP interfere with its clinical benefit. Cardio-oncology research is currently an important issue and finding effective cardiopreserving agents is a critical need. For the first time, we aimed to detect if dapagliflozin (DAP) could ameliorate CP-induced cardiac injury and investigated the role of hypoxia inducible factor α (HIF1α)/vascular endothelial growth factor (VEGF)/endothelial nitric oxide synthase (eNOS) pathway. METHODS Forty male Wistar albino rats were included in the current model. Studied groups are: control group; CP-induced cardiotoxicity group; CP group treated with DAP; CP group treated with DAP and administered a nitric oxide synthase inhibitor; nitro-ω-L-arginine (L-NNA) before DAP to explore the role of eNOS. RESULTS Our data revealed that CP could induce cardiac damage as manifested by significant increases in cardiac enzymes, blood pressure, malondialdehyde (MDA), tumor necrosis factor alpha (TNFα), HIF1α, sodium glucose co-transporter 2 (SGLT2) and cleaved caspase-3 levels with toxic histopathological changes. However, there are significant decreases in reduced glutathione (GSH), total antioxidant capacity (TAC), VEGF, and eNOS. On the opposite side, co-administration of DAP showed marked improvement of CP-induced cardiac damage that may be due to its ability to inhibit SGLT2, antioxidant, anti-inflammatory and anti-apoptotic properties. Results showed decreasing the cardioprotective effect of DAP on administration of L-NNA, reflecting the critical effect of eNOS in mediating such protection. CONCLUSION DAP could reduce CP cardiotoxicity based upon its ability to modulate SGLT2 and HIF1α/VEGF/eNOS signaling pathway.
Collapse
Affiliation(s)
| | - Asmaa Ma Bayoumi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Sahar Ahmed Mokhemer
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Sayed Shehata
- Department of Cardiology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | | |
Collapse
|
5
|
Varricchi G, Poto R, Ferrara AL, Gambino G, Marone G, Rengo G, Loffredo S, Bencivenga L. Angiopoietins, vascular endothelial growth factors and secretory phospholipase A 2 in heart failure patients with preserved ejection fraction. Eur J Intern Med 2022; 106:111-119. [PMID: 36280524 DOI: 10.1016/j.ejim.2022.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/27/2022] [Accepted: 10/17/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Heart failure (HF) is a growing public health burden, with high prevalence and mortality rates. A proportion of patients with HF have a normal ventricular ejection fraction (EF), referred to as HF with preserved EF (HFpEF), as opposed to patients with HF with reduced ejection fraction (HFrEF). HFpEF currently accounts for about 50% of all HF patients, and its prevalence is rising. Angiopoietins (ANGPTs), vascular endothelial growth factors (VEGFs) and secretory phospholipases A2 (sPLA2s) are proinflammatory mediators and key regulators of endothelial cells. METHODS The aim of this study was to analyze the plasma concentrations of angiogenic (ANGPT1, ANGPT2, VEGF-A) and lymphangiogenic (VEGF-C, VEGF-D) factors and the plasma activity of sPLA2 in patients with HFpEF and HFrEF compared to healthy controls. RESULTS The concentration of ANGPT1 was reduced in HFrEF compared to HFpEF patients and healthy controls. ANGPT2 levels were increased in both HFrEF and HFpEF subjects compared to controls. The ANGPT2/ANGPT1 ratio was increased in HFrEF patients compared to controls. The concentrations of both VEGF-A and VEGF-C did not differ among the three groups examined. VEGF-D was increased in both HFrEF and HFpEF patients compared to controls. Plasma activity of sPLA2 was increased in HFrEF but not in HFpEF patients compared to controls. CONCLUSIONS Our results indicate that three different classes of proinflammatory regulators of vascular permeability and smoldering inflammation are selectively altered in HFrEF or HFpEF patients. Studies involving larger cohorts of these patients will be necessary to demonstrate the clinical implications of our findings.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy; World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy; Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), 80131, Naples, Italy.
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy; World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy; Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy; World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy; Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Giuseppina Gambino
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy; World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy; Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy; Istituti Clinici Scientifici Maugeri SpA Società Benefit, 82037, Telese, (BN), Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy; World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy; Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Leonardo Bencivenga
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131, Naples, Italy; Gèrontopole de Toulouse, Institut du Vieillissement, CHU de Toulouse, 31000, Toulouse, France
| |
Collapse
|
6
|
Babkina AS, Yadgarov MY, Ostrova IV, Zakharchenko VE, Kuzovlev AN, Grechko AV, Lyubomudrov MA, Golubev AM. Serum Levels of VEGF-A and Its Receptors in Patients in Different Phases of Hemorrhagic and Ischemic Strokes. Curr Issues Mol Biol 2022; 44:4888-4901. [PMID: 36286047 PMCID: PMC9601157 DOI: 10.3390/cimb44100332] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Vascular endothelial growth factors (VEGFs) are important regulators of angiogenesis, neuroprotection, and neurogenesis. Studies have indicated the association of VEGF dysregulation with the development of neurodegenerative and cerebrovascular diseases. We studied the changes in serum levels of VEGF-A, VEGFR-1, and VEGFR-2 in patients at various phases of ischemic and hemorrhagic strokes. Quantitative assessment of VEGF-A, VEGFR-1, and VEGFR-2 in serum of patients with hemorrhagic or ischemic stroke was performed by enzyme immunoassay in the hyper-acute (1−24 h from the onset), acute (up to 1−7 days), and early subacute (7 days to 3 months) phases of stroke, and then compared with the control group and each other. Results of our retrospective study demonstrated different levels of VEGF-A and its receptors at various phases of ischemic and hemorrhagic strokes. In ischemic stroke, increased VEGFR-2 level was found in the hyper-acute (p = 0.045) and acute phases (p = 0.024), while elevated VEGF-A and reduced VEGFR-1 levels were revealed in the early subacute phase (p = 0.048 and p = 0.012, respectively). In hemorrhagic stroke, no significant changes in levels of VEGF-A and its receptors were identified in the hyper-acute phase. In the acute and early subacute phases there was an increase in levels of VEGF-A (p < 0.001 and p = 0.006, respectively) and VEGFR-2 (p < 0.001 and p = 0.012, respectively). Serum levels of VEGF-A and its receptors in patients with hemorrhagic and ischemic stroke indicate different pathogenic pathways depending on the phase of the disease.
Collapse
|
7
|
Handley EL, Callanan A. Modulation of Tissue Microenvironment Following Myocardial Infarction. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Ella Louise Handley
- Institute for Bioengineering School of Engineering University of Edinburgh Edinburgh EH9 3DW UK
| | - Anthony Callanan
- Institute for Bioengineering School of Engineering University of Edinburgh Edinburgh EH9 3DW UK
| |
Collapse
|
8
|
Kim LB, Russkikh GS, Putyatina AN, Tsypysheva OB. Age-Related Features of the Relationship between the Content of Vascular Endothelial Growth Factor and the Parameters of the Lipid Metabolism and Extracellular Matrix Metabolism in Men of the European Part of the Russian Arctic. ADVANCES IN GERONTOLOGY 2021. [DOI: 10.1134/s2079057021010392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Dobbin SJ, Petrie MC, Myles RC, Touyz RM, Lang NN. Cardiotoxic effects of angiogenesis inhibitors. Clin Sci (Lond) 2021; 135:71-100. [PMID: 33404052 PMCID: PMC7812690 DOI: 10.1042/cs20200305] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
The development of new therapies for cancer has led to dramatic improvements in survivorship. Angiogenesis inhibitors represent one such advancement, revolutionising treatment for a wide range of malignancies. However, these drugs are associated with cardiovascular toxicities which can impact optimal cancer treatment in the short-term and may lead to increased morbidity and mortality in the longer term. Vascular endothelial growth factor inhibitors (VEGFIs) are associated with hypertension, left ventricular systolic dysfunction (LVSD) and heart failure as well as arterial and venous thromboembolism, QTc interval prolongation and arrhythmia. The mechanisms behind the development of VEGFI-associated LVSD and heart failure likely involve the combination of a number of myocardial insults. These include direct myocardial effects, as well as secondary toxicity via coronary or peripheral vascular damage. Cardiac toxicity may result from the 'on-target' effects of VEGF inhibition or 'off-target' effects resulting from inhibition of other tyrosine kinases. Similar mechanisms may be involved in the development of VEGFI-associated right ventricular (RV) dysfunction. Some VEGFIs can be associated with QTc interval prolongation and an increased risk of ventricular and atrial arrhythmia. Further pre-clinical and clinical studies and trials are needed to better understand the impact of VEGFI on the cardiovascular system. Once mechanisms are elucidated, therapies can be investigated in clinical trials and surveillance strategies for identifying VEGFI-associated cardiovascular complications can be developed.
Collapse
Affiliation(s)
- Stephen J.H. Dobbin
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, United Kingdom, G12 8TA
| | - Mark C. Petrie
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, United Kingdom, G12 8TA
| | - Rachel C. Myles
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, United Kingdom, G12 8TA
| | - Rhian M. Touyz
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, United Kingdom, G12 8TA
| | - Ninian N. Lang
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, United Kingdom, G12 8TA
| |
Collapse
|
10
|
Varricchi G, Loffredo S, Bencivenga L, Ferrara AL, Gambino G, Ferrara N, de Paulis A, Marone G, Rengo G. Angiopoietins, Vascular Endothelial Growth Factors and Secretory Phospholipase A 2 in Ischemic and Non-Ischemic Heart Failure. J Clin Med 2020; 9:jcm9061928. [PMID: 32575548 PMCID: PMC7356305 DOI: 10.3390/jcm9061928] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF) is a growing public health burden, with high prevalence and mortality rates. In contrast to ischemic heart failure (IHF), the diagnosis of non-ischemic heart failure (NIHF) is established in the absence of coronary artery disease. Angiopoietins (ANGPTs), vascular endothelial growth factors (VEGFs) and secretory phospholipases A2 (sPLA2s) are proinflammatory mediators and key regulators of endothelial cells. In the present manuscript, we analyze the plasma concentrations of angiogenic (ANGPT1, ANGPT2, VEGF-A) and lymphangiogenic (VEGF-C, VEGF-D) factors and the plasma activity of sPLA2 in patients with IHF and NIHF compared to healthy controls. The concentrations of ANGPT1, ANGPT2 and their ratio significantly differed between HF patients and healthy controls. Similarly, plasma levels of VEGF-D and sPLA2 activity were higher in HF as compared to controls. Concentrations of ANGPT2 and the ANGPT2/ANGPT1 ratio (an index of vascular permeability) were increased in NIHF patients. VEGF-A and VEGF-C concentrations did not differ among the three examined groups. Interestingly, VEGF-D was selectively increased in IFH patients compared to controls. Plasma activity of sPLA2 was increased in IHF and NIHF patients compared to controls. Our results indicate that several regulators of vascular permeability and smoldering inflammation are specifically altered in IHF and NIHF patients. Studies involving larger cohorts of these patients will be necessary to demonstrate the clinical implications of our findings.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80100 Naples, Italy; (L.B.); (A.L.F.); (G.G.); (N.F.); (A.d.P.); (G.M.); (G.R.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80100 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80100 Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80100 Naples, Italy
- Correspondence: (G.V.); (S.L.)
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, 80100 Naples, Italy; (L.B.); (A.L.F.); (G.G.); (N.F.); (A.d.P.); (G.M.); (G.R.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80100 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80100 Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80100 Naples, Italy
- Correspondence: (G.V.); (S.L.)
| | - Leonardo Bencivenga
- Department of Translational Medical Sciences, University of Naples Federico II, 80100 Naples, Italy; (L.B.); (A.L.F.); (G.G.); (N.F.); (A.d.P.); (G.M.); (G.R.)
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80100 Naples, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, 80100 Naples, Italy; (L.B.); (A.L.F.); (G.G.); (N.F.); (A.d.P.); (G.M.); (G.R.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80100 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80100 Naples, Italy
| | - Giuseppina Gambino
- Department of Translational Medical Sciences, University of Naples Federico II, 80100 Naples, Italy; (L.B.); (A.L.F.); (G.G.); (N.F.); (A.d.P.); (G.M.); (G.R.)
| | - Nicola Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, 80100 Naples, Italy; (L.B.); (A.L.F.); (G.G.); (N.F.); (A.d.P.); (G.M.); (G.R.)
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, 80100 Naples, Italy; (L.B.); (A.L.F.); (G.G.); (N.F.); (A.d.P.); (G.M.); (G.R.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80100 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80100 Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80100 Naples, Italy; (L.B.); (A.L.F.); (G.G.); (N.F.); (A.d.P.); (G.M.); (G.R.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80100 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80100 Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80100 Naples, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico II, 80100 Naples, Italy; (L.B.); (A.L.F.); (G.G.); (N.F.); (A.d.P.); (G.M.); (G.R.)
- Istituti Clinici Scientifici Maugeri SpA Società Benefit, Via Bagni Vecchi, 1, 82037 Telese BN, Italy
| |
Collapse
|
11
|
Wilmes V, Lux C, Niess C, Gradhand E, Verhoff MA, Kauferstein S. Changes in gene expression patterns in postmortem human myocardial infarction. Int J Legal Med 2020; 134:1753-1763. [PMID: 32399898 PMCID: PMC7417407 DOI: 10.1007/s00414-020-02311-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/28/2020] [Indexed: 01/22/2023]
Abstract
In murine models, the expression of inducible nitric oxide synthase (iNOS) in myocardial infarction (MI) has been reported to be the result of tissue injury and inflammation. In the present study, mRNA expression of iNOS, hypoxia-inducible factor-1α (HIF-1α), and vascular endothelial growth factor (VEGF) was investigated in postmortem human infarction hearts. Since HIF-1α is the inducible subunit of the transcription factor HIF-1, which regulates transcription of iNOS and VEGF, the interrelation between the three genes was observed, to examine the molecular processes during the emergence of MI. iNOS and VEGF mRNAs were found to be significantly upregulated in the affected regions of MI hearts in comparison to healthy controls. Upregulation of HIF-1α was also present but not significant. Correlation analysis of the three genes indicated a stronger and significant correlation between HIF-1α and iNOS mRNAs than between HIF-1α and VEGF. The results of the study revealed differences in the expression patterns of HIF-1 downstream targets. The stronger transcription of iNOS by HIF-1 in the affected regions of MI hearts may represent a pathological process, since no correlation of iNOS and HIF-1α mRNA was found in non-affected areas of MI hearts. Oxidative stress is considered to cause molecular changes in MI, leading to increased iNOS expression. Therefore, it may also represent a forensic marker for detection of early changes in heart tissue.
Collapse
Affiliation(s)
- Verena Wilmes
- Institute of Legal Medicine, Johann Wolfgang Goethe University, Frankfurt, Germany.
| | - Constantin Lux
- Institute of Legal Medicine, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Constanze Niess
- Institute of Legal Medicine, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Elise Gradhand
- Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Marcel A Verhoff
- Institute of Legal Medicine, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Silke Kauferstein
- Institute of Legal Medicine, Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
12
|
Icli B, Li H, Pérez-Cremades D, Wu W, Ozdemir D, Haemmig S, Guimaraes RB, Manica A, Marchini JF, Orgill DP, Feinberg MW. MiR-4674 regulates angiogenesis in tissue injury by targeting p38K signaling in endothelial cells. Am J Physiol Cell Physiol 2020; 318:C524-C535. [PMID: 31913696 PMCID: PMC7099516 DOI: 10.1152/ajpcell.00542.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/27/2019] [Accepted: 01/03/2020] [Indexed: 01/22/2023]
Abstract
Neoangiogenesis is critical for tissue repair in response to injury such as myocardial ischemia or dermal wound healing. MicroRNAs are small noncoding RNAs and important regulators of angiogenesis under physiological and pathological disease states. Therefore, identification of microRNAs that may restore impaired angiogenesis in response to tissue injury may provide new targets for therapy. Using a microRNA microarray profiling approach, we identified a human-specific microRNA, miR-4674, that was significantly decreased in patients after myocardial tissue injury and had an endothelial cell (EC)-enriched expression pattern. Functionally, overexpression of miR-4674 markedly attenuated EC proliferation, migration, network tube formation, and spheroid sprouting, whereas blockade of miR-4674 had the opposite effects. Transcriptomic profiling, gene set enrichment analyses, bioinformatics, 3'-untranslated region (3'-UTR) reporter and microribonucleoprotein immunoprecipitation (miRNP-IP) assays, and small interfering RNA dependency studies revealed that miR-4674 regulates VEGF stimulated-p38 mitogen-activated protein kinase (MAPK) signaling and targets interleukin 1 receptor-associated kinase 1 (Irak1) and BICD cargo adaptor 2 (Bicd2) in ECs. Furthermore, Irak1 and Bicd2 were necessary for miR-4674-driven EC proliferation and migration. Finally, neutralization of miR-4674 increased angiogenesis, Irak1 and Bicd2 expression, and p38 phosphorylation in human skin organoids as a model of tissue injury. Collectively, targeting miR-4674 may provide a novel therapeutic target for tissue repair in pathological disease states associated with impaired angiogenesis.
Collapse
Affiliation(s)
- Basak Icli
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hao Li
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel Pérez-Cremades
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Physiology, University of Valencia and Fundación para la Investigación del Hospital Clínico de la Comunidad Valenciana (INCLIVA) Biomedical Research Institute, Valencia, Spain
| | - Winona Wu
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Denizhan Ozdemir
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Medical Biology, Hacettepe University, Ankara, Turkey
| | - Stefan Haemmig
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raphael Boesch Guimaraes
- Instituto de Cardiologia do Rio Grande do Sul, Fundação Universitária de Cardiologia (ICFUC), Porto Alegre, Rio Grande do Sul, Brazil
| | - Andre Manica
- Instituto de Cardiologia do Rio Grande do Sul, Fundação Universitária de Cardiologia (ICFUC), Porto Alegre, Rio Grande do Sul, Brazil
| | - Julio F Marchini
- Heart Institute, University of São Paulo Medical School, São Paulo, Brazil
| | - Dennis P Orgill
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mark W Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
13
|
Behera J, Nagarajan S, Saran U, Kumar R, Keshri GK, Suryakumar G, Chatterjee S. Nitric oxide restores peripheral blood mononuclear cell adhesion against hypoxia via NO-cGMP signalling. Cell Biochem Funct 2020; 38:319-329. [PMID: 31989682 DOI: 10.1002/cbf.3502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/01/2019] [Accepted: 12/12/2019] [Indexed: 11/10/2022]
Abstract
Hypoxia is the most detrimental threat to humans residing at high altitudes, affecting multifaceted cellular responses that are crucial for normal homeostasis. Inhalation of nitric oxide has been successfully implemented to combat the hypoxia effect in the high altitude patients. We hypothesize that nitric oxide (NO) restores the peripheral blood mononuclear cell-matrix deadhesion during hypoxia. In the present study, we investigate the cellular action of exogenous NO in the hypoxia-mediated diminution of cell-matrix adhesion of PBMNC and NO bioavailability in vitro. The result showed that NO level and cell-matrix adhesion of PBMNC were significantly reduced in hypoxia as compared with normoxia, as assessed by the DAF-FM and cell adhesion assay, respectively. In contrast, cellular oxidative damage response was indeed upregulated in hypoxic PBMNC. Further, gene expression analysis revealed that mRNA transcripts of cell adhesion molecules (Integrin α5 and β1) and eNOS expressions were significantly downregulated. The mechanistic study revealed that administration of NO and 8-Br-cGMP and overexpression of eNOS-GFP restored the basal NO level and recovers cell-matrix adhesion in PBMNC via cGMP-dependent protein kinase I (PKG I) signalling. In conclusion, NO-cGMP/PKG signalling may constitute a novel target to recover high altitude-afflicted cellular deadhesion. SIGNIFICANCE OF THIS STUDY: Cellular adhesion is a complex multistep process. The ability of cells to adhere to extracellular matrix is an essential physiological process for normal homeostasis and function. Hypoxia exposure in the PBMNC culture has been proposed to induce oxidative damage and cellular deadhesion and is generally believed to be the key factor in the reduction of NO bioavailability. In the present study, we demonstrated that NO donor or overexpression of eNOS-GFP has a protective effect against hypoxia-induced cellular deadhesion and greatly improves the redox balance by inhibiting the oxidative stress. Furthermore, this protective effect of NO is mediated by the NO-cGMP/PKG signal pathway, which may provide a potential strategy against hypoxia.
Collapse
Affiliation(s)
- Jyotirmaya Behera
- Vascular Biology Lab, AU-KBC Research Centre, MIT Campus of Anna University, Chennai, India
| | - Shunmugam Nagarajan
- Vascular Biology Lab, AU-KBC Research Centre, MIT Campus of Anna University, Chennai, India
| | - Uttara Saran
- Department of Biotechnology, Anna University, Chennai, India
| | - Ravi Kumar
- Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Gaurav K Keshri
- Defence Institute of Physiology and Allied Sciences, Delhi, India
| | | | - Suvro Chatterjee
- Vascular Biology Lab, AU-KBC Research Centre, MIT Campus of Anna University, Chennai, India.,Department of Biotechnology, Anna University, Chennai, India
| |
Collapse
|
14
|
Tirronen A, Vuorio T, Kettunen S, Hokkanen K, Ramms B, Niskanen H, Laakso H, Kaikkonen MU, Jauhiainen M, Gordts PLSM, Ylä-Herttuala S. Deletion of Lymphangiogenic and Angiogenic Growth Factor VEGF-D Leads to Severe Hyperlipidemia and Delayed Clearance of Chylomicron Remnants. Arterioscler Thromb Vasc Biol 2019; 38:2327-2337. [PMID: 30354205 DOI: 10.1161/atvbaha.118.311549] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective- Dyslipidemia is one of the key factors behind coronary heart disease. Blood and lymphatic vessels play pivotal roles in both lipoprotein metabolism and development of atherosclerotic plaques. Recent studies have linked members of VEGF (vascular endothelial growth factor) family to lipid metabolism, but the function of VEGF-D has remained unexplored. Here, we investigated how the deletion of VEGF-D affects lipid and lipoprotein metabolism in atherogenic LDLR-/- ApoB100/100 mice. Approach and Results- Deletion of VEGF-D (VEGF-D-/-LDLR-/-ApoB100/100) led to markedly elevated plasma cholesterol and triglyceride levels without an increase in atherogenesis. Size distribution and hepatic lipid uptake studies confirmed a delayed clearance of large chylomicron remnant particles that cannot easily penetrate through the vascular endothelium. Mechanistically, the inhibition of VEGF-D signaling significantly decreased the hepatic expression of SDC1 (syndecan 1), which is one of the main receptors for chylomicron remnant uptake when LDLR is absent. Immunohistochemical staining confirmed reduced expression of SDC1 in the sinusoidal surface of hepatocytes in VEGF-D deficient mice. Furthermore, hepatic RNA-sequencing revealed that VEGF-D is also an important regulator of genes related to lipid metabolism and inflammation. The lack of VEGF-D signaling via VEGFR3 (VEGF receptor 3) led to lowered expression of genes regulating triglyceride and cholesterol production, as well as downregulation of peroxisomal β-oxidation pathway. Conclusions- These results demonstrate that VEGF-D, a powerful lymphangiogenic and angiogenic growth factor, is also a major regulator of chylomicron metabolism in mice.
Collapse
Affiliation(s)
- Annakaisa Tirronen
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Taina Vuorio
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Sanna Kettunen
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Krista Hokkanen
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Bastian Ramms
- Division of Endocrinology and Metabolism, Department of Medicine (B.R., P.L.S.M.G.), University of California San Diego, La Jolla, CA.,Department of Chemistry, Biochemistry I, Bielefeld University, Germany (B.R.)
| | - Henri Niskanen
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Hanne Laakso
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Minna U Kaikkonen
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Matti Jauhiainen
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Biomedicum, Helsinki, Finland (M.J.)
| | - Philip L S M Gordts
- Division of Endocrinology and Metabolism, Department of Medicine (B.R., P.L.S.M.G.), University of California San Diego, La Jolla, CA.,Glycobiology Research and Training Center (P.L.S.M.G.), University of California San Diego, La Jolla, CA
| | - Seppo Ylä-Herttuala
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.).,Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| |
Collapse
|
15
|
Icli B, Wu W, Ozdemir D, Li H, Cheng HS, Haemmig S, Liu X, Giatsidis G, Avci SN, Lee N, Guimaraes RB, Manica A, Marchini JF, Rynning SE, Risnes I, Hollan I, Croce K, Yang X, Orgill DP, Feinberg MW. MicroRNA-615-5p Regulates Angiogenesis and Tissue Repair by Targeting AKT/eNOS (Protein Kinase B/Endothelial Nitric Oxide Synthase) Signaling in Endothelial Cells. Arterioscler Thromb Vasc Biol 2019; 39:1458-1474. [PMID: 31092013 PMCID: PMC6594892 DOI: 10.1161/atvbaha.119.312726] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 04/29/2019] [Indexed: 12/16/2022]
Abstract
Objective- In response to tissue injury, the appropriate progression of events in angiogenesis is controlled by a careful balance between pro and antiangiogenic factors. We aimed to identify and characterize microRNAs that regulate angiogenesis in response to tissue injury. Approach and Results- We show that in response to tissue injury, microRNA-615-5p (miR-615-5p) is rapidly induced and serves as an antiangiogenic microRNA by targeting endothelial cell VEGF (vascular endothelial growth factor)-AKT (protein kinase B)/eNOS (endothelial nitric oxide synthase) signaling in vitro and in vivo. MiR-615-5p expression is increased in wounds of diabetic db/db mice, in plasma of human subjects with acute coronary syndromes, and in plasma and skin of human subjects with diabetes mellitus. Ectopic expression of miR-615-5p markedly inhibited endothelial cell proliferation, migration, network tube formation in Matrigel, and the release of nitric oxide, whereas miR-615-5p neutralization had the opposite effects. Mechanistic studies using transcriptomic profiling, bioinformatics, 3' untranslated region reporter and microribonucleoprotein immunoprecipitation assays, and small interfering RNA dependency studies demonstrate that miR-615-5p inhibits the VEGF-AKT/eNOS signaling pathway in endothelial cells by targeting IGF2 (insulin-like growth factor 2) and RASSF2 (Ras-associating domain family member 2). Local delivery of miR-615-5p inhibitors, markedly increased angiogenesis, granulation tissue thickness, and wound closure rates in db/db mice, whereas miR-615-5p mimics impaired these effects. Systemic miR-615-5p neutralization improved skeletal muscle perfusion and angiogenesis after hindlimb ischemia in db/db mice. Finally, modulation of miR-615-5p expression dynamically regulated VEGF-induced AKT signaling and angiogenesis in human skin organoids as a model of tissue injury. Conclusions- These findings establish miR-615-5p as an inhibitor of VEGF-AKT/eNOS-mediated endothelial cell angiogenic responses and that manipulating miR-615-5p expression could provide a new target for angiogenic therapy in response to tissue injury. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Basak Icli
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Winona Wu
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Denizhan Ozdemir
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Department of Medical Biology, Hacettepe University, Ankara, Turkey
| | - Hao Li
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Henry S. Cheng
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Stefan Haemmig
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Xin Liu
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Giorgio Giatsidis
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Seyma Nazli Avci
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Nathan Lee
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Raphael Boesch Guimaraes
- Instituto de Cardiologia do Rio Grande do Sul, Fundação Universitária de Cardiologia (ICFUC), Porto Alegre, RS, Brazil
| | - Andre Manica
- Instituto de Cardiologia do Rio Grande do Sul, Fundação Universitária de Cardiologia (ICFUC), Porto Alegre, RS, Brazil
| | - Julio F Marchini
- Heart Institute, University of São Paulo Medical School, São Paulo, Brazil
| | - Stein Erik Rynning
- Rheumatology, Lillehamer Hospital for Rheumatic Diseases, Lillehamer, Norway
| | - Ivar Risnes
- Rheumatology, Lillehamer Hospital for Rheumatic Diseases, Lillehamer, Norway
| | - Ivana Hollan
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Research Department, Lillehamer Hospital for Rheumatic Diseases, Lillehamer, Norway
| | - Kevin Croce
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | | | - Dennis P. Orgill
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Mark W. Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
16
|
Gaspar D, Peixoto R, De Pieri A, Striegl B, Zeugolis DI, Raghunath M. Local pharmacological induction of angiogenesis: Drugs for cells and cells as drugs. Adv Drug Deliv Rev 2019; 146:126-154. [PMID: 31226398 DOI: 10.1016/j.addr.2019.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 05/12/2019] [Accepted: 06/16/2019] [Indexed: 12/12/2022]
Abstract
The past decades have seen significant advances in pro-angiogenic strategies based on delivery of molecules and cells for conditions such as coronary artery disease, critical limb ischemia and stroke. Currently, three major strategies are evolving. Firstly, various pharmacological agents (growth factors, interleukins, small molecules, DNA/RNA) are locally applied at the ischemic region. Secondly, preparations of living cells with considerable bandwidth of tissue origin, differentiation state and preconditioning are delivered locally, rarely systemically. Thirdly, based on the notion, that cellular effects can be attributed mostly to factors secreted in situ, the cellular secretome (conditioned media, exosomes) has come into the spotlight. We review these three strategies to achieve (neo)angiogenesis in ischemic tissue with focus on the angiogenic mechanisms they tackle, such as transcription cascades, specific signalling steps and cellular gases. We also include cancer-therapy relevant lymphangiogenesis, and shall seek to explain why there are often conflicting data between in vitro and in vivo. The lion's share of data encompassing all three approaches comes from experimental animal work and we shall highlight common technical obstacles in the delivery of therapeutic molecules, cells, and secretome. This plethora of preclinical data contrasts with a dearth of clinical studies. A lack of adequate delivery vehicles and standardised assessment of clinical outcomes might play a role here, as well as regulatory, IP, and manufacturing constraints of candidate compounds; in addition, completed clinical trials have yet to reveal a successful and efficacious strategy. As the biology of angiogenesis is understood well enough for clinical purposes, it will be a matter of time to achieve success for well-stratified patients, and most probably with a combination of compounds.
Collapse
Affiliation(s)
- Diana Gaspar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Rita Peixoto
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Andrea De Pieri
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Proxy Biomedical Ltd., Coilleach, Spiddal, Galway, Ireland
| | - Britta Striegl
- Competence Centre Tissue Engineering for Drug Development (TEDD), Centre for Cell Biology & Tissue Engineering, Institute for Chemistry and Biotechnology, Zurich University of Applied Sciences, Zurich, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Michael Raghunath
- Competence Centre Tissue Engineering for Drug Development (TEDD), Centre for Cell Biology & Tissue Engineering, Institute for Chemistry and Biotechnology, Zurich University of Applied Sciences, Zurich, Switzerland.
| |
Collapse
|
17
|
Shahzad S, Mateen S, Hasan A, Moin S. GRACE score of myocardial infarction patients correlates with oxidative stress index, hsCRP and inflammation. Immunobiology 2019; 224:433-439. [DOI: 10.1016/j.imbio.2019.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 12/22/2022]
|
18
|
Icli B, Wu W, Ozdemir D, Li H, Haemmig S, Liu X, Giatsidis G, Cheng HS, Avci SN, Kurt M, Lee N, Guimaraes RB, Manica A, Marchini JF, Rynning SE, Risnes I, Hollan I, Croce K, Orgill DP, Feinberg MW. MicroRNA-135a-3p regulates angiogenesis and tissue repair by targeting p38 signaling in endothelial cells. FASEB J 2019; 33:5599-5614. [PMID: 30668922 PMCID: PMC6436660 DOI: 10.1096/fj.201802063rr] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/02/2019] [Indexed: 12/26/2022]
Abstract
Angiogenesis is a critical process in repair of tissue injury that is regulated by a delicate balance between pro- and antiangiogenic factors. In disease states associated with impaired angiogenesis, we identified that miR-135a-3p is rapidly induced and serves as an antiangiogenic microRNA (miRNA) by targeting endothelial cell (EC) p38 signaling in vitro and in vivo. MiR-135a-3p overexpression significantly inhibited EC proliferation, migration, and network tube formation in matrigel, whereas miR-135-3p neutralization had the opposite effects. Mechanistic studies using transcriptomic profiling, bioinformatics, 3'-UTR reporter and miRNA ribonucleoprotein complex -immunoprecipitation assays, and small interfering RNA dependency studies revealed that miR-135a-3p inhibits the p38 signaling pathway in ECs by targeting huntingtin-interacting protein 1 (HIP1). Local delivery of miR-135a-3p inhibitors to wounds of diabetic db/db mice markedly increased angiogenesis, granulation tissue thickness, and wound closure rates, whereas local delivery of miR-135a-3p mimics impaired these effects. Finally, through gain- and loss-of-function studies in human skin organoids as a model of tissue injury, we demonstrated that miR-135a-3p potently modulated p38 signaling and angiogenesis in response to VEGF stimulation by targeting HIP1. These findings establish miR-135a-3p as a pivotal regulator of pathophysiological angiogenesis and tissue repair by targeting a VEGF-HIP1-p38K signaling axis, providing new targets for angiogenic therapy to promote tissue repair.-Icli, B., Wu, W., Ozdemir, D., Li, H., Haemmig, S., Liu, X., Giatsidis, G., Cheng, H. S., Avci, S. N., Kurt, M., Lee, N., Guimaraes, R. B., Manica, A., Marchini, J. F., Rynning, S. E., Risnes, I., Hollan, I., Croce, K., Orgill, D. P., Feinberg, M. W. MicroRNA-135a-3p regulates angiogenesis and tissue repair by targeting p38 signaling in endothelial cells.
Collapse
Affiliation(s)
- Basak Icli
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Winona Wu
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Denizhan Ozdemir
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Biology, Hacettepe University, Ankara, Turkey
| | - Hao Li
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Stefan Haemmig
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xin Liu
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Giorgio Giatsidis
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Henry S. Cheng
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Seyma Nazli Avci
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Merve Kurt
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nathan Lee
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Raphael Boesche Guimaraes
- Instituto de Cardiologia do Rio Grande do Sul, Fundação Universitária de Cardiologia (ICFUC), Porto Alegre, Rio Grande do Sul, Brazil
| | - Andre Manica
- Instituto de Cardiologia do Rio Grande do Sul, Fundação Universitária de Cardiologia (ICFUC), Porto Alegre, Rio Grande do Sul, Brazil
| | - Julio F. Marchini
- Heart Institute, University of São Paulo Medical School, São Paulo, Brazil
| | - Stein Erik Rynning
- Department of Cardiac Surgery, LHL Hospital Gardermoen, Jessheim, Norway
| | - Ivar Risnes
- Department of Cardiac Surgery, LHL Hospital Gardermoen, Jessheim, Norway
| | - Ivana Hollan
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Rheumatology Department, Lillehamer Hospital for Rheumatic Diseases, Lillehamer, Norway
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| | - Kevin Croce
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dennis P. Orgill
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark W. Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Garcia R, Bouleti C, Sirol M, Logeart D, Monnot C, Ardidie-Robouant C, Caligiuri G, Mercadier JJ, Germain S. VEGF-A plasma levels are associated with microvascular obstruction in patients with ST-segment elevation myocardial infarction. Int J Cardiol 2019; 291:19-24. [PMID: 30910283 DOI: 10.1016/j.ijcard.2019.02.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/06/2019] [Accepted: 02/27/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Microvascular obstruction (MVO) is associated with poor outcome after ST-segment elevation myocardial infarction (STEMI). Vascular endothelial growth factor-A (VEGF-A) is a vascular permeability inducer playing a key role in MVO pathogenesis. We aimed to assess whether VEGF-A levels are associated with MVO, when evaluated by magnetic resonance imaging (MRI) in STEMI patients. METHODS The multicenter prospective PREGICA study included a CMR substudy with all consecutive patients with a first STEMI who had undergone cardiac MRI at baseline and at 6-month follow-up. Patients with initial TIMI flow >1 were excluded. VEGF-A levels were measured in blood samples drawn at inclusion. RESULTS Between 2010 and 2017, 147 patients (mean age 57 ± 10 years; 84% males) were included. MVO was present in 65 (44%) patients. After multivariate analysis, higher troponin peak (OR 1.005; 95% CI 1.001-1.008; p = 0.007) and VEGF-A levels (OR 1.003; 95% CI 1.001-1.005; p = 0.015) were independently associated with MVO. When considering only patients with successful percutaneous coronary intervention (final TIMI flow 3, n = 130), higher troponin peak (p = 0.004) and VEGF-A levels (p = 0.03) remained independently predictive of MVO. Moreover, MVO was associated with adverse left ventricular (LV) remodeling and VEGF-A levels were significantly and inversely correlated with LV ejection fraction (EF) at 6-month follow-up. CONCLUSION Our results show that VEGF-A levels were independently associated with MVO during STEMI and correlated with mid-term LVEF alteration. VEGF-A could therefore be considered as a biomarker of MVO in STEMI patients and be used to stratify patient prognosis.
Collapse
Affiliation(s)
- Rodrigue Garcia
- CHU Poitiers, Service de Cardiologie, 2 rue de la Milétrie, 86021 Poitiers, France; Center for Interdisciplinary Research in Biology (CIRB), College de France, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Sciences et Lettres (PSL) Research University, 11, place Marcelin Berthelot, Paris F-75005, France
| | - Claire Bouleti
- Hôpital Bichat, APHP, Cardiology Department, 46 Rue Henri Huchard, 75877 Paris, Paris Diderot University, DHU Fire, France
| | - Marc Sirol
- Hôpital Ambroise-Paré, 9 Avenue Charles de Gaulle, 92100 Boulogne-Billancourt, INSERM U1018, Team 5 Université Paris Sud-Université Versailles Saint Quentin en Yvelines, CESP (Centre for Epidemiology and Population Health EpReC Team, Renal and Cardiovascular Epidemiology), France
| | - Damien Logeart
- Hopital Lariboisière, HEGP 2 rue Ambroise-Paré, 75010 Paris, France
| | - Catherine Monnot
- Center for Interdisciplinary Research in Biology (CIRB), College de France, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Sciences et Lettres (PSL) Research University, 11, place Marcelin Berthelot, Paris F-75005, France
| | - Corinne Ardidie-Robouant
- Center for Interdisciplinary Research in Biology (CIRB), College de France, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Sciences et Lettres (PSL) Research University, 11, place Marcelin Berthelot, Paris F-75005, France
| | | | - Jean-Jacques Mercadier
- Signalisation and Cardiovascular Pathophysiology - UMR-S 1180, Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Stéphane Germain
- Center for Interdisciplinary Research in Biology (CIRB), College de France, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Sciences et Lettres (PSL) Research University, 11, place Marcelin Berthelot, Paris F-75005, France.
| |
Collapse
|
20
|
Shi C, Zhao Y, Yang Y, Chen C, Hou X, Shao J, Yao H, Li Q, Xia Y, Dai J. Collagen-binding VEGF targeting the cardiac extracellular matrix promotes recovery in porcine chronic myocardial infarction. Biomater Sci 2018; 6:356-363. [PMID: 29266144 DOI: 10.1039/c7bm00891k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An effective therapy for chronic myocardial infarction (MI) has yet to be developed. Vascular endothelial growth factor (VEGF) promotes angiogenesis and improves cardiac function after MI. However, non-targeted delivery of VEGF decreases its therapeutic efficacy. In this study, for targeting the cardiac extracellular matrix, a collagen-binding domain (CBD) VEGF was used to bind specifically to the collagen-rich cardiac extracellular matrix. When intramyocardially injected into the peri-infarct region of a chronically infarcted porcine heart, CBD-VEGF attenuated the remodeling of the left ventricle with a decreased infarct size and promoted cardiomyocyte survival and angiogenesis 3 months after injection. In the 12-month trial, mature vessel networks and myocardium-like tissues were observed in the infarct region after CBD-VEGF injection. Also these beneficial effects might derive from CBD-VEGF significantly protecting cardiomyocytes from apoptosis and recruiting cardiac progenitor cells to the infarcted region. These results demonstrated that CBD-VEGF could be a promising therapeutic strategy for chronic MI.
Collapse
Affiliation(s)
- Chunying Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266021, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Magkoutis N, Mantzaraki V, Farmakis D, Spathis A, Foukas P, Bistola V, Bakosis G, Konstantoudakis S, Trogkanis E, Papingiotis G, Hatziagelaki E, Ikonomidis I, Karavidas A, Filippatos G, Parissis J. Effects of functional electrical stimulation of lower limb muscles on circulating endothelial progenitor cells, CD34+ cells and vascular endothelial growth factor-A in heart failure with reduced ejection fraction. Eur J Heart Fail 2018. [DOI: 10.1002/ejhf.1176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Nikolas Magkoutis
- Department of Cardiology; Gennimatas General Hospital; Athens Greece
| | | | - Dimitrios Farmakis
- Heart Failure Unit, Department of Cardiology, Attikon University Hospital; National and Kapodistrian University of Athens; Athens Greece
| | - Aris Spathis
- Department of Cytopathology, Attikon University Hospital; National and Kapodistrian University of Athens; Athens Greece
| | - Periklis Foukas
- Second Department of Pathology, Attikon University Hospital; National and Kapodistrian University of Athens; Athens Greece
| | - Vasiliki Bistola
- Heart Failure Unit, Department of Cardiology, Attikon University Hospital; National and Kapodistrian University of Athens; Athens Greece
| | - Georgios Bakosis
- Heart Failure Unit, Department of Cardiology, Attikon University Hospital; National and Kapodistrian University of Athens; Athens Greece
| | - Stefanos Konstantoudakis
- Second Department of Pathology, Attikon University Hospital; National and Kapodistrian University of Athens; Athens Greece
| | | | - Georgios Papingiotis
- Heart Failure Unit, Department of Cardiology, Attikon University Hospital; National and Kapodistrian University of Athens; Athens Greece
| | - Erifili Hatziagelaki
- Second Department of Internal Medicine, Attikon University Hospital; National and Kapodistrian University of Athens; Athens Greece
| | - Ignatios Ikonomidis
- Heart Failure Unit, Department of Cardiology, Attikon University Hospital; National and Kapodistrian University of Athens; Athens Greece
| | | | - Gerasimos Filippatos
- Heart Failure Unit, Department of Cardiology, Attikon University Hospital; National and Kapodistrian University of Athens; Athens Greece
| | - John Parissis
- Heart Failure Unit, Department of Cardiology, Attikon University Hospital; National and Kapodistrian University of Athens; Athens Greece
| |
Collapse
|
22
|
Mortality associated with bevacizumab intravitreal injections in age-related macular degeneration patients after acute myocardial infarct: a retrospective population-based survival analysis. Graefes Arch Clin Exp Ophthalmol 2018; 256:651-663. [PMID: 29429131 DOI: 10.1007/s00417-018-3917-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Intraocular injections of antivascular endothelial growth factor (VEGF) agents are currently the main therapy in age-related macular degeneration (AMD). The safety of bevacizumab, an anti-VEGF compound frequently delivered off label, is debated, particularly for high-group risks. We aim to analyze the mortality associated with intravitreal injections of bevacizumab for AMD in patients previously diagnosed with acute myocardial infarct (MI). METHODS In a national database, we identified bevacizumab-treated AMD patients with a diagnosis of MI prior to their first bevacizumab injection, delivered between September 2008 and October 2014 (n = 2100). We then generated sub-groups of patients treated within 3 months (n = 11), 6 months (n = 24), 12 months (n = 52), and 24 months (n = 124) after MI. Those patients were compared to age- and gender-matched members that had a MI at the same time and had never been exposed to anti-VEGF. Survival analysis was performed using propensity score-adjusted Cox regression. RESULTS Bevacizumab-treated patients were slightly and insignificantly older than controls (mean age 83.25 vs 83.19 year, P = .75). Gender distribution was similar. In a Cox regression adjusted with propensity score, the following differences in mortality were found: within 3 months between MI and initiation of bevacizumab treatment, OR = 6.22 (95% C.I 1.08-35.97, P < .05); within 6 months, OR = 2.37 (95% C.I 0.93-6.02, P = .071); within 12 months, OR = 3.00 (95% C.I 1.44-6.28, P < .01); within 24 months after MI, OR = 2.24 (95% C.I 1.35-3.70, P < .01); and MI any time prior to first bevacizumab injection, OR = 1.71 (95% C.I 1.53-1.92, P < .001). CONCLUSIONS We report increased mortality associated with the use of intravitreal bevacizumab in AMD patients after MI, compared to age- and gender-matched post-MI patients with no exposure to any anti-VEGF agent. Caution should be taken while offering bevacizumab to AMD patients after MI.
Collapse
|
23
|
Ambasta RK, Kohli H, Kumar P. Multiple therapeutic effect of endothelial progenitor cell regulated by drugs in diabetes and diabetes related disorder. J Transl Med 2017; 15:185. [PMID: 28859673 PMCID: PMC5580204 DOI: 10.1186/s12967-017-1280-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/12/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Reduced levels of endothelial progenitor cells (EPCs) counts have been reported in diabetic mellitus (DM) patients and other diabetes-related disorder. EPCs are a circulating, bone marrow-derived cell population that appears to participate in vasculogenesis, angiogenesis and damage repair. These EPC may revert the damage caused in diabetic condition. We aim to identify several existing drugs and signaling molecule, which could alleviate or improve the diabetes condition via mobilizing and increasing EPC number as well as function. MAIN BODY Accumulated evidence suggests that dysregulation of EPC phenotype and function may be attributed to several signaling molecules and cytokines in DM patients. Hyperglycemia alone, through the overproduction of reactive oxygen species (ROS) via eNOS and NOX, can induce changes in gene expression and cellular behavior in diabetes. Furthermore, reports suggest that EPC telomere shortening via increased oxidative DNA damage may play an important role in the pathogenesis of coronary artery disease in diabetic patients. In this review, different type of EPC derived from different sources has been discussed along with cell-surface marker. The reduced number and immobilized EPC in diabetic condition have been mobilized for the therapeutic purpose via use of existing, and novel drugs have been discussed. Hence, evidence list of all types of drugs that have been reported to target the same pathway which affect EPC number and function in diabetes has been reviewed. Additionally, we highlight that proteins are critical in diabetes via polymorphism and inhibitor studies. Ultimately, a lucid pictorial explanation of diabetic and normal patient signaling pathways of the collected data have been presented in order to understand the complex signaling mystery underlying in the diseased and normal condition. CONCLUSION Finally, we conclude on eNOS-metformin-HSp90 signaling and its remedial effect for controlling the EPC to improve the diabetic condition for delaying diabetes-related complication. Altogether, the review gives a holistic overview about the elaborate therapeutic effect of EPC regulated by novel and existing drugs in diabetes and diabetes-related disorder.
Collapse
Affiliation(s)
- Rashmi K. Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, DTU, Delhi, India
| | - Harleen Kohli
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, DTU, Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, DTU, Delhi, India
| |
Collapse
|
24
|
Au Yeung SL, Lam HSHS, Schooling CM. Vascular Endothelial Growth Factor and Ischemic Heart Disease Risk: A Mendelian Randomization Study. J Am Heart Assoc 2017; 6:JAHA.117.005619. [PMID: 28765276 PMCID: PMC5586422 DOI: 10.1161/jaha.117.005619] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) has angiogenic and possibly proatherosclerotic properties. Observationally it is positively associated with cardiovascular disease, although these observations could be confounded or due to reverse causation. We assessed ischemic heart disease (IHD) risk by genetically predicted VEGF, ie, using Mendelian randomization. METHODS AND RESULTS Single nucleotide polymorphisms (SNPs) predicting VEGF level, at genome-wide significance, were applied to the CARDIoGRAMplusC4D 1000 Genomes-based genome-wide association study IHD case (n=60 801)-control (n=123 504) study. We obtained unconfounded estimates using instrumental variable analysis by combining the Wald estimates for each SNP using inverse variance weighting and Mendelian randomization-Egger regression. Based on 9 SNPs independently predicting VEGF (rs1740073 [C6orf223], rs2375981 [KCNV2], rs2639990 [ZADH2], rs4782371 [ZFPM1], rs6921438 [LOC100132354], rs7043199 [VLDLR-AS1], rs10761741 [JMJD1C], rs6993770 [ZFPM2], and rs114694170 [MEF2C]), VEGF was unrelated to IHD (odds ratio 0.99 per log-transformed pg/mL, 95%CI 0.96-1.02) using inverse variance weighting. However, Mendelian randomization-Egger regression suggested an inverse relation of VEGF with IHD (odds ratio 0.95, 95%CI 0.91-0.99), although the association was not evident after excluding the lead SNP (rs6921438) or additionally excluding the pleiotropic SNP (rs6993770). CONCLUSIONS Our study does not provide strong evidence for a positive effect of VEGF on IHD but does not rule out the possibility that some specific types of VEGF, for which genetic predictors have not yet been identified, might play a role.
Collapse
Affiliation(s)
- Shiu Lun Au Yeung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hugh Simon Hung San Lam
- Department of Pediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - C Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China .,City University of New York, Graduate School of Public Health and Health Policy, New York, NY
| |
Collapse
|
25
|
Zhuo Y, Zeng Q, Zhang P, Li G, Xie Q, Cheng Y. VEGF Promoter Polymorphism Confers an Increased Risk of Pulmonary Arterial Hypertension in a Chinese Population. Yonsei Med J 2017; 58:305-311. [PMID: 28120560 PMCID: PMC5290009 DOI: 10.3349/ymj.2017.58.2.305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/03/2016] [Accepted: 09/22/2016] [Indexed: 02/03/2023] Open
Abstract
PURPOSE Evidence on the contribution of genes to the hereditary predisposition to pulmonary arterial hypertension (PAH) is limited. MATERIALS AND METHODS In this study, we hypothesized that single nucleotide variants in vascular endothelial growth factor (VEGF) gene may alter gene function and expression and may be associated with PAH risk. Five putatively functional loci (rs699947C>A and rs833061T>C in the promoter, rs3025040C>T, rs10434G>A and rs3025053G>A in the 3'-UTR) in the VEGF gene were genotyped and analyzed in a retrospective study of 587 patients with PAH and 736 healthy subjects from southern China. RESULTS We found that the rs833061T>C polymorphism was significantly associated with PAH risk, while the other single nucleotide polymorphisms were not. Compared to carriers with TT genotype, those with rs833061C variant genotype (CT/CC) had an increased risk of PAH (odds ratio=1.47, 95% confidence interval=1.18-1.83, p=0.001). Functional assays indicated that CT/CC variant genotype had significantly higher mRNA levels of VEGF in peripheral blood mononuclear cells than TT genotype (p=0.021). Luciferase reporter assay indicated that having a C allele conferred a significantly higher transcription activity than that with a T allele. CONCLUSION Our findings suggest that the functional polymorphism rs833061T>C in VEGF gene promoter modulates VEGF expression and may be a valuable biomarker for predicting PAH susceptibility.
Collapse
Affiliation(s)
- Yufeng Zhuo
- Department of Cardiology, Panyu Hexian Memorial Hospital, Guangzhou, China.
| | - Qingchun Zeng
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Zhang
- Department of Cardiology, Panyu Hexian Memorial Hospital, Guangzhou, China
| | - Guoyang Li
- Department of Respiratory Medicine, Panyu Hexian Memorial Hospital, Guangzhou, China
| | - Qiang Xie
- Department of Cardiology, Panyu Hexian Memorial Hospital, Guangzhou, China
| | - Ying Cheng
- Department of Cardiology, Panyu Hexian Memorial Hospital, Guangzhou, China
| |
Collapse
|
26
|
Rakocevic J, Orlic D, Mitrovic-Ajtic O, Tomasevic M, Dobric M, Zlatic N, Milasinovic D, Stankovic G, Ostojić M, Labudovic-Borovic M. Endothelial cell markers from clinician's perspective. Exp Mol Pathol 2017; 102:303-313. [PMID: 28192087 DOI: 10.1016/j.yexmp.2017.02.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 02/04/2017] [Accepted: 02/08/2017] [Indexed: 02/07/2023]
Abstract
Endothelial cell markers are membrane-bound or cytoplasmic molecules expressed by endothelial cells, which help their easier identification and discrimination from other cell types. During vasculogenesis, endothelial cells differentiate from hemangioblasts to form new blood vessels. With the discovery of endothelial progenitor cells (EPC) and their ability to form new blood vessels, the term vasculogenesis is not only reserved for the embryonic development. Possibility of de novo blood vessel formation from EPC is now widely explored in different ischemic conditions, especially in cardiovascular medicine. Numerous clinical trials have tested enhancing tissue vascularization by delivering hematopoietic cells that expressed endothelial markers. This therapeutic approach proved to be challenging and promising, particularly for patients who have exhausted all conventional therapeutic modalities. Angiogenesis, which refers to the formation of new blood vessels from existing vasculature, is indispensable process during tumor progression and metastasis. Blockage of tumor angiogenesis by targeting and inhibiting endothelial cell has emerged as novel safe and efficacious method to control many advanced malignant diseases. Numerous clinical studies are currently testing new antiangiogenic drugs which target and inhibit endothelial cell markers, receptors or molecules which transmit receptor-mediated signals, therefore inhibiting endothelial cell proliferation, migration and vascular tube formation. Many of these drugs are now widely used in clinical settings as first- or second-line chemotherapy in advanced malignant conditions. So far, these therapeutic approaches gave modest, yet encouraging clinical improvements, prolonging survival and improving functional capacity and quality of life for many terminally ill patients. Here we present the most commonly used endothelial cell markers along with their applicability in contemporary clinical practice.
Collapse
Affiliation(s)
- Jelena Rakocevic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, 26 Visegradska Street, Belgrade, Serbia
| | - Dejan Orlic
- Cardiology Clinic, Clinical Center of Serbia, 8 Dr Koste Todorovica Street, Belgrade, Serbia; School of Medicine, University of Belgrade, 8 Dr Subotica Street, Belgrade, Serbia
| | - Olivera Mitrovic-Ajtic
- Department for Neuroendocrinology, Institute for Medical Research, 4 Dr Subotica Street, Belgrade, Serbia
| | - Miloje Tomasevic
- Cardiology Clinic, Clinical Center of Serbia, 8 Dr Koste Todorovica Street, Belgrade, Serbia; Department of Internal medicine, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, Kragujevac, Serbia
| | - Milan Dobric
- Cardiology Clinic, Clinical Center of Serbia, 8 Dr Koste Todorovica Street, Belgrade, Serbia; School of Medicine, University of Belgrade, 8 Dr Subotica Street, Belgrade, Serbia
| | - Natasa Zlatic
- School of Medicine, University of Belgrade, 8 Dr Subotica Street, Belgrade, Serbia
| | - Dejan Milasinovic
- Cardiology Clinic, Clinical Center of Serbia, 8 Dr Koste Todorovica Street, Belgrade, Serbia
| | - Goran Stankovic
- Cardiology Clinic, Clinical Center of Serbia, 8 Dr Koste Todorovica Street, Belgrade, Serbia; School of Medicine, University of Belgrade, 8 Dr Subotica Street, Belgrade, Serbia
| | - Miodrag Ostojić
- School of Medicine, University of Belgrade, 8 Dr Subotica Street, Belgrade, Serbia
| | - Milica Labudovic-Borovic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, 26 Visegradska Street, Belgrade, Serbia.
| |
Collapse
|
27
|
Al-Mohanna F. The Cardiokines. ENDOCRINOLOGY OF THE HEART IN HEALTH AND DISEASE 2017:87-114. [DOI: 10.1016/b978-0-12-803111-7.00004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
28
|
Niu J, Han X, Qi H, Yin J, Zhang Z, Zhang Z. Correlation between vascular endothelial growth factor and long-term prognosis in patients with acute myocardial infarction. Exp Ther Med 2016; 12:475-479. [PMID: 27347081 DOI: 10.3892/etm.2016.3286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 11/05/2015] [Indexed: 01/10/2023] Open
Abstract
The aim of the present study was to investigate the correlation between plasma the levels of vascular endothelial growth factor (VEGF) and major adverse cardiovascular events (MACE) in patients with acute myocardial infarction (AMI). A total of 124 patients with AMI undergoing emergency percutaneous coronary intervention (PCI) were selected, and plasma VEGF levels were measured 7 days after the onset of AMI using an enzyme-linked immunosorbent assay. The patients were divided into the L (≤190 pg/ml VEGF) and H (>190 pg/ml VEGF) groups, and were followed up every 2 months for an average of 12 months. MACE were recorded during follow-up. On the basis of these results, the patients were further divided into the MACE and non-MACE (N-MACE) groups, and the serum VEGF concentration was compared between the two groups. At the 6-month follow-up, the incidence of MACE in the H group was found to be significantly reduced compared with the L group. The serum VEGF concentration in the N-MACE group was significantly higher compared with the MACE group. Multinomial logistic regression revealed that reduced VEGF levels (β=1.243; 95% CI, 1.018-1.326; P=0.026) were independent risk factors for MACE. In conclusion, high plasma VEGF levels at 7 days after AMI onset facilitate the long-term prognosis in the same infarct zone in patients with AMI, while low plasma VEGF levels are independent risk factors for MACE.
Collapse
Affiliation(s)
- Jiamin Niu
- Department of Cardiology, Laiwu People's Hospital, Laiwu, Shandong 271100, P.R. China
| | - Xia Han
- Department of Cardiology, Laiwu People's Hospital, Laiwu, Shandong 271100, P.R. China
| | - Huaxin Qi
- Department of Cardiology, Laiwu People's Hospital, Laiwu, Shandong 271100, P.R. China
| | - Jie Yin
- Department of Cardiology, Laiwu People's Hospital, Laiwu, Shandong 271100, P.R. China
| | - Zhiqiang Zhang
- Department of Cardiology, Laiwu People's Hospital, Laiwu, Shandong 271100, P.R. China
| | - Zengtang Zhang
- Department of Cardiology, Laiwu People's Hospital, Laiwu, Shandong 271100, P.R. China
| |
Collapse
|
29
|
Choi SH, Ruggiero D, Sorice R, Song C, Nutile T, Vernon Smith A, Concas MP, Traglia M, Barbieri C, Ndiaye NC, Stathopoulou MG, Lagou V, Maestrale GB, Sala C, Debette S, Kovacs P, Lind L, Lamont J, Fitzgerald P, Tönjes A, Gudnason V, Toniolo D, Pirastu M, Bellenguez C, Vasan RS, Ingelsson E, Leutenegger AL, Johnson AD, DeStefano AL, Visvikis-Siest S, Seshadri S, Ciullo M. Six Novel Loci Associated with Circulating VEGF Levels Identified by a Meta-analysis of Genome-Wide Association Studies. PLoS Genet 2016; 12:e1005874. [PMID: 26910538 PMCID: PMC4766012 DOI: 10.1371/journal.pgen.1005874] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/26/2016] [Indexed: 12/31/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is an angiogenic and neurotrophic factor, secreted by endothelial cells, known to impact various physiological and disease processes from cancer to cardiovascular disease and to be pharmacologically modifiable. We sought to identify novel loci associated with circulating VEGF levels through a genome-wide association meta-analysis combining data from European-ancestry individuals and using a dense variant map from 1000 genomes imputation panel. Six discovery cohorts including 13,312 samples were analyzed, followed by in-silico and de-novo replication studies including an additional 2,800 individuals. A total of 10 genome-wide significant variants were identified at 7 loci. Four were novel loci (5q14.3, 10q21.3, 16q24.2 and 18q22.3) and the leading variants at these loci were rs114694170 (MEF2C, P = 6.79x10-13), rs74506613 (JMJD1C, P = 1.17x10-19), rs4782371 (ZFPM1, P = 1.59x10-9) and rs2639990 (ZADH2, P = 1.72x10-8), respectively. We also identified two new independent variants (rs34528081, VEGFA, P = 1.52x10-18; rs7043199, VLDLR-AS1, P = 5.12x10-14) at the 3 previously identified loci and strengthened the evidence for the four previously identified SNPs (rs6921438, LOC100132354, P = 7.39x10-1467; rs1740073, C6orf223, P = 2.34x10-17; rs6993770, ZFPM2, P = 2.44x10-60; rs2375981, KCNV2, P = 1.48x10-100). These variants collectively explained up to 52% of the VEGF phenotypic variance. We explored biological links between genes in the associated loci using Ingenuity Pathway Analysis that emphasized their roles in embryonic development and function. Gene set enrichment analysis identified the ERK5 pathway as enriched in genes containing VEGF associated variants. eQTL analysis showed, in three of the identified regions, variants acting as both cis and trans eQTLs for multiple genes. Most of these genes, as well as some of those in the associated loci, were involved in platelet biogenesis and functionality, suggesting the importance of this process in regulation of VEGF levels. This work also provided new insights into the involvement of genes implicated in various angiogenesis related pathologies in determining circulating VEGF levels. The understanding of the molecular mechanisms by which the identified genes affect circulating VEGF levels could be important in the development of novel VEGF-related therapies for such diseases. Vascular Endothelial Growth Factor (VEGF) is a protein with a fundamental role in development of vascular system. The protein, produced by many types of cells, is released in the blood. High levels of VEGF have been observed in different pathological conditions especially in cancer, cardiovascular, and inflammatory diseases. Therefore, identifying the genetic factors influencing VEGF levels is important for predicting and treating such pathologies. The number of genetic variants associated with VEGF levels has been limited. To identify new loci, we have performed a Genome Wide Association Study meta-analysis on a sample of more than 16,000 individuals from 10 cohorts, using a high-density genetic map. This analysis revealed 10 variants associated with VEGF circulating levels, 6 of these being novel associations. The 10 variants cumulatively explain more than 50% of the variability of VEGF serum levels. Our analyses have identified genes known to be involved in angiogenesis related diseases and genes implicated in platelet metabolism, suggesting the importance of links between this process and VEGF regulation. Overall, these data have improved our understanding of the genetic variation underlying circulating VEGF levels. This in turn could guide our response to the challenge posed by various VEGF-related pathologies.
Collapse
Affiliation(s)
- Seung Hoan Choi
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
- National Heart, Lung and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, United States of America
| | - Daniela Ruggiero
- Institute of Genetics and Biophysics, National Research Council of Italy, Naples, Italy
| | - Rossella Sorice
- Institute of Genetics and Biophysics, National Research Council of Italy, Naples, Italy
| | - Ci Song
- Population Sciences Branch, National Heart, Lung and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, United States of America
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Teresa Nutile
- Institute of Genetics and Biophysics, National Research Council of Italy, Naples, Italy
| | - Albert Vernon Smith
- Icelandic Heart Association, Kopavogur, Iceland
- University of Iceland, Reykjavik, Iceland
| | - Maria Pina Concas
- Institute of Population Genetics, National Research Council of Italy, Sassari, Italy
| | - Michela Traglia
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Caterina Barbieri
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Ndeye Coumba Ndiaye
- UMR INSERM U1122, IGE-PCV “Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire”, Faculté de Pharmacie, Université de Lorraine, Nancy, France
| | - Maria G. Stathopoulou
- UMR INSERM U1122, IGE-PCV “Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire”, Faculté de Pharmacie, Université de Lorraine, Nancy, France
| | - Vasiliki Lagou
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Cinzia Sala
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Stephanie Debette
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Neurology, Bordeaux University Hospital, Bordeaux, France
- INSERM U897, Bordeaux, France
| | - Peter Kovacs
- University of Leipzig, IFB Adiposity Diseases, Leipzig, Germany
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - John Lamont
- Randox Laboratories, Crumlin, United Kingdom
| | | | - Anke Tönjes
- University of Leipzig, Department of Medicine, Leipzig, Germany
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- University of Iceland, Reykjavik, Iceland
| | - Daniela Toniolo
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Mario Pirastu
- Institute of Population Genetics, National Research Council of Italy, Sassari, Italy
| | - Celine Bellenguez
- Institut Pasteur de Lille, Lille, France
- INSEM U744, Lille, France
- Université Lille-Nord de France, Lille, France
| | - Ramachandran S. Vasan
- National Heart, Lung and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, United States of America
- Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
| | - Erik Ingelsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anne-Louise Leutenegger
- INSERM U946, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, IUH, UMR-S 946, Paris, France
| | - Andrew D. Johnson
- Population Sciences Branch, National Heart, Lung and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, United States of America
| | - Anita L. DeStefano
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
- National Heart, Lung and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, United States of America
| | - Sophie Visvikis-Siest
- UMR INSERM U1122, IGE-PCV “Interactions Gène-Environnement en Physiopathologie Cardio-Vasculaire”, Faculté de Pharmacie, Université de Lorraine, Nancy, France
| | - Sudha Seshadri
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- National Heart, Lung and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, United States of America
- * E-mail: (SS); (MC)
| | - Marina Ciullo
- Institute of Genetics and Biophysics, National Research Council of Italy, Naples, Italy
- * E-mail: (SS); (MC)
| |
Collapse
|
30
|
Samura M, Morikage N, Suehiro K, Tanaka Y, Nakamura T, Nishimoto A, Ueno K, Hosoyama T, Hamano K. Combinatorial Treatment with Apelin-13 Enhances the Therapeutic Efficacy of a Preconditioned Cell-Based Therapy for Peripheral Ischemia. Sci Rep 2016; 6:19379. [PMID: 26763337 PMCID: PMC4725909 DOI: 10.1038/srep19379] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/08/2015] [Indexed: 11/23/2022] Open
Abstract
Hypoxic pretreatment of peripheral blood mononuclear cells (PBMNCs) enhances therapeutic angiogenesis in ischemic tissues after cell transplantation. However, newly formed vessels generated using this approach are immature and insufficient for promoting functional recovery from severe ischemia. In this study, we examined whether apelin-13, a regulator of vessel maturation, could be an effective promoter of therapeutic angiogenesis, following severe limb ischemia. Combinatorial treatment of hypoxic preconditioned PBMNCs with apelin-13 resulted in increased blood perfusion and vascular reactivity in ischemic mouse hindlimbs compared with a monotherapy comprising each factor. Apelin-13 upregulated expression of PDGF-BB and TGF-β1 in hypoxic PBMNCs, as well as that of PDGFR-β in vascular smooth muscle cells (VSMCs). Proliferation and migration of VSMCs treated with apelin-13 was accelerated in the presence of PDGF-BB. Interestingly, expression of an apelin receptor, APJ, in PBMNC was increased under hypoxia but not under normoxia. In addition, an in vitro angiogenesis assay using a co-culture model comprising mouse thoracic aorta, hypoxic PBMNCs, and apelin-13 demonstrated that combinatorial treatment recruited mural cells to sprouted vessel outgrowths from the aortic ring, thereby promoting neovessel maturation. Thus, combinatorial injection of hypoxic PBMNCs and apelin-13 could be an effective therapeutic strategy for patients with severe ischemic diseases.
Collapse
Affiliation(s)
- Makoto Samura
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-0836, Japan
| | - Noriyasu Morikage
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-0836, Japan
| | - Kotaro Suehiro
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-0836, Japan
| | - Yuya Tanaka
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-0836, Japan
| | - Tamami Nakamura
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-0836, Japan
| | - Arata Nishimoto
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-0836, Japan
| | - Koji Ueno
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-0836, Japan.,Center for Regenerative Medicine, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-0836, Japan
| | - Tohru Hosoyama
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-0836, Japan.,Center for Regenerative Medicine, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-0836, Japan
| | - Kimikazu Hamano
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-0836, Japan
| |
Collapse
|
31
|
Sinning C, Schnabel RB, Zeller T, Seiffert M, Rupprecht HJ, Lackner KJ, Blankenberg S, Bickel C, Westermann D. Prognostic use of soluble fms-like tyrosine kinase-1 and placental growth factor in patients with coronary artery disease. Biomark Med 2016; 10:95-106. [DOI: 10.2217/bmm.15.111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: Intention of the study is to assess the cardiovascular mortality of patients with coronary artery disease (CAD) with the biomarkers of angiogenesis PlGF and its endogenous inhibitor sFlt-1. Methods: The cohort included n = 1848 patients with CAD and 282 subjects without CAD. In 85 patients cardiovascular mortality, as combination of fatal myocardial infarction or any cardiac death, during a median follow-up duration of 3.9 years was reported. Results: In Kaplan–Meier curve analysis PlGF in rising thirds was not predictive regarding outcome (p = 0.54), the same was shown for sFlt-1 (p = 0.44). Cox regression for the fully adjusted model provided a hazard ratio (HR) of 0.8 (p = 0.18) for PlGF and for sFlt-1 a HR = 1.0 (p = 0.8). Conclusion: Our results point out that these biomarkers reflecting angiogenesis might not be suited to establish prognosis in CAD.
Collapse
Affiliation(s)
- Christoph Sinning
- Department of General & Interventional Cardiology, University Heart Center Hamburg, Germany
| | - Renate B Schnabel
- Department of General & Interventional Cardiology, University Heart Center Hamburg, Germany
| | - Tanja Zeller
- Department of General & Interventional Cardiology, University Heart Center Hamburg, Germany
| | - Moritz Seiffert
- Department of General & Interventional Cardiology, University Heart Center Hamburg, Germany
| | - Hans J Rupprecht
- Department of Internal Medicine II, GPR Klinikum Rüsselsheim, Germany
| | - Karl J Lackner
- Department of Clinical Chemistry & Laboratory Medicine, Johannes Gu-tenberg-University Mainz, Germany
| | - Stefan Blankenberg
- Department of General & Interventional Cardiology, University Heart Center Hamburg, Germany
| | - Christoph Bickel
- Department of Internal Medicine, Federal Armed Forces Central Hospital, Koblenz, Germany
| | - Dirk Westermann
- Department of General & Interventional Cardiology, University Heart Center Hamburg, Germany
| |
Collapse
|
32
|
Bouleti C, Mewton N, Germain S. The no-reflow phenomenon: State of the art. Arch Cardiovasc Dis 2015; 108:661-74. [PMID: 26616729 DOI: 10.1016/j.acvd.2015.09.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 08/28/2015] [Accepted: 09/07/2015] [Indexed: 02/06/2023]
Abstract
Primary percutaneous coronary intervention (PCI) is the best available reperfusion strategy for acute ST-segment elevation myocardial infarction (STEMI), with nearly 95% of occluded coronary vessels being reopened in this setting. Despite re-establishing epicardial coronary vessel patency, primary PCI may fail to restore optimal myocardial reperfusion within the myocardial tissue, a failure at the microvascular level known as no-reflow (NR). NR has been reported to occur in up to 60% of STEMI patients with optimal coronary vessel reperfusion. When it does occur, it significantly attenuates the beneficial effect of reperfusion therapy, leading to poor outcomes. The pathophysiology of NR is complex and incompletely understood. Many phenomena are known to contribute to NR, including leukocyte infiltration, vasoconstriction, activation of inflammatory pathways and cellular oedema. Vascular damage and haemorrhage may also play important roles in the establishment of NR. In this review, we describe the pathophysiological mechanisms of NR and the tools available for diagnosing it. We also describe the microvasculature and the endothelial mechanisms involved in NR, which may provide relevant therapeutic targets for reducing NR and improving the prognosis for patients.
Collapse
Affiliation(s)
- Claire Bouleti
- Service de cardiologie, hôpital Bichat, AP-HP, Paris, France; DHU FIRE, université Paris Diderot, Paris, France; Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris, France; CNRS/UMR 7241, Paris, France; Inserm U 1050, Paris, France
| | - Nathan Mewton
- Hôpital cardiovasculaire Louis-Pradel, centre d'investigation clinique unité, hospices civils de Lyon, Bron, France; Inserm U 1407, Lyon, France
| | - Stéphane Germain
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris, France; CNRS/UMR 7241, Paris, France; Inserm U 1050, Paris, France.
| |
Collapse
|
33
|
Napoleão P, Monteiro MDC, Cabral LBP, Criado MB, Ramos C, Selas M, Viegas-Crespo AM, Saldanha C, Carmo MM, Ferreira RC, Pinheiro T. Changes of soluble CD40 ligand in the progression of acute myocardial infarction associate to endothelial nitric oxide synthase polymorphisms and vascular endothelial growth factor but not to platelet CD62P expression. Transl Res 2015; 166:650-9. [PMID: 26279254 DOI: 10.1016/j.trsl.2015.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/19/2015] [Accepted: 07/24/2015] [Indexed: 12/12/2022]
Abstract
Reported in vitro data implicated soluble CD40 ligand (sCD40L) in endothelial dysfunction and angiogenesis. However, whether sCD40L could exert that influence in endothelial dysfunction and angiogenesis after injury in acute myocardial infarction (AMI) patients remains unclear. In the present study, we evaluated the association of sCD40L with markers of platelet activation, endothelial, and vascular function during a recovery period early after AMI. To achieve this goal, the time changes of soluble, platelet-bound, and microparticle-bound CD40L levels over 1 month were assessed in AMI patients and correlated with endothelial nitric oxide synthase (eNOS) polymorphisms, vascular endothelial growth factor (VEGF) concentrations, and platelet expression of P-selectin (CD62P). The association of soluble form, platelet-bound, and microparticle-bound CD40L with CD62P expression on platelets, a marker of platelet activation, was also assessed to evaluate the role of CD40L in the thrombosis, whereas the association with eNOS and VEGF was to evaluate the role of CD40L in vascular dysfunction. This work shows for the first time that time changes of sCD40L over 1 month after myocardial infarct onset were associated with G894T eNOS polymorphism and with the VEGF concentrations, but not to the platelet CD62P expression. These results indicate that, in terms of AMI pathophysiology, the sCD40L cannot be consider just as being involved in thrombosis and inflammation but also as having a relevant role in vascular and endothelial dysfunction.
Collapse
Affiliation(s)
- Patrícia Napoleão
- Carlota Saldanha Lab, Instituto Medicina Molecular (iMM), Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| | - Maria do Céu Monteiro
- IINFACTS-CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Penafiel, Portugal
| | - Luís B P Cabral
- IINFACTS-CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Penafiel, Portugal
| | - Maria Begoña Criado
- IINFACTS-CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Penafiel, Portugal
| | - Catarina Ramos
- Departamento de Engenharia e Ciências Nucleares, Instituto de Bioengenharia e Biociências (IBB), Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - Mafalda Selas
- Serviço Cardiologia, Hospital Santa Marta, Centro Hospitalar Lisboa Central (CHLC), Lisboa, Portugal
| | - Ana Maria Viegas-Crespo
- Centro de Estudos do Ambiente e do Mar (CESAM) & Departamento de Biologia Animal (DBA), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Carlota Saldanha
- Carlota Saldanha Lab, Instituto Medicina Molecular (iMM), Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Miguel Mota Carmo
- Serviço Cardiologia, Hospital Santa Marta, Centro Hospitalar Lisboa Central (CHLC), Lisboa, Portugal; Centro de Estudos de Doenças Crónicas (CEDOC), Faculdade Ciências Médias, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Rui Cruz Ferreira
- Serviço Cardiologia, Hospital Santa Marta, Centro Hospitalar Lisboa Central (CHLC), Lisboa, Portugal
| | - Teresa Pinheiro
- Departamento de Engenharia e Ciências Nucleares, Instituto de Bioengenharia e Biociências (IBB), Instituto Superior Técnico, Universidade de Lisboa, Portugal
| |
Collapse
|
34
|
Yang Y, Shi C, Hou X, Zhao Y, Chen B, Tan B, Deng Z, Li Q, Liu J, Xiao Z, Miao Q, Dai J. Modified VEGF targets the ischemic myocardium and promotes functional recovery after myocardial infarction. J Control Release 2015; 213:27-35. [PMID: 26144351 DOI: 10.1016/j.jconrel.2015.06.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 06/25/2015] [Accepted: 06/29/2015] [Indexed: 02/07/2023]
Abstract
Vascular endothelial growth factor (VEGF) promotes angiogenesis and improves cardiac function after myocardial infarction (MI). However, the non-targeted delivery of VEGF decreases its therapeutic efficacy due to an insufficient local concentration in the ischemic myocardium. In this study, we used a specific peptide to modify VEGF and determined that this modified VEGF (IMT-VEGF) localized to the ischemic myocardium through intravenous injection by interacting with cardiac troponin I (cTnI). When IMT-VEGF was used to mediate cardiac repair in a rat model of ischemia-reperfusion (I-R) injury, we observed a decreased scar size, enhanced angiogenesis and improved cardiac function. Moreover, an alternative treatment using the repeated administration of a low-dose IMT-VEGF also promoted angiogenesis and functional recovery. The therapeutic effects of IMT-VEGF were further confirmed in a pig model of MI as the result of the conserved properties of its interacting protein, cTnI. These results suggest a promising therapeutic strategy for MI based on the targeted delivery of IMT-VEGF.
Collapse
Affiliation(s)
- Yun Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing, 100190, China; Graduate School, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing, 100190, China
| | - Chunying Shi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing, 100190, China; Institute for Translational Medicine, College of Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266021, China
| | - Xianglin Hou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing, 100190, China; Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Road, Chongqing, 400038, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing, 100190, China; Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Road, Chongqing, 400038, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing, 100190, China; Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Road, Chongqing, 400038, China
| | - Bo Tan
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, 215123, China
| | - Zongwu Deng
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, 215123, China
| | - Qingguo Li
- Department of Cardiothoracic Surgery, the affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Jianzhou Liu
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Peking Union Medical College, 1 Shuaifuyuan, Beijing, 100730, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing, 100190, China; Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Road, Chongqing, 400038, China
| | - Qi Miao
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Peking Union Medical College, 1 Shuaifuyuan, Beijing, 100730, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing, 100190, China; Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Road, Chongqing, 400038, China.
| |
Collapse
|
35
|
Coronary thrombi neovascularization in patients with ST-elevation myocardial infarction - clinical and angiographic implications. Thromb Res 2014; 134:1038-45. [DOI: 10.1016/j.thromres.2014.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/14/2014] [Accepted: 09/09/2014] [Indexed: 11/23/2022]
|
36
|
Nair J, Ghatge M, Kakkar VV, Shanker J. Network analysis of inflammatory genes and their transcriptional regulators in coronary artery disease. PLoS One 2014; 9:e94328. [PMID: 24736319 PMCID: PMC3988072 DOI: 10.1371/journal.pone.0094328] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/15/2014] [Indexed: 01/25/2023] Open
Abstract
Network analysis is a novel method to understand the complex pathogenesis of inflammation-driven atherosclerosis. Using this approach, we attempted to identify key inflammatory genes and their core transcriptional regulators in coronary artery disease (CAD). Initially, we obtained 124 candidate genes associated with inflammation and CAD using Polysearch and CADgene database for which protein-protein interaction network was generated using STRING 9.0 (Search Tool for the Retrieval of Interacting Genes) and visualized using Cytoscape v 2.8.3. Based on betweenness centrality (BC) and node degree as key topological parameters, we identified interleukin-6 (IL-6), vascular endothelial growth factor A (VEGFA), interleukin-1 beta (IL-1B), tumor necrosis factor (TNF) and prostaglandin-endoperoxide synthase 2 (PTGS2) as hub nodes. The backbone network constructed with these five hub genes showed 111 nodes connected via 348 edges, with IL-6 having the largest degree and highest BC. Nuclear factor kappa B1 (NFKB1), signal transducer and activator of transcription 3 (STAT3) and JUN were identified as the three core transcription factors from the regulatory network derived using MatInspector. For the purpose of validation of the hub genes, 97 test networks were constructed, which revealed the accuracy of the backbone network to be 0.7763 while the frequency of the hub nodes remained largely unaltered. Pathway enrichment analysis with ClueGO, KEGG and REACTOME showed significant enrichment of six validated CAD pathways - smooth muscle cell proliferation, acute-phase response, calcidiol 1-monooxygenase activity, toll-like receptor signaling, NOD-like receptor signaling and adipocytokine signaling pathways. Experimental verification of the above findings in 64 cases and 64 controls showed increased expression of the five candidate genes and the three transcription factors in the cases relative to the controls (p<0.05). Thus, analysis of complex networks aid in the prioritization of genes and their transcriptional regulators in complex diseases.
Collapse
Affiliation(s)
- Jiny Nair
- Mary and Garry Weston Functional Genomics Unit, Thrombosis Research Institute, Bengaluru, Karnataka, India
| | - Madankumar Ghatge
- Tata Proteomics and Coagulation Unit, Thrombosis Research Unit, Bengaluru, Karnataka, India
| | - Vijay V. Kakkar
- Thrombosis Research Institute, Bengaluru, Karnataka, India
- Thrombosis Research Institute, London, United Kingdom
| | - Jayashree Shanker
- Mary and Garry Weston Functional Genomics Unit, Thrombosis Research Institute, Bengaluru, Karnataka, India
- * E-mail:
| |
Collapse
|
37
|
Shimokawahara H, Jougasaki M, Setoguchi M, Ichiki T, Sonoda M, Nuruki N, Nakashima H, Murohara T, Tsubouchi H. Relationship between vascular endothelial growth factor and left ventricular dimension in patients with acute myocardial infarction. J Cardiol 2014; 64:360-5. [PMID: 24698007 DOI: 10.1016/j.jjcc.2014.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/10/2014] [Accepted: 02/12/2014] [Indexed: 11/25/2022]
Abstract
BACKGROUND Although vascular endothelial growth factor (VEGF) is elevated in patients with acute myocardial infarction (AMI), the clinical significance of its elevation remains unclear. The present study was designed to determine the relationship between VEGF and left ventricular dimension in patients with AMI. METHODS AND RESULTS Plasma VEGF levels were examined by enzyme-linked immunosorbent assay daily for one week and then weekly for four weeks in 38 patients with AMI (65.4 ± 1.7 years). Left ventriculography was performed at 14 days, 6 months, and 2 years after the onset of AMI. Plasma VEGF levels were significantly elevated and reached a peak on day 6. Peak plasma VEGF levels positively correlated with both end-diastolic and end-systolic volume indices at 14 days after the onset of AMI. When patients with AMI were divided into two groups according to plasma VEGF levels on admission, left ventricular volume indices were higher in the high VEGF group than in the low VEGF group at the subacute phase of AMI (14 days). These differences were no longer present in the chronic phase of AMI. CONCLUSION Plasma VEGF levels were increased in patients with AMI, and peak levels were associated with left ventricular volume indices in the subacute phase, suggesting an important role of endogenous VEGF in the left ventricular dimension in patients with AMI.
Collapse
Affiliation(s)
- Hiroto Shimokawahara
- Institute for Clinical Research and Division of Cardiology, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | - Michihisa Jougasaki
- Institute for Clinical Research and Division of Cardiology, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan.
| | - Manabu Setoguchi
- Institute for Clinical Research and Division of Cardiology, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | - Tomoko Ichiki
- Institute for Clinical Research and Division of Cardiology, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | - Masahiro Sonoda
- Institute for Clinical Research and Division of Cardiology, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | - Norihito Nuruki
- Institute for Clinical Research and Division of Cardiology, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | - Hitoshi Nakashima
- Institute for Clinical Research and Division of Cardiology, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hirohito Tsubouchi
- Department of Digestive and Life-Style Related Disease, Health Research Course, Human and Environmental Science, Kagoshima University Graduate School of Medicine and Dental Science, Kagoshima, Japan
| |
Collapse
|
38
|
Nguyen NT, Zhang X, Wu C, Lange RA, Chilton RJ, Lindsey ML, Jin YF. Integrative computational and experimental approaches to establish a post-myocardial infarction knowledge map. PLoS Comput Biol 2014; 10:e1003472. [PMID: 24651374 PMCID: PMC3961365 DOI: 10.1371/journal.pcbi.1003472] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 01/02/2014] [Indexed: 01/04/2023] Open
Abstract
Vast research efforts have been devoted to providing clinical diagnostic markers of myocardial infarction (MI), leading to over one million abstracts associated with “MI” and “Cardiovascular Diseases” in PubMed. Accumulation of the research results imposed a challenge to integrate and interpret these results. To address this problem and better understand how the left ventricle (LV) remodels post-MI at both the molecular and cellular levels, we propose here an integrative framework that couples computational methods and experimental data. We selected an initial set of MI-related proteins from published human studies and constructed an MI-specific protein-protein-interaction network (MIPIN). Structural and functional analysis of the MIPIN showed that the post-MI LV exhibited increased representation of proteins involved in transcriptional activity, inflammatory response, and extracellular matrix (ECM) remodeling. Known plasma or serum expression changes of the MIPIN proteins in patients with MI were acquired by data mining of the PubMed and UniProt knowledgebase, and served as a training set to predict unlabeled MIPIN protein changes post-MI. The predictions were validated with published results in PubMed, suggesting prognosticative capability of the MIPIN. Further, we established the first knowledge map related to the post-MI response, providing a major step towards enhancing our understanding of molecular interactions specific to MI and linking the molecular interaction, cellular responses, and biological processes to quantify LV remodeling. Heart attack, known medically as myocardial infarction, often occurs as a result of partial shortage of blood supply to a portion of the heart, leading to the death of heart muscle cells. Following myocardial infarction, complications might arise, including arrhythmia, myocardial rupture, left ventricular dysfunction, and heart failure. Although myocardial infarction can be quickly diagnosed using a various number of tests, including blood tests and electrocardiography, there have been no available prognostic tests to predict the long-term outcome in response to myocardial infarction. Here, we present a framework to analyze how the left ventricle responds to myocardial infarction by combining protein interactome and experimental results retrieved from published human studies. The framework organized current understanding of molecular interactions specific to myocardial infarction, cellular responses, and biological processes to quantify left ventricular remodeling process. Specifically, our knowledge map showed that transcriptional activity, inflammatory response, and extracellular matrix remodeling are the main functional themes post myocardial infarction. In addition, text analytics of relevant abstracts revealed differentiated protein expressions in plasma or serum expressions from patients with myocardial infarction. Using this data, we predicted expression levels of other proteins following myocardial infarction.
Collapse
Affiliation(s)
- Nguyen T. Nguyen
- Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, Texas, United States of America
- San Antonio Cardiovascular Proteomics Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Xiaolin Zhang
- Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Cathy Wu
- Center for Bioinformatics and Computational Biology and Protein Information Resource, University of Delaware, Newark, Delaware, United States of America
| | - Richard A. Lange
- San Antonio Cardiovascular Proteomics Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Robert J. Chilton
- San Antonio Cardiovascular Proteomics Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Merry L. Lindsey
- San Antonio Cardiovascular Proteomics Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, Mississippi, United States of America
| | - Yu-Fang Jin
- Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, Texas, United States of America
- San Antonio Cardiovascular Proteomics Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
39
|
Moiseev IS, Lapin SV, Surkova EA, Lerner MY, Vavilov VN, Afanasyev BV. Level of Vascular Endothelial Growth Factor Predicts Both Relapse and Nonrelapse Mortality after Allogeneic Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2013; 19:1677-82. [DOI: 10.1016/j.bbmt.2013.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 08/30/2013] [Indexed: 01/06/2023]
|
40
|
Kruk M, Menon V, Kądziela J, Sadowski Z, Rużyłło W, Janas J, Roik M, Opolski G, Zmudka K, Czunko P, Kurowski M, Busz-Papież B, Zinka E, Jablonski W, Jaworska K, Raczynska A, Skonieczny G, Forman S, Li D, Hochman J. Impact of percutaneous coronary intervention on biomarker levels in patients in the subacute phase following myocardial infarction: the Occluded Artery Trial (OAT) biomarker ancillary study. BMC Cardiovasc Disord 2013; 13:91. [PMID: 24156746 PMCID: PMC3871016 DOI: 10.1186/1471-2261-13-91] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 09/18/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of the Occluded Artery Trial (OAT) Biomarker substudy was to evaluate the impact of infarct related artery (IRA) revascularization on serial levels of N-terminal prohormone of brain natriuretic peptide (NT-proBNP) and dynamics of other biomarkers related to left ventricular remodeling, fibrosis and angiogenesis. METHODS Patients were eligible for OAT-Biomarker based on the main OAT criteria. Of 70 patients (age 60.8 ± 8.8, 25% women) enrolled in the substudy, 37 were randomized to percutaneous coronary intervention (PCI) and 33 to optimal medical therapy alone. Baseline serum samples were obtained prior to OAT randomization with follow up samples taken at one year. The primary outcome was percent change of NT-proBNP from baseline to 1 year. The secondary outcomes were respective changes of matrix metalloproteinases (MMP) 2 and 9, tissue inhibitor of matrix metalloproteinase 2 (TIMP-2), Vascular Endothelial Growth Factor (VEGF), and Galectin-3. RESULTS Paired (baseline and one-year) serum samples were obtained in 62 subjects. Baseline median NT-proBNP level was 944.8 (455.3, 1533) ng/L and decreased by 69% during follow-up (p < 0.0001). Baseline MMP-2 and TIMP-2 levels increased significantly from baseline to follow-up (p = 0.034, and p = 0.027 respectively), while MMP-9 level decreased from baseline (p = 0.038). Levels of VEGF and Galectin-3 remained stable at one year (p = NS for both). No impact of IRA revascularization on any biomarker dynamics were noted. CONCLUSIONS There were significant changes in measured biomarkers related to LV remodeling, stress, and fibrosis following MI between 0 and 12 month. Establishing infarct vessel patency utilizing stenting 24 hours-28 days post MI did not however influence the biomarkers' release.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Judith Hochman
- New York University School of Medicine, New York, New York, USA.
| |
Collapse
|
41
|
Study of molecular mechanism of Prostaglandin E1 in inhibiting coronary heart disease. Mol Biol Rep 2013; 40:6701-8. [PMID: 24146100 DOI: 10.1007/s11033-013-2785-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 09/14/2013] [Indexed: 01/28/2023]
Abstract
Prostaglandin E1 has been used clinically for improving heart diseases. In this study, we examined the effect of Prostaglandin E1 on blood lipid levels, heart protein and genes expression in coronary heart disease (CHD) rats. Female rats were fed either a control diet or hypercholesterolemic diet for 14 weeks. The feeding of a hypercholesterolemic diet (HCD) increased the serum TC, TG, and LDL-c levels, decreased the serum HDL-c, E2, P, FSH, LH and PRL levels in CHD rats. In addition, The feeding of a HCD diet markedly increased the content of serum TXA2, TXB2, and decreased the content of serum PGI2, and PGI2/TXA2, 6-Keto PGF1a. Furthermore, the feeding of a hypercholesterolemic diet markedly increased expression levels of myocardium Fas and Caspase-3 protein and mRNA levels, vascular endothelial growth factor and basic fibroblast growth factor mRNA, and decreased RyR2 mRNA in CHD rats. The feeding of Prostaglandin E1 for 14 weeks significantly reversed these abnormal biochemical indexes in rats. These findings suggest that Prostaglandin E1 play a obvious heart protective effect. The mechanisms may be related to restraining the excessive activation of Fas and Caspase-3 protein and modulating some gene expressions associated with CHD.
Collapse
|
42
|
Yao YY, Fu C, Ma GS, Feng Y, Shen CX, Wu GQ, Zhang XG, Ding JD, Tang CC, Chen Z, Dai QM, Tong JY, Luo D, Zhu J, Zhi H, Li YJ, Ju CW, Lu J, Chao J, Chao L. Tissue kallikrein is related to the severity of coronary artery disease. Clin Chim Acta 2013; 423:90-8. [PMID: 23639635 DOI: 10.1016/j.cca.2013.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 04/13/2013] [Accepted: 04/15/2013] [Indexed: 01/28/2023]
Abstract
BACKGROUND The impairment of the tissue kallikrein (KLK1)-kinin system (KKS) may result in atheroma development. However, it remains unclear if the KKS correlates with coronary artery disease (CAD). METHODS KLK1, VEGF and hs-CRP plasma levels were measured in 100 patients newly diagnosed with CAD and 33 CAD-free controls. Patients were followed-up for the incidence of major adverse cardiovascular events (MACE) for 8months to 2y. Gene expression of KLK1, CD105 and CD68 was assessed in human coronary endarterectomy specimens. RESULTS Patients with CAD and acute coronary syndrome (ACS) had significantly elevated KLK1 levels. In addition, the concentration of hs-CRP was increased in ACS patients. A strong positive correlation between plasma KLK1 and the severity of CAD was also demonstrated, suggesting that high KLK1 levels are an independent predictor for CAD. MACE during follow-up significantly correlated with KLK1 levels in the ACS group. Unstable coronary plaques demonstrated markedly increased KLK1 levels, macrophage infiltration and high microvessel density. Additionally, KLK1 staining primarily colocalized with macrophages. CONCLUSIONS In the present study, plasma KLK1 levels were a useful predictor for the presence and extent of CAD. More extensive studies are, however, necessary in order to validate these findings.
Collapse
Affiliation(s)
- Yu-yu Yao
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bonnefond A, Saulnier PJ, Stathopoulou MG, Grarup N, Ndiaye NC, Roussel R, Nezhad MA, Dechaume A, Lantieri O, Hercberg S, Lauritzen T, Balkau B, El-Sayed Moustafa JS, Hansen T, Pedersen O, Froguel P, Charpentier G, Marre M, Hadjadj S, Visvikis-Siest S. What is the contribution of two genetic variants regulating VEGF levels to type 2 diabetes risk and to microvascular complications? PLoS One 2013; 8:e55921. [PMID: 23405237 PMCID: PMC3566098 DOI: 10.1371/journal.pone.0055921] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 01/03/2013] [Indexed: 11/18/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is a key chemokine involved in tissue growth and organ repair processes, particularly angiogenesis. Elevated circulating VEGF levels are believed to play a role in type 2 diabetes (T2D) microvascular complications, especially diabetic retinopathy. Recently, a genome-wide association study identified two common single nucleotide polymorphisms (SNPs; rs6921438 and rs10738760) explaining nearly half of the variance in circulating VEGF levels. Considering the putative contribution of VEGF to T2D and its complications, we aimed to assess the effect of these VEGF-related SNPs on the risk of T2D, nephropathy and retinopathy, as well as on variation in related traits.SNPs were genotyped in several case-control studies: French and Danish T2D studies (N(cases) = 6,920-N(controls) = 3,875 and N(cases) = 3,561-N(controls) = 2,623; respectively), two French studies one for diabetic nephropathy (N(cases) = 1,242-N(controls) = 860) and the other for diabetic retinopathy (N(cases) = 1,336-N(controls) = 1,231). The effects of each SNP on quantitative traits were analyzed in a French general population-based cohort (N = 4,760) and two French T2D studies (N = 3,480). SNP associations were assessed using logistic or linear regressions.In the French population, we found an association between the G-allele of rs6921438, shown to increase circulating VEGF levels, and increased T2D risk (OR = 1.15; P = 3.7×10(-5)). Furthermore, the same allele was associated with higher glycated hemoglobin levels (β = 0.02%; P = 9.2×10(-3)). However, these findings were not confirmed in the Danes. Conversely, the SNP rs10738760 was not associated with T2D in the French or Danish populations. Despite having adequate statistical power, we did not find any significant effects of rs6921438 or rs10738760 on diabetic microvascular complications or the variation in related traits in T2D patients.In spite of their impact on the variance in circulating VEGF, we did not find any association between SNPs rs6921438 and rs10738760, and the risk of T2D, diabetic nephropathy or retinopathy. The link between VEGF and T2D and its complications might be indirect and more complex than expected.
Collapse
Affiliation(s)
- Amélie Bonnefond
- “Cardiovascular Genetics” Research Unit, EA4373, University of Lorraine, Nancy, France
- * E-mail: (AB); (SVS)
| | - Pierre-Jean Saulnier
- Centre Hospitalier Universitaire de Poitiers, Department of Endocrinology and Diabetology, University of Poitiers, Poitiers, France
- Clinical investigation centre CIC0802, Poitiers, France
| | - Maria G. Stathopoulou
- “Cardiovascular Genetics” Research Unit, EA4373, University of Lorraine, Nancy, France
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Copenhagen, Denmark
- Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center and Hagedorn Research Institute, Gentofte, Denmark
| | - Ndeye Coumba Ndiaye
- “Cardiovascular Genetics” Research Unit, EA4373, University of Lorraine, Nancy, France
| | - Ronan Roussel
- Department of Endocrinology, Diabetology and Nutrition, Bichat-Claude Bernard University Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
- Institut National de la Santé et de la Recherche Médicale (Inserm) U695, Paris 7 University, Paris, France
| | - Mohsen Azimi Nezhad
- “Cardiovascular Genetics” Research Unit, EA4373, University of Lorraine, Nancy, France
| | - Aurélie Dechaume
- Centre National de la Recherche Scientifique (CNRS) UMR8199, Lille Pasteur Institute, Lille, France
- Lille Nord de France University, Lille, France
| | | | - Serge Hercberg
- Inserm-U557, Institut National de la Recherche Agronomique (INRA) 1125 Unit, Conservatoire National des Arts et Métiers, Centre de Recherches en Nutrition Humaine, Paris 13 University, Bobigny, France
- Department of Public Health, Avicenne Hospital, AP-HP, Bobigny, France
| | - Torsten Lauritzen
- Department of General Practice, University of Aarhus, Aarhus, Denmark
| | - Beverley Balkau
- Inserm-U1018, Centre for Research in Epidemiology and Population Health, Villejuif, France
- Paris-Sud 11 University, Villejuif, France
| | - Julia S. El-Sayed Moustafa
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Copenhagen, Denmark
- Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center and Hagedorn Research Institute, Gentofte, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Copenhagen, Denmark
- Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center and Hagedorn Research Institute, Gentofte, Denmark
- Faculty of Health Sciences, University of Aarhus, Aarhus, Denmark
| | - Philippe Froguel
- Centre National de la Recherche Scientifique (CNRS) UMR8199, Lille Pasteur Institute, Lille, France
- Lille Nord de France University, Lille, France
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Guillaume Charpentier
- Department of Endocrinology and Diabetology, Corbeil-Essonnes Hospital, Essonnes, France
| | - Michel Marre
- Department of Endocrinology, Diabetology and Nutrition, Bichat-Claude Bernard University Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
- Institut National de la Santé et de la Recherche Médicale (Inserm) U695, Paris 7 University, Paris, France
| | - Samy Hadjadj
- Centre Hospitalier Universitaire de Poitiers, Department of Endocrinology and Diabetology, University of Poitiers, Poitiers, France
- Clinical investigation centre CIC0802, Poitiers, France
- Inserm-U1082, Poitiers, France
| | - Sophie Visvikis-Siest
- “Cardiovascular Genetics” Research Unit, EA4373, University of Lorraine, Nancy, France
- * E-mail: (AB); (SVS)
| |
Collapse
|
44
|
Konopka A, Janas J, Piotrowski W, Stępińska J. Concentration of vascular endothelial growth factor in patients with acute coronary syndrome. Cytokine 2013; 61:664-9. [DOI: 10.1016/j.cyto.2012.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 11/26/2012] [Accepted: 12/04/2012] [Indexed: 11/26/2022]
|
45
|
Stathopoulou MG, Bonnefond A, Ndiaye NC, Azimi-Nezhad M, El Shamieh S, Saleh A, Rancier M, Siest G, Lamont J, Fitzgerald P, Visvikis-Siest S. A common variant highly associated with plasma VEGFA levels also contributes to the variation of both LDL-C and HDL-C. J Lipid Res 2012. [PMID: 23204297 DOI: 10.1194/jlr.p030551] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vascular endothelial growth factor A (VEGFA) is among the most-significant stimulators of angiogenesis. Its effect on cardiovascular diseases and on the variation of related risk factors such as lipid parameters is considered important, although as yet unclear. Recently, we identified four common variants (rs6921438, rs4416670, rs6993770, and rs10738760) that explain up to 50% of the heritability of plasma VEGFA levels. In the present study, we aimed at assessing the contribution of these variants to the variation of blood lipid levels (including apoE, triglycerides, total cholesterol, low- and high-density lipoprotein cholesterol levels (LDL-C and HDL-C)] in healthy subjects. The effect of these single-nucleotide polymorphisms (SNPs) on lipid levels was assessed using linear regression in discovery and replication samples (n = 1,006 and n = 1,145; respectively), followed by a meta-analysis. Their gene×gene and gene×environment interactions were also assessed. SNP rs6921438 was associated with HDL-C (β = -0.08 mmol/l, P(overall) = 1.2 × 10(-7)) and LDL-C (β = 0.13 mmol/l, P(overall) = 1.5 × 10(-4)). We also identified a significant association between the interaction rs4416670×hypertension and apoE variation (P(overall) = 1.7 × 10(-5)). Therefore, our present study shows a common genetic regulation between VEGFA and cholesterol homeostasis molecules. The SNP rs6921438 is in linkage disequilibrium with variants located in an enhancer- and promoter-associated histone mark region and could have a regulatory effect in the expression of surrounding genes, including VEGFA.
Collapse
Affiliation(s)
- Maria G Stathopoulou
- Université de Lorraine, Génétique Cardio-vasculaire, EA-4373, Nancy, F-54000, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Frantz S, Hofmann U, Fraccarollo D, Schäfer A, Kranepuhl S, Hagedorn I, Nieswandt B, Nahrendorf M, Wagner H, Bayer B, Pachel C, Schön MP, Kneitz S, Bobinger T, Weidemann F, Ertl G, Bauersachs J. Monocytes/macrophages prevent healing defects and left ventricular thrombus formation after myocardial infarction. FASEB J 2012; 27:871-81. [PMID: 23159933 DOI: 10.1096/fj.12-214049] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Myocardial infarction (MI) leads to rapid necrosis of cardiac myocytes. To achieve tissue integrity and function, inflammatory cells are activated, including monocytes/macrophages. However, the effect of monocyte/macrophage recruitment after MI remains poorly defined. After experimental MI, monocytes and macrophages were depleted through serial injections of clodronate-containing liposomes. Monocyte/macrophage infiltration was reduced in the myocardium after MI by active treatment. Mortality was increased due to thromboembolic events in monocyte- and macrophage-depleted animals (92 vs. 33%; P<0.01). Left ventricular thrombi were detectable as early as 24 h after MI; this was reproduced in a genetic model of monocyte/macrophage ablation. A general prothrombotic state, increased infarct expansion, and deficient neovascularization were not observed. Severely compromised extracellular matrix remodeling (collagen I, placebo liposome vs. clodronate liposome, 2.4 ± 0.2 vs. 0.8 ± 0.2 arbitrary units; P<0.001) and locally lost integrity of the endocardium after MI are potential mechanisms. Patients with a left ventricular thrombus had a relative decrease of CD14CD16 monocyte/macrophage subsets in the peripheral blood after MI (no thrombus vs. thrombus, 14.2 ± 0.9 vs. 7.80 ± 0.4%; P<0.05). In summary, monocytes/macrophages are of central importance for healing after MI. Impaired monocyte/macrophage function appears to be an unrecognized new pathophysiological mechanism for left ventricular thrombus development after MI.
Collapse
Affiliation(s)
- Stefan Frantz
- Department of Internal Medicine I, University Hospital Würzburg, Comprehensive Heart Failure Center, University of Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kim BH, Ko YG, Her AY, Kim JS, Hwang KC, Shin DH, Kim BK, Choi D, Ha JW, Hong MK, Jang Y. Serial plasma levels of angiogenic factors in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Korean Circ J 2012; 42:464-70. [PMID: 22870080 PMCID: PMC3409395 DOI: 10.4070/kcj.2012.42.7.464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 12/10/2011] [Accepted: 02/06/2012] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Patients with acute myocardial infarction show varying degrees of collateral development. However, the relationships between angiogenic factors and degree of collaterals are not well known. SUBJECTS AND METHODS Fifty-nine patients (mean age, 59±10 years) with ST-segment elevation myocardial infarction (STEMI) underwent primary percutaneous coronary intervention (PCI). Patients were divided into one of 2 groups: group I (Rentrop collateral grade 0/1, n=34) or group II (grade 2/3, n=25). Plasma levels of vascular endothelial growth factor (VEGF), soluble VEGF receptor (sFlt-1), angiopoietin (Ang)-2, and soluble Tie-2 at baseline, 24 and 48 hours after PCI were measured. RESULTS There were fewer diabetic patients and higher incidence of previous angina and multi-vessel disease in group II. Group II had a lower left ventricular ejection fraction and a trend toward longer pain-to-balloon time. Plasma levels of Ang-2, sFlt-1 were elevated prior to primary PCI and decreased after PCI, whereas plasma level of VEGF was relatively low initially, however rose after PCI. sTie-2 levels showed no significant interval change in group I, but decreased over time in group II. VEGF, sFlt-1, and Tie-2 levels did not differ between the groups at each time point. However, plasma levels of Ang-2 were higher in group I than in group II at baseline and at 48 hours. CONCLUSION Presence of collaterals in STEMI patients undergoing primary PCI was associated with lesser rise in Ang-2 plasma level. VEGF showed a delayed response to acute ischemia compared to Ang-2. Clinical implications of our findings need to be investigated in further studies.
Collapse
Affiliation(s)
- Bo Hyun Kim
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University Health System, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Matsudaira K, Maeda K, Okumura N, Yoshikawa D, Morita Y, Mitsuhashi H, Ishii H, Kondo T, Murohara T. Impact of low levels of vascular endothelial growth factor after myocardial infarction on 6-month clinical outcome. Results from the Nagoya Acute Myocardial Infarction Study. Circ J 2012; 76:1509-16. [PMID: 22452999 DOI: 10.1253/circj.cj-11-1127] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) is induced by myocardial ischemia and is thought to facilitate cardiovascular repair after acute myocardial infarction (AMI). However, the association between the plasma VEGF levels and clinical outcome in AMI patients is unclear. METHODS AND RESULTS We evaluated 879 AMI patients undergoing successful primary revascularization within 24h of symptom onset. The patients were classified into 3 groups according to tertiles of plasma VEGF levels at 7 days after the onset of AMI. Major adverse cardiovascular and cerebrovascular events (MACCE), defined as cardiac death, recurrent acute coronary syndrome, hospital readmission for heart failure, or stroke, were assessed during the 6-month follow-up period. The incidence of MACCE was the least frequent in the middle tertile. Compared to the middle tertile, patients in the low tertile were at a significantly higher risk for MACCE even after adjusting for baseline characteristics (hazard ratio [HR] 2.67, 95% confidence interval [CI] 1.18-6.06, P=0.019). An absence of statin treatment before onset and a younger age (HR 0.54, 0.87; 95%CI 0.33-0.90, 0.76-0.99; P=0.017, 0.037; respectively) were significantly associated with low VEGF. CONCLUSIONS Low plasma VEGF levels at 7 days after the onset of AMI were associated with a significantly increased risk for MACCE during 6 months of follow-up.
Collapse
Affiliation(s)
- Kyoko Matsudaira
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kaess BM, Pedley A, Massaro JM, Larson MG, Corsini E, Hoffmann U, Smith HM, Sawyer DB, Vasan RS, Fox CS. Relation of vascular growth factors with CT-derived measures of body fat distribution: the Framingham Heart Study. J Clin Endocrinol Metab 2012; 97:987-94. [PMID: 22170711 PMCID: PMC3319207 DOI: 10.1210/jc.2011-2310] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Visceral adiposity is associated with metabolic risk. Given that angiogenesis is a key feature of adipogenesis, variation in the association of levels of circulating vascular growth factors (and their soluble receptors) with distinct body fat compartments may explain differences in the systemic pathogenicity of regional fat depots. METHODS AND RESULTS Four body fat compartments [visceral adipose tissue (VAT), sc adipose tissue (SAT), thoracic periaortic fat, and pericardial fat] derived from computed tomography were related to serum concentrations of vascular endothelial growth factor (VEGF), the soluble VEGF receptor (fms-like tyrosine kinase-1), hepatocyte growth factor (HGF), and angiopoietin-2 and its soluble receptor (soluble tyrosine kinase with immunoglobulin-like and EGF-like domains 2 sTie-2) in 1806 Framingham Heart Study participants (mean age 44.9 yr, 44.5% women). In multivariable models, we observed positive associations between several fat compartments and VEGF and HGF levels. The magnitude of the associations were similar for VAT, SAT, and periaortic fat. We observed effect modification by sex. A stronger association was observed between VAT and HGF levels in women; higher VAT and periaortic fat were jointly associated with higher HGF concentrations (P=0.02 and P=0.051, respectively). In women within the highest tertile of VAT, HGF levels significantly increased with higher periaortic fat (P=0.0005). CONCLUSIONS In our large community-based sample, greater adiposity was associated with higher circulating growth factor levels in general. Additional studies are warranted to confirm the stronger association of VAT and periaortic fat with HGF in women and to examine its potential contribution to the sex-related differences in cardiometabolic risk.
Collapse
Affiliation(s)
- Bernhard M Kaess
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, 73 Mt Wayte Avenue, Suite 2, Framingham, Massachusetts 01702, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Debette S, Visvikis-Siest S, Chen MH, Ndiaye NC, Song C, Destefano A, Safa R, Nezhad MA, Sawyer D, Marteau JB, Xanthakis V, Siest G, Sullivan L, Pfister M, Smith H, Choi SH, Lamont J, Lind L, Yang Q, Fitzgerald P, Ingelsson E, Vasan RS, Seshadri S. Identification of cis- and trans-acting genetic variants explaining up to half the variation in circulating vascular endothelial growth factor levels. Circ Res 2011; 109:554-63. [PMID: 21757650 PMCID: PMC3193930 DOI: 10.1161/circresaha.111.243790] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 06/30/2011] [Indexed: 01/17/2023]
Abstract
RATIONALE Vascular endothelial growth factor (VEGF) affects angiogenesis, atherosclerosis, and cancer. Although the heritability of circulating VEGF levels is high, little is known about its genetic underpinnings. OBJECTIVE Our aim was to identify genetic variants associated with circulating VEGF levels, using an unbiased genome-wide approach, and to explore their functional significance with gene expression and pathway analysis. METHODS AND RESULTS We undertook a genome-wide association study of serum VEGF levels in 3527 participants of the Framingham Heart Study, with preplanned replication in 1727 participants from 2 independent samples, the STANISLAS Family Study and the Prospective Investigation of the Vasculature in Uppsala Seniors study. One hundred forty single nucleotide polymorphism (SNPs) reached genome-wide significance (P<5×10(-8)). We found evidence of replication for the most significant associations in both replication datasets. In a conditional genome-wide association study, 4 SNPs mapping to 3 chromosomal regions were independently associated with circulating VEGF levels: rs6921438 and rs4416670 (6p21.1, P=6.11×10(-506) and P=1.47×10(-12)), rs6993770 (8q23.1, P=2.50×10(-16)), and rs10738760 (9p24.2, P=1.96×10(-34)). A genetic score including these 4 SNPs explained 48% of the heritability of serum VEGF levels. Six of the SNPs that reached genome-wide significance in the genome-wide association study were significantly associated with VEGF messenger RNA levels in peripheral blood mononuclear cells. Ingenuity pathway analyses showed found plausible biological links between VEGF and 2 novel genes in these loci (ZFPM2 and VLDLR). CONCLUSIONS Genetic variants explaining up to half the heritability of serum VEGF levels were identified. These new insights provide important clues to the pathways regulating circulating VEGF levels.
Collapse
Affiliation(s)
- Stephanie Debette
- Department of Neurology, Boston University School of Medicine, MA, USA
- National Heart Lung and Blood Association’s Framingham Heart Study
| | - Sophie Visvikis-Siest
- “Cardiovascular Genetics” Research Unit, EA4373, Université Henri Poincaré - Nancy 1, 54000 Nancy, France
| | - Ming-Huen Chen
- Department of Neurology, Boston University School of Medicine, MA, USA
- National Heart Lung and Blood Association’s Framingham Heart Study
| | | | | | - Anita Destefano
- Department of Neurology, Boston University School of Medicine, MA, USA
- National Heart Lung and Blood Association’s Framingham Heart Study
- Department of Biostatistics, Boston University, School of Public Health, Boston, MA, USA
| | - Radwan Safa
- Division of Graduate Medical Sciences, Boston University, Boston, MA, USA
| | - Mohammad Azimi Nezhad
- “Cardiovascular Genetics” Research Unit, EA4373, Université Henri Poincaré - Nancy 1, 54000 Nancy, France
| | - Douglas Sawyer
- Cardiovascular Division, Vanderbilt University, Nashville, TN, USA
| | - Jean-Brice Marteau
- “Cardiovascular Genetics” Research Unit, EA4373, Université Henri Poincaré - Nancy 1, 54000 Nancy, France
| | - Vanessa Xanthakis
- Department of Biostatistics, Boston University, School of Public Health, Boston, MA, USA
| | - Gerard Siest
- “Cardiovascular Genetics” Research Unit, EA4373, Université Henri Poincaré - Nancy 1, 54000 Nancy, France
| | - Lisa Sullivan
- Department of Biostatistics, Boston University, School of Public Health, Boston, MA, USA
| | - Michele Pfister
- “Cardiovascular Genetics” Research Unit, EA4373, Université Henri Poincaré - Nancy 1, 54000 Nancy, France
| | - Holly Smith
- Cardiovascular Division, Vanderbilt University, Nashville, TN, USA
| | - Seung-Hoan Choi
- Department of Neurology, Boston University School of Medicine, MA, USA
- Department of Biostatistics, Boston University, School of Public Health, Boston, MA, USA
| | - John Lamont
- Randox Laboratories Ltd., Crumlin, Antrim, UK
| | - Lars Lind
- Department of Medical Sciences, Uppsala University Hospital, SE-751 85 Uppsala, Sweden
| | - Qiong Yang
- Department of Neurology, Boston University School of Medicine, MA, USA
- National Heart Lung and Blood Association’s Framingham Heart Study
- Department of Biostatistics, Boston University, School of Public Health, Boston, MA, USA
| | | | - Erik Ingelsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet Box 281 SE-171 77, Stockholm, Sweden
| | - Ramachandran S. Vasan
- Department of Neurology, Boston University School of Medicine, MA, USA
- National Heart Lung and Blood Association’s Framingham Heart Study
- Sections of Preventive Medicine and Cardiology, Evans Memorial Department of Medicine, Boston University, School of Medicine, Boston, MA, USA
| | - Sudha Seshadri
- Department of Neurology, Boston University School of Medicine, MA, USA
- National Heart Lung and Blood Association’s Framingham Heart Study
| |
Collapse
|