1
|
Horvat S, Fonović UP, Mitrović A, Zidar N, Kos J, Pišlar A. The α- to γ-enolase switch: The role and regulation of γ-enolase during oligodendrocyte differentiation. Int J Biol Macromol 2025; 301:140464. [PMID: 39884600 DOI: 10.1016/j.ijbiomac.2025.140464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/11/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
The glycolytic enzyme γ-enolase is a highly specific neuronal marker that is known to replace ubiquitously expressed α-enolase in the brain. Moreover, γ-enolase has been shown to exert neurotrophic activity, which is regulated by cathepsin X, a lysosomal peptidase. This study investigates the role of γ-enolase and its regulation by cathepsin X during the differentiation of oligodendrocytes, which are essential for normal brain function. We established a differentiation protocol for the human oligodendroglioma (HOG) cell line and demonstrated for the first time that an α- to γ-enolase switch occurs during HOG cell differentiation. This switch was confirmed by the expression of specific markers underscoring the role of γ-enolase in oligodendrocyte differentiation. Moreover, γ-enolase overexpression enhanced oligodendrocyte differentiation, while silencing of γ-enolase by siRNA significantly decreased maturation marker. Further, the regulatory role of cysteine peptidase cathepsin X on γ-enolase function was found. Silencing cathepsin X significantly changed cell morphology, enhanced oligodendrocyte differentiation, altered the expression of oligodendrocyte markers, and increased levels of the active form of γ-enolase. Inhibiting cathepsin X similarly changed cell morphology and enhanced oligodendrocyte differentiation. These findings suggest that cathepsin X modulates γ-enolase activity and thereby influences oligodendrocyte differentiation and thus neuronal function.
Collapse
Affiliation(s)
- Selena Horvat
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| | - Urša Pečar Fonović
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| | - Ana Mitrović
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia; Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.
| | - Nace Zidar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| | - Janko Kos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia; Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.
| | - Anja Pišlar
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Horvat S, Kos J, Pišlar A. Multifunctional roles of γ-enolase in the central nervous system: more than a neuronal marker. Cell Biosci 2024; 14:61. [PMID: 38735971 PMCID: PMC11089681 DOI: 10.1186/s13578-024-01240-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/27/2024] [Indexed: 05/14/2024] Open
Abstract
Enolase, a multifunctional protein with diverse isoforms, has generally been recognized for its primary roles in glycolysis and gluconeogenesis. The shift in isoform expression from α-enolase to neuron-specific γ-enolase extends beyond its enzymatic role. Enolase is essential for neuronal survival, differentiation, and the maturation of neurons and glial cells in the central nervous system. Neuron-specific γ-enolase is a critical biomarker for neurodegenerative pathologies and neurological conditions, not only indicating disease but also participating in nerve cell formation and neuroprotection and exhibiting neurotrophic-like properties. These properties are precisely regulated by cysteine peptidase cathepsin X and scaffold protein γ1-syntrophin. Our findings suggest that γ-enolase, specifically its C-terminal part, may offer neuroprotective benefits against neurotoxicity seen in Alzheimer's and Parkinson's disease. Furthermore, although the therapeutic potential of γ-enolase seems promising, the effectiveness of enolase inhibitors is under debate. This paper reviews the research on the roles of γ-enolase in the central nervous system, especially in pathophysiological events and the regulation of neurodegenerative diseases.
Collapse
Affiliation(s)
- Selena Horvat
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Janko Kos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia
| | - Anja Pišlar
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Babkina AS, Lyubomudrov MA, Golubev MA, Pisarev MV, Golubev AM. Neuron-Specific Enolase-What Are We Measuring? Int J Mol Sci 2024; 25:5040. [PMID: 38732258 PMCID: PMC11084499 DOI: 10.3390/ijms25095040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Since the discovery of the neuron-specific protein by Moore and McGregor in 1965, tens of thousands of studies have investigated the basic and applied significance of neuron-specific enolase (NSE). This promising biomarker, according to many researchers, has not found widespread use in clinical practice, particularly in acute cerebrovascular accidents. Moreover, the several studies refuting the usefulness of serum NSE measurement in critically ill patients leads us to consider the reasons for such contradictory conclusions. In this article, we have analyzed the main directions in the study of NSE and expressed our perspective on the reasons for the contradictory results and the difficulties in implementing the results of these studies in clinical practice. In our opinion, the method of the enzyme-linked immunosorbent assay (ELISA) used in the majority of the studies is inappropriate for the evaluation of NSE as a marker of central nervous system damage, because it does not allow for the differentiation of heterodimers of enolases and the assessment of the enzymatic activity of this group of enzymatic proteins. Therefore, the methodological approach for the evaluation of NSE (γγ-enolase) as a biomarker needs to be elaborated and improved. Furthermore, the specificity of the applied research methods and the appropriateness of the continued use of the term "neuron-specific enolase" must be addressed.
Collapse
Affiliation(s)
- Anastasiya S. Babkina
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia; (M.A.L.); (M.V.P.); (A.M.G.)
| | - Maxim A. Lyubomudrov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia; (M.A.L.); (M.V.P.); (A.M.G.)
| | | | - Mikhail V. Pisarev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia; (M.A.L.); (M.V.P.); (A.M.G.)
| | - Arkady M. Golubev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia; (M.A.L.); (M.V.P.); (A.M.G.)
| |
Collapse
|
4
|
Sakurai K, Takeba Y, Osada Y, Mizuno M, Tsuzuki Y, Aso K, Kida K, Ohta Y, Ootaki M, Iiri T, Hokuto I, Shimizu N, Matsumoto N. Antenatal Glucocorticoid Administration Promotes Cardiac Structure and Energy Metabolism Maturation in Preterm Fetuses. Int J Mol Sci 2022; 23:10186. [PMID: 36077580 PMCID: PMC9456503 DOI: 10.3390/ijms231710186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Although the rate of preterm birth has increased in recent decades, a number of preterm infants have escaped death due to improvements in perinatal and neonatal care. Antenatal glucocorticoid (GC) therapy has significantly contributed to progression in lung maturation; however, its potential effects on other organs remain controversial. Furthermore, the effects of antenatal GC therapy on the fetal heart show both pros and cons. Translational research in animal models indicates that constant fetal exposure to antenatal GC administration is sufficient for lung maturation. We have established a premature fetal rat model to investigate immature cardiopulmonary functions in the lungs and heart, including the effects of antenatal GC administration. In this review, we explain the mechanisms of antenatal GC actions on the heart in the fetus compared to those in the neonate. Antenatal GCs may contribute to premature heart maturation by accelerating cardiomyocyte proliferation, angiogenesis, energy production, and sarcoplasmic reticulum function. Additionally, this review specifically focuses on fetal heart growth with antenatal GC administration in experimental animal models. Moreover, knowledge regarding antenatal GC administration in experimental animal models can be coupled with that from developmental biology, with the potential for the generation of functional cells and tissues that could be used for regenerative medical purposes in the future.
Collapse
Affiliation(s)
- Kenzo Sakurai
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki 216-8511, Kanagawa, Japan
| | - Yuko Takeba
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki 216-8511, Kanagawa, Japan
| | - Yosuke Osada
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki 216-8511, Kanagawa, Japan
| | - Masanori Mizuno
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki 216-8511, Kanagawa, Japan
| | - Yoshimitsu Tsuzuki
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki 216-8511, Kanagawa, Japan
| | - Kentaro Aso
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki 216-8511, Kanagawa, Japan
| | - Keisuke Kida
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki 216-8511, Kanagawa, Japan
| | - Yuki Ohta
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki 216-8511, Kanagawa, Japan
| | - Masanori Ootaki
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki 216-8511, Kanagawa, Japan
| | - Taroh Iiri
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki 216-8511, Kanagawa, Japan
| | - Isamu Hokuto
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki 216-8511, Kanagawa, Japan
| | - Naoki Shimizu
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki 216-8511, Kanagawa, Japan
| | - Naoki Matsumoto
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki 216-8511, Kanagawa, Japan
| |
Collapse
|
5
|
Haque A, Polcyn R, Matzelle D, Banik NL. New Insights into the Role of Neuron-Specific Enolase in Neuro-Inflammation, Neurodegeneration, and Neuroprotection. Brain Sci 2018; 8:E33. [PMID: 29463007 PMCID: PMC5836052 DOI: 10.3390/brainsci8020033] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 01/18/2023] Open
Abstract
Neurodegeneration is a complex process that leads to irreversible neuronal damage and death in spinal cord injury (SCI) and various neurodegenerative diseases, which are serious, debilitating conditions. Despite exhaustive research, the cause of neuronal damage in these degenerative disorders is not completely understood. Elevation of cell surface α-enolase activates various inflammatory pathways, including the production of pro-inflammatory cytokines, chemokines, and some growth factors that are detrimental to neuronal cells. While α-enolase is present in all neurological tissues, it can also be converted to neuron specific enolase (NSE). NSE is a glycolytic enzyme found in neuronal and neuroendocrine tissues that may play a dual role in promoting both neuroinflammation and neuroprotection in SCI and other neurodegenerative events. Elevated NSE can promote ECM degradation, inflammatory glial cell proliferation, and actin remodeling, thereby affecting migration of activated macrophages and microglia to the injury site and promoting neuronal cell death. Thus, NSE could be a reliable, quantitative, and specific marker of neuronal injury. Depending on the injury, disease, and microenvironment, NSE may also show neurotrophic function as it controls neuronal survival, differentiation, and neurite regeneration via activation of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways. This review discusses possible implications of NSE expression and activity in neuroinflammation, neurodegeneration, and neuroprotection in SCI and various neurodegenerative diseases for prognostic and therapeutic potential.
Collapse
Affiliation(s)
- Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29401, USA.
| | - Rachel Polcyn
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29401, USA.
| | - Denise Matzelle
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29401, USA.
- Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC 29401, USA.
| | - Naren L Banik
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29401, USA.
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29401, USA.
- Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC 29401, USA.
| |
Collapse
|
6
|
Enolase 1 and calreticulin regulate the differentiation and function of mouse mast cells. Cell Signal 2011; 24:60-70. [PMID: 21803152 DOI: 10.1016/j.cellsig.2011.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 06/28/2011] [Accepted: 07/13/2011] [Indexed: 10/18/2022]
Abstract
It has become widely accepted that the role of mast cells is not restricted to allergic processes. Thus, mast cells play an important role in innate and adaptive immune responses, but study of proteins related to differentiation of mast cells has not been done yet. Enolase 1 is a glycolytic enzyme expressed in most tissues and calreticulin, known as endoplasmic reticulum (ER) resident chaperon, has multifunctional responses. This study aimed to investigate the effects of these proteins on the differentiation and functions of mouse bone marrow-derived mast cells (BMMCs). To identify the target proteins related to the differentiation of BMMCs, we examined the protein expression pattern of BMMCs using 2-dimensional electrophoresis (2-DE) and MALDI-TOF analysis. Expressions of FcεRIα, surface molecules (c-kit, CD40, CD40L, VCAM-1), tryptase, and cytokines were examined in BMMCs using FACS analysis, Western blot, and RT-PCR respectively. Enolase 1 and calreticulin were transfected into BMMCs, and [Ca(2+)]i levels were determined by confocal microscope, while amounts of TNF-α and LTs were measured by ELISA. Eight proteins were identified by proteomic analysis. Enolase and calreticulin siRNA transfection inhibited the expressions of FcεRIα, surface molecules, tryptase, and cytokine mRNA, which are gradually enhanced during culture periods of BMMCs. Enolase 1 and calreticulin siRNA reduced the [Ca(2+)]i levels, amounts of total TNF-α, and the release of TNF-α and leukotrienes, all of which are increased in the BMMCs activated with antigen/antibody reaction. The data suggest that enolase 1 and calreticulin are important proteins in regulating the differentiation and functions of BMMCs.
Collapse
|
7
|
Tsuzuki Y, Takeba Y, Kumai T, Matsumoto N, Mizuno M, Murano K, Asoh K, Takagi M, Yamamoto H, Kobayashi S. Antenatal glucocorticoid therapy increase cardiac alpha-enolase levels in fetus and neonate rats. Life Sci 2009; 85:609-16. [PMID: 19583970 DOI: 10.1016/j.lfs.2009.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 05/16/2009] [Accepted: 06/24/2009] [Indexed: 11/15/2022]
Abstract
AIMS Antenatal glucocorticoid therapy has been shown to prevent acute diseases including infant respiratory distress syndrome and reduce mortality, although little is known about the effects on cardiac function-related proteins in the fetus or neonate. We investigated whether cardiac function-related proteins were altered in cardiac tissues of fetuses and neonates born to pregnant rats treated by glucocorticoid. MAIN METHODS Dexamethasone (DEX) was administered to pregnant rats for 2 days on day 17 and 18 or day 19 and 20 of gestation to simulate antenatal DEX therapy, and cardiac tissues of 19- and 21-day fetuses and 1-, 3-, and 5-day neonates were analyzed using a proteomic technique with liquid chromatography-mass spectrometry/mass spectrometry. KEY FINDINGS The identified five proteins; alpha-enolase, creatine kinase-M type, beta-tubulin, troponin T, and ATP synthase beta-chain, were significantly increased in fetal cardiac tissues with DEX administration. We observed that significant increase of alpha-enolase in the 19-day fetuses by DEX using Western blotting and immunohistochemistry. ATP and cAMP levels were also increased in the fetal heart tissue. In addition, pyruvate levels were significantly increased in the fetus groups by DEX. SIGNIFICANCE These results suggest that increased alpha-enolase may contribute to acceleration of glycolysis in the preterm heart.
Collapse
Affiliation(s)
- Yoshimitsu Tsuzuki
- Department of Pharmacology, St. Marianna University School of Medicine 2-16-1 Sugao, Kawasaki, Kanagawa, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Weitzdörfer R, Höger H, Burda G, Pollak A, Lubec G. Differences in Hippocampal Protein Expression at 3 Days, 3 Weeks, and 3 Months Following Induction of Perinatal Asphyxia in the Rat. J Proteome Res 2008; 7:1945-52. [DOI: 10.1021/pr700835y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Rachel Weitzdörfer
- Department of Pediatrics, Medical University of Vienna, Waehringer Guertel 18, 1090 Vienna, Austria, and Division for Laboratory Animal Science and Genetics, Medical University of Vienna, Brauhausgasse 34, 2325 Himberg, Austria
| | - Harald Höger
- Department of Pediatrics, Medical University of Vienna, Waehringer Guertel 18, 1090 Vienna, Austria, and Division for Laboratory Animal Science and Genetics, Medical University of Vienna, Brauhausgasse 34, 2325 Himberg, Austria
| | - Gudrun Burda
- Department of Pediatrics, Medical University of Vienna, Waehringer Guertel 18, 1090 Vienna, Austria, and Division for Laboratory Animal Science and Genetics, Medical University of Vienna, Brauhausgasse 34, 2325 Himberg, Austria
| | - Arnold Pollak
- Department of Pediatrics, Medical University of Vienna, Waehringer Guertel 18, 1090 Vienna, Austria, and Division for Laboratory Animal Science and Genetics, Medical University of Vienna, Brauhausgasse 34, 2325 Himberg, Austria
| | - Gert Lubec
- Department of Pediatrics, Medical University of Vienna, Waehringer Guertel 18, 1090 Vienna, Austria, and Division for Laboratory Animal Science and Genetics, Medical University of Vienna, Brauhausgasse 34, 2325 Himberg, Austria
| |
Collapse
|
9
|
Forooghian F, Cheung RK, Smith WC, O'Connor P, Dosch HM. Enolase and arrestin are novel nonmyelin autoantigens in multiple sclerosis. J Clin Immunol 2007; 27:388-96. [PMID: 17436063 PMCID: PMC2705966 DOI: 10.1007/s10875-007-9091-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 03/07/2007] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Although myelin autoimmunity is known to be a major factor in the pathogenesis of multiple sclerosis (MS), the role of nonmyelin antigens is less clear. Given the complexity of this disease, it is possible that autoimmunity against nonmyelin antigens also has a pathogenic role. Autoantibodies against enolase and arrestin have previously been reported in MS patients. The T-cell response to these antigens, however, has not been established. METHODS Thirty-five patients with MS were recruited, along with thirty-five healthy controls. T-cell proliferative responses against non-neuronal enolase, neuron-specific enolase (NSE), retinal arrestin, beta-arrestin, and myelin basic protein were determined. RESULTS MS patients had a greater prevalence of positive T-cell proliferative responses to NSE, retinal arrestin, and beta-arrestin than healthy controls (p<0.0001). The proliferative response against NSE, retinal arrestin, and beta-arrestin correlated with the response against myelin basic protein (p < or = 0.004). Furthermore, the proliferative response against retinal arrestin was correlated to beta-arrestin (p<0.0001), whereas there was no such correlation between non-neuronal enolase and NSE (p = 0.23). DISCUSSION There is accumulating evidence to suggest that the pathogenesis of MS involves more than just myelin autoimmunity/destruction. Autoimmunity against nonmyelin antigens may be a component of this myriad of immunopathological events. NSE, retinal arrestin, and beta-arrestin are novel nonmyelin autoantigens that deserve further investigation in this respect. Autoimmunity against these antigens may be linked to neurodegeneration, defective remyelination, and predisposition to uveitis in multiple sclerosis. Further investigation of the role of these antigens in MS is warranted.
Collapse
Affiliation(s)
- Farzin Forooghian
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada.
| | | | | | | | | |
Collapse
|
10
|
Forooghian F, Adamus G, Sproule M, Westall C, O'Connor P. Enolase autoantibodies and retinal function in multiple sclerosis patients. Graefes Arch Clin Exp Ophthalmol 2007; 245:1077-84. [PMID: 17219105 DOI: 10.1007/s00417-006-0527-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2006] [Revised: 12/13/2006] [Accepted: 12/14/2006] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Electroretinographic (ERG) abnormalities have been reported in multiple sclerosis (MS), as well as the presence of circulating antiretinal antibodies. We and others have reported cases of impaired vision and diminished ERGs in MS patients with alpha-enolase autoantibodies. Anti-enolase antibodies have been implicated in autoimmune retinopathy. We performed this study to further explore the relationship between antiretinal antibodies and ERG changes in patients with MS. METHODS Patients with clinically definite MS and normal visual acuity were recruited for this study, along with healthy controls. All patients and controls had ERG testing done according to ISCEV standards. Patient and control sera were analyzed for the presence of antiretinal antibodies using Western blot and ELISA techniques, and HLA class II typing was performed using polymerase chain reaction. RESULTS We found a statistically significant difference between MS patients and controls in the rod-cone b-wave implicit time (p < 0.005). We found autoantibodies against alpha-enolase in 38% of MS patients and 11% of controls (p < 0.02). There was no statistically significant difference between ERG parameters of MS patients with alpha-enolase autoantibodies compared to those without alpha-enolase antibodies. Furthermore, the presence of alpha-enolase did not associate with a particular HLA haplotype. CONCLUSIONS Factors affecting the retina other than alpha-enolase antibodies may account for the delayed rod-cone b-wave implicit times observed in MS patients in this study. Anti-enolase antibodies are likely an epiphenomenon of autoimmune disease, and are not causing retinopathy in MS patients with normal visual acuity. However, the possibility of rare cases of patients with pathogenic alpha-enolase autoantibodies can not be excluded. The pathogenic contribution of these antibodies in MS patients with visual impairment deserves further investigation.
Collapse
Affiliation(s)
- Farzin Forooghian
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada.
| | | | | | | | | |
Collapse
|
11
|
Rütters H, Zürbig P, Halter R, Borlak J. Towards a lung adenocarcinoma proteome map: Studies with SP-C/c-raf transgenic mice. Proteomics 2006; 6:3127-37. [PMID: 16688788 DOI: 10.1002/pmic.200500188] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We report mapping of proteins of adenocarcinomas of the lung as a result of overexpression of the oncogenically activated N-terminal deletion mutant c-raf-1 BxB through usage of the human SP-C promotor. Proteins from non-transgenic controls and tumors were extracted with a lysis buffer containing 5 mol/L urea, 2 mol/L thiourea, 40 mmol/L Tris, 4% CHAPS, 100 mmol/L DTT, 0.5% BioLyte 3-10, separated by 2-DE and studied by image analysis. On average, 300-600 protein spots per gel were excised and analyzed by MALDI-TOF and -TOF/TOF MS. More than 1000 of the CBB-stained proteins were identified and traced back to 100 different gene products, including many of their isoforms. We observed significant changes in the expression of proteins involved in cellular defense or glycolysis, and this included glutathione S-transferase, peroxiredoxin 6, and alpha-enolase, among others. Proteins associated with lung tumor growth and/or metastasis, i.e., lung carbonyl reductase, differed in expression, as did tumor-associated expression of cell adhesion and membrane-bound proteins such as vinculin. This map provides valuable insight into expression of pulmonary proteins associated with lung adenocarcinomas, some of which may be of utility as diagnostic markers in clinical trials.
Collapse
Affiliation(s)
- Heike Rütters
- Department of Drug Research and Medical Biotechnology, Fraunhofer Institute of Toxicology and Experimental Medicine, Nikolai-Fuchs-Strasse 1, 30625 Hannover, Germany
| | | | | | | |
Collapse
|
12
|
Vosseller K, Hansen KC, Chalkley RJ, Trinidad JC, Wells L, Hart GW, Burlingame AL. Quantitative analysis of both protein expression and serine / threonine post-translational modifications through stable isotope labeling with dithiothreitol. Proteomics 2005; 5:388-98. [PMID: 15648052 DOI: 10.1002/pmic.200401066] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
While phosphorylation and O-GlcNAc (cytoplasmic and nuclear glycosylation) are linked to normal and pathological changes in cell states, these post-translational modifications have been difficult to analyze in proteomic studies. We describe advances in beta-elimination / Michael addition-based approaches which allow for mass spectrometry-based identification and comparative quantification of O-phosphate or O-GlcNAc-modified peptides, as well as cysteine-containing peptides for expression analysis. The method (BEMAD) involves differential isotopic labeling through Michael addition with normal dithiothreitol (DTT) (d0) or deuterated DTT (d6), and enrichment of these peptides by thiol chromatography. BEMAD was comparable to isotope-coded affinity tags (ICAT; a commercially available differential isotopic quantification technique) in protein expression analysis, but also provided the identity and relative amounts of both O-phosphorylation and O-GlcNAc modification sites. Specificity of O-phosphate vs. O-GlcNAc mapping is achieved through coupling enzymatic dephosphorylation or O-GlcNAc hydrolysis with differential isotopic labeling. Blocking of cysteine labeling by prior oxidation of a cytosolic lysate from mouse brain allowed specific targeting of serine / threonine post-translational modifications as demonstrated through identification of 21 phosphorylation sites (5 previously reported) in a single mass spectrometry analysis. These results demonstate BEMAD is suitable for large-scale quantitative analysis of both protein expression and serine / threonine post-translational modifications.
Collapse
Affiliation(s)
- Keith Vosseller
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Tanaka S, Tatsumi KI, Takano T, Murakami Y, Takao T, Yamakita N, Tahara S, Teramoto A, Hashimoto K, Kato Y, Amino N. Anti-alpha-enolase antibodies in pituitary disease. Endocr J 2003; 50:697-702. [PMID: 14709840 DOI: 10.1507/endocrj.50.697] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A previous study reported a high prevalence of autoantibodies to alpha-enolase in lymphocytic hypophysitis and these antibodies efficiently distinguished lymphocytic hypophysitis from pituitary tumors. To confirm this, we examined autoantibodies to alpha-enolase in patients with lymphocytic hypophysitis (n = 17), pituitary non-functioning adenoma (n = 13), other pituitary diseases (n = 17) and other autoimmune diseases (n = 30), and compared to healthy controls (n = 46). Autoantibodies were found in 41.2%, 46.2%, 23.5%, 20.0% and 4.3%, respectively. Our findings indicate that detection of anti-alpha-enolase antibodies is not suitable for specific diagnosis of lymphocytic hypophysitis.
Collapse
Affiliation(s)
- Susumu Tanaka
- Department of Laboratory Medicine, Osaka University Graduate School of Medicine, Suita-shi, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|