1
|
Otake AH, de Freitas Saito R, Duarte APM, Ramos AF, Chammas R. G D3 ganglioside-enriched extracellular vesicles stimulate melanocyte migration. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:422-432. [PMID: 29908366 DOI: 10.1016/j.bbalip.2018.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 05/17/2018] [Accepted: 06/12/2018] [Indexed: 01/30/2023]
Abstract
Melanomas often accumulate gangliosides, sialic acid-containing glycosphingolipids found in the outer leaflet of plasma membranes, as disialoganglioside GD3 and its derivatives. Here, we have transfected the GD3 synthase gene (ST8Sia I) in a normal melanocyte cell line in order to evaluate changes in the biological behavior of non-transformed cells. GD3-synthase expressing cells converted GM3 into GD3 and accumulated both GD3 and its acetylated form, 9-O-acetyl-GD3. Melanocytes were rendered more migratory on laminin-1 surfaces. Cell migration studies using the different transfectants, either treated or not with the glucosylceramide synthase inhibitor d-1-threo-1-phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (PPPP), allowed us to show that while GM3 is a negative regulator of melanocyte migration, GD3 increases it. We showed that gangliosides were shed to the matrix by migrating cells and that GD3 synthase transfected cells shed extracellular vesicles (EVs) enriched in GD3. EVs enriched in GD3 stimulated cell migration of GD3 negative cells, as observed in time lapse microscopy studies. Otherwise, EVs shed by GM3+veGD3-ve cells impaired migration and diminished cell velocity in cells overexpressing GD3. The balance of antimigratory GM3 and promigratory GD3 gangliosides in melanocytes could be altered not only by the overexpression of enzymes such as ST8Sia I, but also by the horizontal transfer of ganglioside enriched extracellular vesicles. This study highlights that extracellular vesicles transfer biological information also through their membrane components, which include a variety of glycosphingolipids remodeled in disease states such as cancer.
Collapse
Affiliation(s)
- Andreia Hanada Otake
- Center for Translational Research in Oncology (LIM-24), Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, 01246-000 São Paulo, SP, Brazil
| | - Renata de Freitas Saito
- Center for Translational Research in Oncology (LIM-24), Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, 01246-000 São Paulo, SP, Brazil
| | - Ana Paula Marques Duarte
- Center for Translational Research in Oncology (LIM-24), Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, 01246-000 São Paulo, SP, Brazil
| | - Alexandre Ferreira Ramos
- Center for Translational Research in Oncology (LIM-24), Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, 01246-000 São Paulo, SP, Brazil; Escola de Artes, Ciências e Humanidades da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Roger Chammas
- Center for Translational Research in Oncology (LIM-24), Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, 01246-000 São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Critical role of evolutionarily conserved glycosylation at Asn211 in the intracellular trafficking and activity of sialyltransferase ST3Gal-II. Biochem J 2015; 469:83-95. [DOI: 10.1042/bj20150072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 04/28/2015] [Indexed: 01/19/2023]
Abstract
ST3Gal-II is largely responsible for ganglioside terminal α2,3-sialylation in mammals. We demonstrated that ST3Gal-II mainly distributes in proximal Golgi compartments and that the inhibition of N-glycosylation and oligosaccharide trimming is critical for its enzymatic activity and intracellular distribution.
Collapse
|
3
|
Daniotti JL, Vilcaes AA, Torres Demichelis V, Ruggiero FM, Rodriguez-Walker M. Glycosylation of glycolipids in cancer: basis for development of novel therapeutic approaches. Front Oncol 2013; 3:306. [PMID: 24392350 PMCID: PMC3867695 DOI: 10.3389/fonc.2013.00306] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 12/03/2013] [Indexed: 12/18/2022] Open
Abstract
Altered networks of gene regulation underlie many pathologies, including cancer. There are several proteins in cancer cells that are turned either on or off, which dramatically alters the metabolism and the overall activity of the cell, with the complex machinery of enzymes involved in the metabolism of glycolipids not being an exception. The aberrant glycosylation of glycolipids on the surface of the majority of cancer cells, associated with increasing evidence about the functional role of these molecules in a number of cellular physiological pathways, has received considerable attention as a convenient immunotherapeutic target for cancer treatment. This has resulted in the development of a substantial number of passive and active immunotherapies, which have shown promising results in clinical trials. More recently, antibodies to glycolipids have also emerged as an attractive tool for the targeted delivery of cytotoxic agents, thereby providing a rationale for future therapeutic interventions in cancer. This review first summarizes the cellular and molecular bases involved in the metabolic pathway and expression of glycolipids, both in normal and tumor cells, paying particular attention to sialosylated glycolipids (gangliosides). The current strategies in the battle against cancer in which glycolipids are key players are then described.
Collapse
Affiliation(s)
- Jose L Daniotti
- Facultad de Ciencias Químicas, Departamento de Química Biológica, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Universidad Nacional de Córdoba , Córdoba , Argentina
| | - Aldo A Vilcaes
- Facultad de Ciencias Químicas, Departamento de Química Biológica, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Universidad Nacional de Córdoba , Córdoba , Argentina
| | - Vanina Torres Demichelis
- Facultad de Ciencias Químicas, Departamento de Química Biológica, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Universidad Nacional de Córdoba , Córdoba , Argentina
| | - Fernando M Ruggiero
- Facultad de Ciencias Químicas, Departamento de Química Biológica, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Universidad Nacional de Córdoba , Córdoba , Argentina
| | - Macarena Rodriguez-Walker
- Facultad de Ciencias Químicas, Departamento de Química Biológica, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Universidad Nacional de Córdoba , Córdoba , Argentina
| |
Collapse
|
4
|
Torres Demichelis V, Vilcaes AA, Iglesias-Bartolomé R, Ruggiero FM, Daniotti JL. Targeted delivery of immunotoxin by antibody to ganglioside GD3: a novel drug delivery route for tumor cells. PLoS One 2013; 8:e55304. [PMID: 23383146 PMCID: PMC3561269 DOI: 10.1371/journal.pone.0055304] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/30/2012] [Indexed: 11/18/2022] Open
Abstract
Gangliosides are sialic acid-containing glycolipids expressed on plasma membranes from nearly all vertebrate cells. The expression of ganglioside GD3, which plays essential roles in normal brain development, decreases in adults but is up regulated in neuroectodermal and epithelial derived cancers. R24 antibody, directed against ganglioside GD3, is a validated tumor target which is specifically endocytosed and accumulated in endosomes. Here, we exploit the internalization feature of the R24 antibody for the selective delivery of saporin, a ribosome-inactivating protein, to GD3-expressing cells [human (SK-Mel-28) and mouse (B16) melanoma cells and Chinese hamster ovary (CHO)-K1 cells]. This immunotoxin showed a specific cytotoxicity on tumor cells grew on 2D monolayers, which was further evident by the lack of any effect on GD3-negative cells. To estimate the potential antitumor activity of R24-saporin complex, we also evaluated the effect of the immunotoxin on the clonogenic growth of SK-Mel-28 and CHO-K1GD3+ cells cultured in attachment-free conditions. A drastic growth inhibition (>80–90%) of the cell colonies was reached after 3 days of immunotoxin treatment. By the contrary, colonies continue to growth at the same concentration of the immuntoxin, but in the absence of R24 antibody, or in the absence of both immunotoxin and R24, undoubtedly indicating the specificity of the effect observed. Thus, the ganglioside GD3 emerge as a novel and attractive class of cell surface molecule for targeted delivery of cytotoxic agents and, therefore, provides a rationale for future therapeutic intervention in cancer.
Collapse
Affiliation(s)
- Vanina Torres Demichelis
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Aldo A. Vilcaes
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ramiro Iglesias-Bartolomé
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Fernando M. Ruggiero
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Jose L. Daniotti
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- * E-mail:
| |
Collapse
|
5
|
Developmental regulation of oligosialylation in zebrafish. Glycoconj J 2008; 26:247-61. [DOI: 10.1007/s10719-008-9161-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 06/09/2008] [Accepted: 06/10/2008] [Indexed: 11/27/2022]
|
6
|
Rimoldi S, Papis E, Bernardini G, Prati M, Gornati R. Molecular cloning and expression of alpha2,8-sialyltransferase (ST8Sia I, GD3 Synthase) in Xenopus. Mol Cell Biochem 2007; 301:143-53. [PMID: 17333390 DOI: 10.1007/s11010-006-9406-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 12/20/2006] [Indexed: 10/23/2022]
Abstract
GD3, a minor ganglioside in most normal tissues, is involved in important biological events and its expression could increase in pathological conditions. Organism integrity requires a tight balance between the anabolic and catabolic processes, thus it is important to control the intracellular expression of those "key" enzymes, which act at the "branching point" of ganglioside metabolism; one of these is the GD3-synthase (ST8Sia I). In this paper, we report the sequences of two ST8Sia I mRNAs found in Xenopus laevis and their genomic organization; the canonical form resulted constituted of 5 exons and 4 introns, while the "short" mRNA lacks of the exon 2. The expression of the two ST8Sia I mRNAs during embryo development and their tissue distribution in adult animals showed the single or simultaneous presence of the two forms. Experiments of in vitro expression and evaluation of enzymatic activity of the two hypothetical proteins turned out to be ST8Sia I. In the end, considering the growing interest toward the specie Xenopus tropicalis, due to its diploid genome that render it more suitable for genetic studies, we also cloned X. tropicalis ST8Sia I.
Collapse
Affiliation(s)
- Simona Rimoldi
- Department of Biotechnology and Molecular Sciences, University of Insubria, Via Dunant 3, 21100, Varese, Italy
| | | | | | | | | |
Collapse
|
7
|
van Echten-Deckert G, Herget T. Sphingolipid metabolism in neural cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1978-94. [PMID: 16843432 DOI: 10.1016/j.bbamem.2006.06.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 05/29/2006] [Accepted: 06/06/2006] [Indexed: 10/24/2022]
Abstract
Sphingolipids were discovered more than a century ago in the brain. Cerebrosides and sphingomyelins were named so because they were first isolated from neural tissue. Although glycosphingolipids and especially those containing sialic acid in their oligosaccharide moiety are particularly abundant in the brain, sphingolipids are ubiquitous cellular membrane components. They form cell- and species-specific profiles at the cell surfaces that characteristically change in development, differentiation, and oncogenic transformation, indicating the significance of these lipid molecules for cell-cell and cell-matrix interactions as well as for cell adhesion, modulation of membrane receptors and signal transduction. This review summarizes sphingolipid metabolism with emphasis on aspects particularly relevant in neural cell types, including neurons, oligodendrocytes and neuroblastoma cells. In addition, the reader is briefly introduced into the methodology of lipid evaluation techniques and also into the putative physiological functions of glycosphingolipids and their metabolites in neural tissue.
Collapse
Affiliation(s)
- Gerhild van Echten-Deckert
- Kekulé-Institute for Organic Chemistry and Biochemistry, University Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| | | |
Collapse
|
8
|
Andrade CMB, Trindade VMT, Cardoso CCA, Ziulkoski AL, Trugo LC, Guaragna RM, Borojevic R, Guma FCR. Changes of sphingolipid species in the phenotype conversion from myofibroblasts to lipocytes in hepatic stellate cells. J Cell Biochem 2003; 88:533-44. [PMID: 12532329 DOI: 10.1002/jcb.10373] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sphingolipids play a relevant role in cell-cell interaction, communication, and migration. We studied the sphingolipid content in the murine hepatic stellate cell line GRX, which expresses the myofibroblast phenotype, and can be induced in vitro to display the fat-storing phenotype. Lipid modifications along this induction were investigated by labeling sphingolipids with [(14)C]galactose, [(14)C]serine, or [(14)C]choline, and determination of fatty acid composition of sphingomyelin. The total ganglioside content and the GM2 synthase activity were lower in myofibroblasts. Both phenotypes presented similar gangliosides of the a-pathway: GM2, GM1, and GD1a as well as their precursor GM3. Sphingomyelin and all the gangliosides were expressed as doublets; the upper/lower band ratio increased in lipocytes, containing more long-chain fatty acids in retinol-induced lipocytes as compared to the insulin/indomethacin induced ones. Time-course experiments indicated a transfer of metabolic precursors from phosphatidylcholine to sphingomyelin in the two phenotypes. Taken together, these results indicate that myofibroblast and lipocytes can use distinct ceramide pools for sphingolipid synthesis. Differential ganglioside expression and presence of the long-chain saturated fatty acids suggested that they may participate in formation of distinct membrane microdomains or rafts with specific functions on the two phenotypes of GRX-cells.
Collapse
Affiliation(s)
- Claudia M B Andrade
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Glycolipid expression is highly regulated during development and differeniation. The control relies mainly on transcriptional modulation of key glycosyltransferases acting at the branching points of the pathway of biosynthesis. Transferases are Golgi residents that depend on N-glycosylation and oligosaccharide processing for proper folding in the endoplasmic reticulum. The N-terminal domain bears information for their transport to the Golgi, retention in the organelle and differential concentration in sub-Golgi compartments. In the Golgi, some transferases associate forming functional multienzyme complexes. It is envisaged that the machinery for synthesis in the Golgi complex, and its dynamics, constitute a potential target for fine tuning of the control of glycolipid expression according to cell demands.
Collapse
Affiliation(s)
- Hugo J F Maccioni
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC (UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina.
| | | | | |
Collapse
|
10
|
Trindade VM, Daniotti JL, Raimondi L, Chazan R, Netto CA, Maccioni HJ. Effects of neonatal hypoxia/ischemia on ganglioside expression in the rat hippocampus. Neurochem Res 2001; 26:591-7. [PMID: 11519719 DOI: 10.1023/a:1010974917308] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Neonatal Hypoxia-Ischemia (HI) triggers a cascade of biochemical events that result in neuronal injury, but the mechanisms underlying these processes are not completely understood, and information regarding the effect of HI on the synthesis of brain glycoconjugates is lacking. The present work evaluates the effects of neonatal HI on hippocampal ganglioside synthesis. Seven-day-old rat pups were exposed to HI for 2.5 h according to the modified Levine model and samples from hyppocampus were obtained at 30 min as well as at 1, 2 and 4 days later. The activity for synthesis of gangliosides was evaluated by determining the incorporation of N-acetyl [3H]neuraminc acid ([3H]NeuAc) into the endogenous gangliosides of Golgi membranes and by determining the activity of Sial-T2 (GD3 synthase) and GalNAc-T (GM2 synthase), the two enzymes acting on sialyllactosylceramide (GM3) at the branching point of synthesis of a- and b-ganglioside pathway. Northern blot experiments were also conducted to determine transcription levels of the mRNAs specific for these transferases. Neonatal HI caused a relative increase of in vitro [3H]NeuAc incorporation into endogenous lactosylceramide, which was most noticeable at 30 min and I day post-event and disappeared by day 2 and 4. The transient accumulation of [3H]GM3 correlated with decreases in the activities of GD3- and GM2 synthase measured at 30 min and at 1 day after the HI insult. No significant variations in the expression of the genes for these enzymes were observed. Results suggest that transient accumulation of GM3 may be due to post-translational events negatively modulating both GD3- and GM2 synthase activities.
Collapse
Affiliation(s)
- V M Trindade
- Dep Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | | | | | | | | | | |
Collapse
|
11
|
Daniotti JL, Martina JA, Giraudo CG, Zurita AR, Maccioni HJ. GM3 alpha2,8-sialyltransferase (GD3 synthase): protein characterization and sub-golgi location in CHO-K1 cells. J Neurochem 2000; 74:1711-20. [PMID: 10737630 DOI: 10.1046/j.1471-4159.2000.0741711.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
GD3 synthase (Sial-T2) is a key enzyme of ganglioside synthesis that, in concert with GM2 synthase (GalNAc-T), regulates the ratio of a- and b-pathway gangliosides. In this work, we study the sub-Golgi location of an epitope-tagged version of chicken Sial-T2 transfected to CHO-K1 cells. The expressed protein was enzymatically active both in vitro and in vivo and showed a molecular mass of approximately 47 or approximately 95 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence or absence of, respectively, beta-mercaptoethanol. The 95-kDa form of Sial-T2 was also detected if the protein was retained in the endoplasmic reticulum (ER) due to impaired glycosylation, indicating that it was formed in the ER. Confocal immunofluorescence microscopy showed Sial-T2 localized to the Golgi complex and, within the organelle, partially co-localizing with the mannose-6-phosphate receptor, a marker of the trans-Golgi network (TGN). In cells treated with brefeldin A, a major fraction of Sial-T2 redistributed to the ER, even under controlled expression to control for mislocalization due to protein overloading. In experiments of incorporation of sugars into endogenous acceptors of Golgi membranes in vitro, GD3 molecules formed by incubation with CMP-NeuAc were converted to GD2 upon incubation with UDP-GalNAc. These results indicate that Sial-T2 localizes mainly to the proximal Golgi, although a fraction is located in the TGN functionally coupled to GalNAc-T. Consistent with this, most of the enzyme was in an endoglycosidase H (Endo-H)-sensitive, neuraminidase (NANase)-insensitive form. A minor secreted form lacking approximately 40 amino acids was Endo-H-resistant and NANase-sensitive, indicating that the cells were able to process N-glycans to Endo-H-resistant forms. Taken together, the results of these biochemical and immunocytochemical experiments indicate that in CHO-K1 cells, most Sial-T2 localizes in the proximal Golgi and that a functional fraction is also present in the TGN.
Collapse
Affiliation(s)
- J L Daniotti
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC (UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Argentina
| | | | | | | | | |
Collapse
|
12
|
Maccioni HJ, Daniotti JL, Martina JA. Organization of ganglioside synthesis in the Golgi apparatus. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1437:101-18. [PMID: 10064894 DOI: 10.1016/s1388-1981(99)00002-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- H J Maccioni
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC (UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina.
| | | | | |
Collapse
|
13
|
Martina JA, Daniotti JL, Maccioni HJ. Influence of N-glycosylation and N-glycan trimming on the activity and intracellular traffic of GD3 synthase. J Biol Chem 1998; 273:3725-31. [PMID: 9452504 DOI: 10.1074/jbc.273.6.3725] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
GD3 synthase (ST8Sia I) transfers a sialic acid in alpha-2-->8 linkage to the sialic acid moiety of GM3 to form the ganglioside GD3. The cDNAs of GD3 synthases predict several putative N-glycosylation sites. In this work we have examined the occupancy of these sites in a chicken GD3 synthase and how they affect its activity and intracellular traffic. COS-7 cells were transfected with an influenza virus hemagglutinin (HA) epitope-tagged form of GD3 synthase (GD3 synthase-HA). Cells acquired GD3 synthase activity, cell surface GD3 immunoexpression, and GD3 synthase-HA immunoreactivity in the Golgi complex. In Western blots, a main GD3 synthase-HA band of 47 kDa was detected, which was radioactive upon metabolic labeling with [2-3H] mannose. Tunicamycin prevented the incorporation of [2-3H]mannose into GD3 synthase-HA, blocked the enzyme activity, and promoted a reduction of the enzyme molecular mass of 6-7 kDa. Timed deglycosylation with N-glycosidase F showed that all three potential N-glycosylation sites of GD3 synthase-HA were glycosylated. The deglycosylated forms were enzymatically more unstable than the native form. Tunicamycin treatment of cells led to retention of GD3 synthase-HA immunoreactivity in the endoplasmic reticulum (ER). Castanospermine and deoxynojirimycin, inhibitors of the ER-processing enzymes alpha-glucosidases I and II, also prevented the exit from the ER but did not essentially affect the enzyme specific activity. 1-Deoxymannojirimycin and swainsonine, inhibitors of mannosidases, did not affect either the enzyme activity or the Golgi localization. Results indicate that (a) N-glycosylation is necessary for GD3 synthase to attain and to maintain a catalytically active folding, and for exiting the ER; and (b) N-glycan trimming in the ER, while not required for enzyme activity, is necessary for proper trafficking of GD3 synthase to the Golgi complex.
Collapse
Affiliation(s)
- J A Martina
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, AP 4, CC 61, 5000 Córdoba, Argentina
| | | | | |
Collapse
|