1
|
Trinh TA, Duy Le TM, Ho HGV, To TCT, Nguyen VVL, Huynh DP, Lee DS. A novel injectable pH-temperature sensitive hydrogel containing chitosan-insulin electrosprayed nanosphere composite for an insulin delivery system in type I diabetes treatment. Biomater Sci 2020; 8:3830-3843. [PMID: 32538381 DOI: 10.1039/d0bm00634c] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel insulin composite delivery system was prepared and characterized. The composite consisted of a pH- and temperature-sensitive hydrogel, which is an oligomer serine-b-poly(lactide)-b-poly(ethylene glycol)-b-poly(lactide)-b-oligomer serine (OS-PLA-PEG-PLA-OS) pentablock copolymer, as matrix and chitosan-insulin electrosprayed nanospheres (CIN) as constituent materials. The properties of the OS-PLA-PEG-PLA-OS pentablock copolymer and the chitosan-insulin nanoparticles were characterized. The chitosan-insulin nanospheres uniformly distributed in the matrix had a reinforcing effect on the mechanical properties and prolonged the degradation time of the hydrogel depot under body conditions. The composite solutions accommodating different concentrations of the chitosan-insulin nanospheres were subcutaneously injected into induced diabetic BALB/c mice to study the in vivo insulin-release profile. The result showed that insulin concentrations in blood plasma were maintained at a steady-state level. Furthermore, the bio-properties of the insulin were retained and it showed a blood glucose level reducing effect for more than 60 hours after injection to a streptozotocin (STZ)-induced diabetic mouse model. The results suggested that this injectable pH-temperature sensitive hydrogel containing chitosan-insulin electrosprayed nanosphere composites has promising potential applications for type 1 diabetes treatment.
Collapse
Affiliation(s)
- Thuy An Trinh
- Faculty of Materials Technology, Ho Chi Minh University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam.
| | | | | | | | | | | | | |
Collapse
|
2
|
Lewis JS, Dolgova NV, Zhang Y, Xia CQ, Wasserfall CH, Atkinson MA, Clare-Salzler MJ, Keselowsky BG. A combination dual-sized microparticle system modulates dendritic cells and prevents type 1 diabetes in prediabetic NOD mice. Clin Immunol 2015; 160:90-102. [PMID: 25842187 DOI: 10.1016/j.clim.2015.03.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/16/2015] [Accepted: 03/24/2015] [Indexed: 12/17/2022]
Abstract
We developed a novel poly(lactic-co-glycolic acid)-based, microparticle (MP) system providing concurrent delivery of multiple encapsulated immuno-suppressive factors and antigen, for in vivo conditioning of dendritic cells (DCs) toward a tolerance promoting pathway. Subcutaneous administration prevents onset of type 1 diabetes (T1D) in NOD mice. Two MP sizes were made: phagocytosable MPs were fabricated encapsulating vitamin D3 or insulin B(9-23) peptide, while unphagocytosable MPs were fabricated encapsulating TGF-β1 or GM-CSF. The combination of Vit D3/TGF-β1 MPs confers an immature and LPS activation-resistant phenotype to DCs, and MP-delivered antigen is efficiently and functionally presented. Notably, two subcutaneous injections into 4week old NOD mice using the combination of MPs encapsulating Vit D3, Ins B, TGF-β1 and GM-CSF protected 40% of mice from T1D development, significant in comparison to the control. This work represents one of the first applications of a biomaterial-based, MP vaccine system to successfully prevent autoimmune diabetes.
Collapse
Affiliation(s)
- Jamal S Lewis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Natalia V Dolgova
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Ying Zhang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Chang Qing Xia
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Clive H Wasserfall
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Michael J Clare-Salzler
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Benjamin G Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
3
|
Tafuri KS, Godil MA, Lane AH, Wilson TA. Effect of pioglitazone on the course of new-onset type 1 diabetes mellitus. J Clin Res Pediatr Endocrinol 2013; 5:236-9. [PMID: 24379032 PMCID: PMC3890222 DOI: 10.4274/jcrpe.981] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Type 1 diabetes mellitus (T1DM) is caused by insulin deficiency resulting from progressive destruction of β cells. The histological hallmark of the diabetic islet is mononuclear cell infiltration. Thiazolidinediones (TZDs) activate PPARg and enhance the actions of insulin. Studies in non-obese diabetic and streptocotozin-treated mouse models demonstrated that pretreatment with TZDs prevented the development of T1DM. The purpose of this study was to examine whether pioglitazone, given with insulin, preserved β cell function in patients with new-onset T1DM. METHODS This was a randomized, double-blind, placebo-controlled 24-week study. Subjects received pioglitazone or placebo. Blood sugar, glycated hemoglobin (HbA1c), C-peptide, and liver enzymes were measured at baseline. Boost© stimulated C-peptide responses were measured at baseline and at 24 weeks. Blood sugar, insulin dose, height, weight, and liver enzymes were monitored at each visit. HbA1c was performed every 12 weeks. RESULTS Of the 15 patients, 8 received pioglitazone, and 7 - placebo. There was no clinical improvement in HbA1c between or within groups at the completion of the study. Mean peak C-peptide values were similar between groups at baseline. Mean peak C-peptide level was slightly higher at 24 weeks in the pioglitazone group compared to the placebo (1.8 vs. 1.5 ng/mL) which was considered as clinically insignificant. The interaction of HbA1c and insulin dose (HbA1c* insulin/kg/day), which combines degree of diabetic control and dose of insulin required to achieve this control, showed transient improvement in the pioglitazone group at 12 weeks but was not sustained at 24 weeks. CONCLUSION In this pilot study, pioglitazone did not preserve β cell function when compared to placebo.
Collapse
Affiliation(s)
- Kimberly Sue Tafuri
- Division of Pediatric Endocrinology, Stony Brook Children's Hospital, Stony Brook, United States. E-mail:
| | - Mushtaq Ahmed Godil
- Division of Pediatric Endocrinology, Geisinger Health System, Danville, United States
| | - Andrew Harry Lane
- Division of Pediatric Endocrinology, Stony Brook Children’s Hospital, Stony Brook, United States
| | - Thomas Allen Wilson
- Division of Pediatric Endocrinology, Stony Brook Children’s Hospital, Stony Brook, United States
| |
Collapse
|
4
|
Increased galectin-1 expression in muscle of Astragalus polysaccharide-treated Type 1 diabetic mice. J Nat Med 2011; 65:500-7. [DOI: 10.1007/s11418-011-0527-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 03/01/2011] [Indexed: 10/18/2022]
|
5
|
Perone MJ, Bertera S, Shufesky WJ, Divito SJ, Montecalvo A, Mathers AR, Larregina AT, Pang M, Seth N, Wucherpfennig KW, Trucco M, Baum LG, Morelli AE. Suppression of autoimmune diabetes by soluble galectin-1. THE JOURNAL OF IMMUNOLOGY 2009; 182:2641-53. [PMID: 19234158 DOI: 10.4049/jimmunol.0800839] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease that targets the beta-cells of the pancreas. We investigated the ability of soluble galectin-1 (gal-1), an endogenous lectin that promotes T cell apoptosis, to down-regulate the T cell response that destroys the pancreatic beta-cells. We demonstrated that in nonobese diabetic (NOD) mice, gal-1 therapy reduces significantly the amount of Th1 cells, augments the number of T cells secreting IL-4 or IL-10 specific for islet cell Ag, and causes peripheral deletion of beta-cell-reactive T cells. Administration of gal-1 prevented the onset of hyperglycemia in NOD mice at early and subclinical stages of T1D. Preventive gal-1 therapy shifted the composition of the insulitis into an infiltrate that did not invade the islets and that contained a significantly reduced number of Th1 cells and a higher percentage of CD4(+) T cells with content of IL-4, IL-5, or IL-10. The beneficial effects of gal-1 correlated with the ability of the lectin to trigger apoptosis of the T cell subsets that cause beta-cell damage while sparing naive T cells, Th2 lymphocytes, and regulatory T cells in NOD mice. Importantly, gal-1 reversed beta-cell autoimmunity and hyperglycemia in NOD mice with ongoing T1D. Because gal-1 therapy did not cause major side effects or beta-cell toxicity in NOD mice, the use of gal-1 to control beta-cell autoimmunity represents a novel alternative for treatment of subclinical or ongoing T1D.
Collapse
Affiliation(s)
- Marcelo J Perone
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Rodríguez-Ventura AL, Yamamoto-Furusho JK, Coyote N, Dorantes LM, Ruiz-Morales JA, Vargas-Alarcón G, Granados J. HLA-DRB1*08 allele may help to distinguish between type 1 diabetes mellitus and type 2 diabetes mellitus in Mexican children. Pediatr Diabetes 2007; 8:5-10. [PMID: 17341285 DOI: 10.1111/j.1399-5448.2006.00221.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND It may be difficult to distinguish type 1 diabetes mellitus (T1DM) from type 2 diabetes mellitus (T2DM) in the pediatric population. Autoantibodies may help to differentiate both types of diabetes, but sometimes these are positive in patients with T2DM and negative in patients with T1DM. The human leukocyte antigen (HLA)-DR genotype has been associated with T1DM and with T2DM only in adults and in determined cases. AIM To determine the differences in HLA class II allele frequencies in Mexican children with T1DM and T2DM. METHODS We included 72 children with T1DM, 28 children with T2DM, and 99 healthy controls. All were Mexican, and diabetes was diagnosed according to the clinical and laboratory criteria established by the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. The HLA-DRB1 typing was performed using polymerase chain reaction-sequence-specific oligonucleotide probe and polymerase chain reaction sequence-specific primers. RESULTS We found an increased frequency of HLA-DRB1*08 and a decreased frequency of HLA-DRB1*04 in the group with T2DM vs. T1DM [p = 0.0001, odds ratio (OR) = 10.58, 95% confidence interval (CI) = 3-40.8 and p = 0.0006, OR = 0.24, 95% CI = 0.11-0.53, respectively]. No significant differences were found between HLA-DRB1 alleles in T2DM vs. controls. In the group with T1DM, there was a significantly increased frequency of the HLA-DR4 and HLA-DR3 alleles relative to controls (p = 0.0000001, OR = 3.59, 95% CI = 2.2-5.8 and p = 0.00009, OR = 4.66, 95% CI = 2.1-10.3, respectively). CONCLUSION There are significant differences in the HLA profile in Mexican children with T1DM and T2DM. HLA typing could play a role in the differentiation between both types of diabetes in this population.
Collapse
|
8
|
Machen J, Bertera S, Chang Y, Bottino R, Balamurugan AN, Robbins PD, Trucco M, Giannoukakis N. Prolongation of islet allograft survival following ex vivo transduction with adenovirus encoding a soluble type 1 TNF receptor–Ig fusion decoy. Gene Ther 2004; 11:1506-14. [PMID: 15229635 DOI: 10.1038/sj.gt.3302320] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Islet transplantation is a viable long-term therapeutic alternative to daily insulin replacement for type I diabetes. The allogeneic nature of the transplants poses immunological challenges for routine clinical utility. Gene transfer of immunoregulatory molecules and those that improve insulin release kinetics provides rational approaches to facilitate allogeneic islet transplantation as a potential therapy. We have examined the efficacy of a soluble type 1 tumor necrosis factor receptor (TNFR) immunoglobulin-Fc fusion transgene (TNFR-Ig) to protect human islets from cytokine-induced apoptosis in culture, as well as in facilitating allogeneic islet transplants in diabetic mice. Cultured human islets were transduced with an adenoviral vector encoding human TNFR-Ig (Ad-TNFR-Ig). TNFR-Ig protein was secreted by cultured islets, as well as by transduced mouse islet transplants recovered from mouse recipients. Glucose-induced insulin release kinetics were comparable among untransduced, Ad-TNFR-Ig-infected human islets and vector-transduced islets exposed to cytokines. In parallel, Ad-TNFR-Ig-infected islets were protected from cytokine-induced apoptosis activation. Finally, diabetic mice transplanted with allogeneic islets expressing TNFR-Ig returned to and maintained normoglycemia significantly longer than untransduced islet recipients. These data support the potential utility of TNFR-Ig gene transfer to islets as a means of facilitating allogeneic islet transplantation.
Collapse
Affiliation(s)
- J Machen
- Diabetes Institute, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Affiliation(s)
- Jorge Daaboul
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
10
|
Giannoukakis N, Robbins PD. Gene and cell therapies for diabetes mellitus: strategies and clinical potential. BioDrugs 2003; 16:149-73. [PMID: 12102644 DOI: 10.2165/00063030-200216030-00001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The last 5 years have witnessed an explosion in the use of genes and cells as biomedicines. While primarily aimed at cancer, gene engineering and cell therapy strategies have additionally been used for Mendelian, neurodegenerative and metabolic disorders. The main focus of gene and cell therapy strategies in metabolism has been diabetes mellitus. This disease is a disorder of glucose homeostasis, either due to the immune-mediated eradication of pancreatic beta cells in the islets of Langerhans (type 1 diabetes) or resulting from insulin resistance and obesity syndromes where the insulin-producing capability of the beta cell is ultimately exhausted in the face of insensitivity to the effects of insulin in the peripheral glucose-utilising tissues (type 2 diabetes). A significant number of animal studies have demonstrated the potential in restoring normoglycaemia by islet transplantation in the context of immunoregulation achieved by gene transfer of immunoregulatory genes to allo- and xenogeneic islets ex vivo. Additionally, gene and cell therapy has also been used to induce tolerance to auto- and alloantigens and to generate the tolerant state in autoimmune rodent animal models of type 1 diabetes or rodent recipients of allogeneic/xenogeneic islet transplants. The achievements of gene and cell therapy in type 2 diabetes are less evident, but seminal studies promise that this modality can be relevant to treat and perhaps prevent the underlying causes of the disease. Here we present an overview of the current status of gene and cell therapy for type 1 and 2 diabetes and we propose potential therapeutic options that could be clinically useful. For type 1 diabetes, transplantation of islets engineered to evade or suppress the recipient immune response is the most readily-available technology today. A number of gene delivery vectors encoding proteins that impair a variety of immune cells have already been examined and proven versatile. More challenging but, nonetheless, just over the horizon are attempts to promote tolerance to islet allografts. Type 2 diabetes will likely require a better understanding of the processes that determine insulin sensitivity in the periphery. Targeting tissues such as muscle and fat with vectors encoding genes whose products promote insulin sensitivity and glucose uptake is an approach that does not carry with it the side-effects often associated with pharmacologic agents currently in use. In the end, progress in vector design, elucidation of antigen-specific immunity and insulin sensitivity will provide the framework for gene drug use in the treatment of type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Nick Giannoukakis
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.
| | | |
Collapse
|
11
|
Tracy S, Drescher KM, Chapman NM, Kim KS, Carson SD, Pirruccello S, Lane PH, Romero JR, Leser JS. Toward testing the hypothesis that group B coxsackieviruses (CVB) trigger insulin-dependent diabetes: inoculating nonobese diabetic mice with CVB markedly lowers diabetes incidence. J Virol 2002; 76:12097-111. [PMID: 12414951 PMCID: PMC136885 DOI: 10.1128/jvi.76.23.12097-12111.2002] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2002] [Accepted: 08/21/2002] [Indexed: 01/28/2023] Open
Abstract
Insulin-dependent (type 1) diabetes mellitus (T1D) onset is mediated by individual human genetics as well as undefined environmental influences such as viral infections. The group B coxsackieviruses (CVB) are commonly named as putative T1D-inducing agents. We studied CVB replication in nonobese diabetic (NOD) mice to assess how infection by diverse CVB strains affected T1D incidence in a model of human T1D. Inoculation of 4- or 8-week-old NOD mice with any of nine different CVB strains significantly reduced the incidence of T1D by 2- to 10-fold over a 10-month period relative to T1D incidences in mock-infected control mice. Greater protection was conferred by more-pathogenic CVB strains relative to less-virulent or avirulent strains. Two CVB3 strains were employed to further explore the relationship of CVB virulence phenotypes to T1D onset and incidence: a pathogenic strain (CVB3/M) and a nonvirulent strain (CVB3/GA). CVB3/M replicated to four- to fivefold-higher titers than CVB3/GA in the pancreas and induced widespread pancreatitis, whereas CVB3/GA induced no pancreatitis. Apoptotic nuclei were detected by TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) assay in CVB3/M-infected pancreata but not in CVB3/GA-infected pancreata. In situ hybridization detected CVB3 RNA in acinar tissue but not in pancreatic islets. Although islets demonstrated inflammatory infiltrates in CVB3-protected mice, insulin remained detectable by immunohistochemistry in these islets but not in those from diabetic mice. Enzyme-linked immunosorbent assay-based examination of murine sera for immunoglobulin G1 (IgG1) and IgG2a immunoreactivity against diabetic autoantigens insulin and HSP60 revealed no statistically significant relationship between CVB3-protected mice or diabetic mice and specific autoimmunity. However, when pooled sera from CVB3/M-protected mice were used to probe a Western blot of pancreatic proteins, numerous proteins were detected, whereas only one band was detected by sera from CVB3/GA-protected mice. No proteins were detected by sera from diabetic or normal mice. Cumulatively, these data do not support the hypothesis that CVB are causative agents of T1D. To the contrary, CVB infections provide significant protection from T1D onset in NOD mice. Possible mechanisms by which this virus-induced protection may occur are discussed.
Collapse
Affiliation(s)
- S Tracy
- Enterovirus Research Laboratory, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Alexander AM, Crawford M, Bertera S, Rudert WA, Takikawa O, Robbins PD, Trucco M. Indoleamine 2,3-dioxygenase expression in transplanted NOD Islets prolongs graft survival after adoptive transfer of diabetogenic splenocytes. Diabetes 2002; 51:356-65. [PMID: 11812742 DOI: 10.2337/diabetes.51.2.356] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Indoleamine 2,3-dioxygenase (IDO) catalyzes the breakdown of the amino acid tryptophan into kyneurenine. It has been shown that IDO production by placental trophoblasts prevents the attack of maternal T-cells activated in response to the paternal HLA alleles expressed by the tissues of the fetus. In this article, we show that adenoviral gene transfer of IDO to pancreatic islets can sufficiently deplete culture media of tryptophan and consequently inhibit the proliferation of T-cells in vitro. Experiments in vivo have also demonstrated that transplantation of IDO-expressing islets from prediabetic NOD mouse donors into NODscid recipient mice is associated with a prolongation in islet graft survival after adoptive transfer of NOD diabetogenic T-cells. This protection is attributed to the depletion of tryptophan at the transplantation site beneath the kidney capsule. These results suggest that local modulation of tryptophan catabolism may be a means of facilitating islet transplantation as a therapy for type 1 diabetes.
Collapse
Affiliation(s)
- Angela M Alexander
- Division of Immunogenetics, Department of Pediatrics, Rangos Research Center, Children's Hospital of Pittsburgh, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Shifrin AL, Auricchio A, Yu QC, Wilson J, Raper SE. Adenoviral vector-mediated insulin gene transfer in the mouse pancreas corrects streptozotocin-induced hyperglycemia. Gene Ther 2001; 8:1480-9. [PMID: 11593361 DOI: 10.1038/sj.gt.3301544] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2001] [Accepted: 06/20/2001] [Indexed: 11/09/2022]
Abstract
Therapy for type 1 diabetes consists of tight blood glucose (BG) control to minimize complications. Current treatment relies on multiple insulin injections or an insulin pump placement, beta-cell or whole pancreas transplantation. All approaches have significant limitations and have led to the realization that novel treatment strategies are needed. Pancreatic acinar cells have features that make them a good target for insulin gene transfer. They are not subject to autoimmune attack, a problem with pancreas or islets transplantation, they are avidly transduced by recombinant adenoviral vectors, and capable of exporting a variety of peptides into the portal circulation. Recombinant adenoviral vectors were engineered to express either wild-type or furin-modified human insulin cDNA (AdCMVhInsM). Immunodeficient mice were made diabetic with streptozotocin and injected intrapancreatically with the vectors. BG and blood insulin levels have normalized after administration of AdCMVhInsM. Immunohistochemistry and electron microscopy showed the presence of insulin in acinar cells throughout the pancreas and localization of insulin molecules to acinar cell vesicles. The data clearly establish a relationship between intrapancreatic vector administration, decreased BG and elevated blood insulin levels. The findings support the use of pancreatic acinar cells to express and secrete insulin into the blood stream.
Collapse
Affiliation(s)
- A L Shifrin
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|