1
|
Taştemur Ş, Ekĭcĭ M, Mendĭl AS, Özkaraca M, Ataseven H. Effects of dexpanthenol on 5-fluorouraci-induced nephrotoxicity, hepatotoxicity, and intestinal mucositis in rats: a clinical, biochemical, and pathological study. ASIAN BIOMED 2025; 19:36-50. [PMID: 40231165 PMCID: PMC11994222 DOI: 10.2478/abm-2025-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Background 5-fluorouracil (5-FU) is a broad-spectrum drug that has a wide range of side effects. Patients may experience severe comorbidities as a result of these toxic side effects, making it impossible for them to continue chemotherapy. Despite the fact that various molecules have been experimented, there is no literature data on the efficacy of dexpanthenol (DXP) for mitigating the toxic effects of 5-FU. Objective To investigate the protective effects of DXP on nephrotoxicity, hepatotoxicity, and intestinal toxicity induced by 5-FU in rats. Methods Twenty-eight male Wistar-Albino rats aged 16 weeks were randomly assigned to four groups. We created a rat model of intestinal mucositis, nephrotoxicity, and hepatotoxicity through intraperitoneal 5-FU (35 mg/kg for 4 d) injection. 500 mg/kg and 1000 mg/kg of DXP were administered to the treatment groups. The effects of dexpanthenol were evaluated clinically, biochemically, histopathologically, and immunohistochemically (inducible nitric oxide synthase [iNOS], cyclooxygenase-2 [COX-2], 8-hydroxyguanosine [8-OHdG], and nuclear factor kappa B [NF-κB]). Results 5-FU caused a decrease in body weight and food intake, and an increase in diarrhea scores in rats. 5-FU led to significant disruptions in the hepatic biochemical markers (aspartate transaminase [AST], alanine transaminase [ALT], alkaline phosphatase [ALP], total bilirubin, direct bilirubin, and lactate dehydrogenase [LDH]), renal biochemical markers (blood urea nitrogen [BUN], creatinine, and uric acid), and protein and albumin, which are markers of both hepatic and renal functions. Severe pyknosis and mononuclear cell infiltrations were observed in the liver, and mononuclear cell infiltration and tubular degeneration in the kidneys. Jejunum and colon showed villous hyperemia and hemorrhage, respectively, along with mononuclear cell infiltration. Furthermore, 5-FU increased the immunohistochemical expressions of iNOS, COX-2, 8-OHdG, and NF-κB in the examined tissues. The administration of DXP at doses of 500 mg/kg and 1000 mg/kg demonstrated significant mitigation of the toxic effects induced by 5-FU on the liver, kidney, jejunum, and colon. Conclusion DXP showed protective effects against nephrotoxicity, hepatotoxicity, and intestinal toxicity caused by 5-FU. These findings suggest that DXP may serve as a potential therapeutic agent to alleviate the severe side effects of 5-FU chemotherapy, thereby improving patient tolerance and quality of life. Further clinical studies are warranted to validate these results and explore the translational potential of DXP in human cancer therapy.
Collapse
Affiliation(s)
- Şeyma Taştemur
- Department of Internal Medicine, Faculty of Medicine, Sivas Cumhuriyet University, Sivas58140, Turkey
| | - Mehmet Ekĭcĭ
- Department of Veterinary Physiology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas58140, Turkey
| | - Ali Sefa Mendĭl
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Erciyes University, Kayseri38280, Turkey
| | - Mustafa Özkaraca
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas58140, Turkey
| | - Hilmi Ataseven
- Department of Gastroenterology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas58140, Turkey
| |
Collapse
|
2
|
Vo HVT, Kim N, Lee HJ. Vitamin Bs as Potent Anticancer Agents through MMP-2/9 Regulation. FRONT BIOSCI-LANDMRK 2025; 30:24072. [PMID: 39862072 DOI: 10.31083/fbl24072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 01/27/2025]
Abstract
In recent years, the role of coenzymes, particularly those from the vitamin B group in modulating the activity of metalloenzymes has garnered significant attention in cancer treatment strategies. Metalloenzymes play pivotal roles in various cellular processes, including DNA repair, cell signaling, and metabolism, making them promising targets for cancer therapy. This review explores the complex interplay between coenzymes, specifically vitamin Bs, and metalloenzymes in cancer pathogenesis and treatment. Vitamins are an indispensable part of daily life, essential for optimal health and well-being. Beyond their recognized roles as essential nutrients, vitamins have increasingly garnered attention for their multifaceted functions within the machinery of cellular processes. In particular, vitamin Bs have emerged as a pivotal regulator within this intricate network, exerting profound effects on the functionality of metalloenzymes. Their ability to modulate metalloenzymes involved in crucial cellular pathways implicated in cancer progression presents a compelling avenue for therapeutic intervention. Key findings indicate that vitamin Bs can influence the activity and expression of metalloenzymes, thereby affecting processes such as DNA repair and cell signaling, which are critical in cancer development and progression. Understanding the mechanisms by which these coenzymes regulate metalloenzymes holds great promise for developing novel anticancer strategies. This review summarizes current knowledge on the interactions between vitamin Bs and metalloenzymes, highlighting their potential as anticancer agents and paving the way for innovative, cell-targeted cancer treatments.
Collapse
Affiliation(s)
- Ha Vy Thi Vo
- Department of Chemistry Education, Kongju National University, 32588 Gongju, Chungcheongnam-do, Republic of Korea
| | - Namdoo Kim
- Department of Chemistry, Kongju National University, 32588 Gongju, Chungcheongnam-do, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University, 32588 Gongju, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
3
|
Tepebaşı MY, Büyükbayram Hİ, Özmen Ö, Taşan Ş, Selçuk E. Dexpanthenol ameliorates doxorubicin-induced lung injury by regulating endoplasmic reticulum stress and apoptosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1837-1845. [PMID: 37074393 DOI: 10.1007/s00210-023-02497-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/13/2023] [Indexed: 04/20/2023]
Abstract
Doxorubicin (DOX), which is used as a chemotherapeutic agent in the treatment of tumors, has limited use due to its toxicity in various organs and tissues. One of the organs where DOX has a toxic effect is the lung. DOX shows this effect by increasing oxidative stress, inflammation, and apoptosis. Dexpanthenol (DEX), a homologue of pantothenic acid, has anti-inflammatory, antioxidant, and anti-apoptotic properties. Therefore, the purpose of our investigation was to explore how DEX could counteract the harmful effects of DOX on the lungs. Thirty-two rats were used in the study, and 4 groups were formed (control, DOX, DOX + DEX, and DEX). In these groups, parameters of inflammation, ER stress, apoptosis, and oxidative stress were evaluated by immunohistochemistry, RT-qPCR, and spectrophotometric methods. In addition, lung tissue was evaluated histopathologically in the groups. While CHOP/GADD153, caspase-12, caspase-9, and Bax gene expressions increased in the DOX group, Bcl-2 gene expression levels significantly decreased. In addition, changes in Bax and Bcl-2 were supported immunohistochemically. There was a significant increase in oxidative stress parameters and a significant decrease in antioxidant levels. In addition, an increase in inflammatory marker (TNF-α and IL-10) levels was determined. There was a decrease in CHOP/GADD153, caspase-12, caspase-9, and Bax gene expressions and an increase in Bcl-2 gene expression in the DEX-treated group. In addition, it was determined that there was a decrease in oxidative stress levels and inflammatory findings. The curative effect of DEX was supported by histopathological findings. As a result, it was experimentally determined that DEX has a healing effect on oxidative stress, ER stress, inflammation, and apoptosis in lung damage caused by DOX toxicity.
Collapse
Affiliation(s)
| | | | - Özlem Özmen
- Department of Pathology, University of Mehmet Akif Ersoy, Burdur, Turkey
| | - Şerife Taşan
- Department of Pathology, University of Mehmet Akif Ersoy, Burdur, Turkey
| | - Esma Selçuk
- Department of Medical Biology, University of Süleyman Demirel, Isparta, Turkey
| |
Collapse
|
4
|
Zhao C, Bu H, Zhu J, Wang Y, Oliver KM, Hu F, Huang B, Li Z, Peng F. Integration of Untargeted Metabolomics with Transcriptomics Provides Insights into Beauvericin Biosynthesis in Cordyceps chanhua under H 2O 2-Induced Oxidative Stress. J Fungi (Basel) 2022; 8:484. [PMID: 35628740 PMCID: PMC9143143 DOI: 10.3390/jof8050484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/24/2022] [Accepted: 05/04/2022] [Indexed: 02/06/2023] Open
Abstract
Cordyceps chanhua is an important cordycipitoid mushroom widely used in Asia and beyond. Beauvericin (BEA), one of the bioactive compounds of C. chanhua, has attracted much attention because of its medicinal value and food safety risk. In order to clear up the relationship between oxidative stress and BEA synthesis, we investigated the impact of H2O2-induced oxidative stress on the secondary metabolism of C. chanhua using untargeted metabolomics and a transcript profiling approach. Metabolic profiling of C. chanhua mycelia found that in total, 73 differential metabolites were identified, including organic acids, phospholipids, and non-ribosomal peptides (NRPs), especially the content of BEA, increasing 13-fold under oxidative stress treatment. Combining transcriptomic and metabolomic analyses, we found that the genes and metabolites associated with the NRP metabolism, especially the BEA biosynthesis, were highly significantly enriched under H2O2-induced stress, which indicated that the BEA metabolism might be positive in the resistance of C. chanhua to oxidative stress. These results not only aid in better understanding of the resistance mechanisms of C. chanhua against oxidative stress but also might be helpful for molecular breeding of C. chanhua with low BEA content.
Collapse
Affiliation(s)
- Cheng Zhao
- Engineering Research Center of Fungal Biotechnology, Ministry of Education, Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China; (C.Z.); (H.B.); (J.Z.); (Y.W.); (F.H.); (B.H.); (Z.L.)
| | - Haifen Bu
- Engineering Research Center of Fungal Biotechnology, Ministry of Education, Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China; (C.Z.); (H.B.); (J.Z.); (Y.W.); (F.H.); (B.H.); (Z.L.)
| | - Jiahua Zhu
- Engineering Research Center of Fungal Biotechnology, Ministry of Education, Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China; (C.Z.); (H.B.); (J.Z.); (Y.W.); (F.H.); (B.H.); (Z.L.)
| | - Yulong Wang
- Engineering Research Center of Fungal Biotechnology, Ministry of Education, Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China; (C.Z.); (H.B.); (J.Z.); (Y.W.); (F.H.); (B.H.); (Z.L.)
| | - Kerry M. Oliver
- Department of Entomology, University of Georgia, Athens, GA 30602, USA;
| | - Fenglin Hu
- Engineering Research Center of Fungal Biotechnology, Ministry of Education, Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China; (C.Z.); (H.B.); (J.Z.); (Y.W.); (F.H.); (B.H.); (Z.L.)
| | - Bo Huang
- Engineering Research Center of Fungal Biotechnology, Ministry of Education, Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China; (C.Z.); (H.B.); (J.Z.); (Y.W.); (F.H.); (B.H.); (Z.L.)
| | - Zengzhi Li
- Engineering Research Center of Fungal Biotechnology, Ministry of Education, Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China; (C.Z.); (H.B.); (J.Z.); (Y.W.); (F.H.); (B.H.); (Z.L.)
| | - Fan Peng
- Engineering Research Center of Fungal Biotechnology, Ministry of Education, Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China; (C.Z.); (H.B.); (J.Z.); (Y.W.); (F.H.); (B.H.); (Z.L.)
| |
Collapse
|
5
|
Tang J, Feng Y, Zhang B, Wu Y, Guo Z, Liang S, Zhou Z, Xie M, Hou S. Severe pantothenic acid deficiency induces alterations in the intestinal mucosal proteome of starter Pekin ducks. BMC Genomics 2021; 22:491. [PMID: 34193047 PMCID: PMC8246668 DOI: 10.1186/s12864-021-07820-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 06/18/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Pantothenic acid deficiency (PAD) results in growth depression and intestinal hypofunction of animals. However, the underlying molecular mechanisms remain to be elucidated. Mucosal proteome might reflect dietary influences on physiological processes. RESULTS A total of 128 white Pekin ducks of one-day-old were randomly assigned to two groups, fed either a PAD or a pantothenic acid adequate (control, CON) diet. After a 16-day feeding period, two ducks from each replicate were sampled to measure plasma parameters, intestinal morphology, and mucosal proteome. Compared to the CON group, high mortality, growth retardation, fasting hypoglycemia, reduced plasma insulin, and oxidative stress were observed in the PAD group. Furthermore, PAD induced morphological alterations of the small intestine indicated by reduced villus height and villus surface area of duodenum, jejunum, and ileum. The duodenum mucosal proteome of ducks showed that 198 proteins were up-regulated and 223 proteins were down-regulated (> 1.5-fold change) in the PAD group compared to those in the CON group. Selected proteins were confirmed by Western blotting. Pathway analysis of these proteins exhibited the suppression of glycolysis and gluconeogenesis, fatty acid beta oxidation, tricarboxylic acid cycle, oxidative phosphorylation, oxidative stress, and intestinal absorption in the PAD group, indicating impaired energy generation and abnormal intestinal absorption. We also show that nine out of eleven proteins involved in regulation of actin cytoskeleton were up-regulated by PAD, probably indicates reduced intestinal integrity. CONCLUSION PAD leads to growth depression and intestinal hypofunction of ducks, which are associated with impaired energy generation, abnormal intestinal absorption, and regulation of actin cytoskeleton processes. These findings provide insights into the mechanisms of intestinal hypofunction induced by PAD.
Collapse
Affiliation(s)
- Jing Tang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yulong Feng
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Guizhou Animal Husbandry and Veterinary Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, 550000, Guizhou, China
| | - Bo Zhang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yongbao Wu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhanbao Guo
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Suyun Liang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhengkui Zhou
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ming Xie
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shuisheng Hou
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
6
|
Kutlu Ö, Metin A. Systemic dexpanthenol as a novel treatment for female pattern hair loss. J Cosmet Dermatol 2020; 20:1325-1330. [PMID: 32960484 DOI: 10.1111/jocd.13729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 09/08/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND There are only a few drugs that have been used for the treatment of female pattern hair loss (FPHL). AIMS Through use of the Dermatologic Life Quality Index (DLQI) and a modified hair growth questionnaire, we aimed to evaluate the effect of dexpanthenol (DXP) as a new option for FPHL. METHODS Women who received 500 mg intramuscular DXP weekly for FPHL were included in this study. They were evaluated in terms of DLQI and laboratory characteristics, before and after DXP treatment, and were examined with a modified hair growth questionnaire. RESULTS Overall satisfaction with the appearance of the hair was described by the patients as 57.1% " I am satisfied," 28.6% "I am very satisfied," and 14.3% "I am neutral (neither satisfied nor dissatisfied)." There was a statistical difference between the mean DLQI scores before and after DXP treatment (P < .001). No statistical difference was found in the laboratory characteristics of the patients before and after DXP treatment (P > 0.05). No side effect was reported during DXP treatment. CONCLUSION Dexpanthenol is a safe and novel drug that may increase the quality of life in patients with FPHL.
Collapse
Affiliation(s)
- Ömer Kutlu
- Department of Dermatology and Venereology, School of Medicine, Uşak University, Uşak, Turkey
| | - Ahmet Metin
- Department of Dermatology and Venereology I School of Medicine, Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
7
|
Tang J, Zhang B, Liang S, Wu Y, Feng Y, Guo Z, Xing G, Jiao J, Zhou Z, Xie M, Hou S. Effects of pantothenic acid on growth performance and antioxidant status of growing male white Pekin ducks. Poult Sci 2020; 99:4436-4441. [PMID: 32867987 PMCID: PMC7597976 DOI: 10.1016/j.psj.2020.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 04/07/2020] [Accepted: 05/23/2020] [Indexed: 11/15/2022] Open
Abstract
An experiment was conducted to investigate the effects of dietary pantothenic acid levels on growth performance, carcass traits, pantothenic acid status, and antioxidant status of male white Pekin ducks from 15 to 42 D of age and to evaluate the requirement of this vitamin for growing ducks. Different levels pantothenic acid (0, 2, 4, 6, 8, and 10 mg/kg) were supplemented to a corn-soy isolate protein basal diet to produce 6 dietary treatments with different analyzed total pantothenic acid levels (4.52, 6.44, 8.37, 9.88, 12.32, and 14.61 mg/kg). A total of 240 15-day-old male white Pekin ducks were allotted to 6 dietary treatments with 8 replicate pens of 5 birds per pen. At 42 D of age, growth performance, carcass traits, tissue pantothenic acid concentrations, and antioxidant status of white Pekin ducks were examined. Significant effects of dietary pantothenic acid on BW, average daily weight gain (ADG), plasma, and liver pantothenic acid concentrations were observed (P < 0.05) but not carcass traits. The growing ducks fed the basal diet without pantothenic acid supplementation had the lowest BW, ADG, plasma, and liver pantothenic acid content among all ducks (P < 0.05). In addition, the ducks fed the basal diet without pantothenic acid supplementation showed the lowest antioxidant capacity indicated by greatest plasma malondialdehyde content and lowest liver total antioxidant capacity (P < 0.05). And, these criteria responded linearly as dietary pantothenic acid levels increased (P < 0.05). These results indicated that dietary pantothenic acid supplementation improved growth performance and antioxidant status of the growing ducks. In accordance with the broken-line model, the pantothenic acid requirements (based on dietary total pantothenic acid) of male white Pekin ducks from 15 to 42 D of age for BW, ADG, and plasma and liver pantothenic acid contents were 10.18, 10.27, 12.06, and 10.79 mg/kg, respectively.
Collapse
Affiliation(s)
- Jing Tang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo Zhang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Suyun Liang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongbao Wu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yulong Feng
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhanbao Guo
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guangnan Xing
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jinglin Jiao
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhengkui Zhou
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ming Xie
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuisheng Hou
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
8
|
Kutlu Ö. Dexpanthenol may be a novel treatment for male androgenetic alopecia: Analysis of nine cases. Dermatol Ther 2020; 33:e13381. [PMID: 32255530 DOI: 10.1111/dth.13381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Ömer Kutlu
- Uşak University School of Medicine, Department of Dermatology and Venereology Uşak Turkey
| |
Collapse
|
9
|
Sezgin Y, Bilgin Çetin M, Bulut Ş, Alptekin NÖ, Börçek P. Evaluating the Effects of a Topical Preparation with Dexpanthenol, Silbiol, Undecylenic Acid, and Lidocaine on Palatal Mucosa Wound Healing in a Rat Model. Balkan Med J 2018; 36:88-95. [PMID: 30322831 PMCID: PMC6409956 DOI: 10.4274/balkanmedj.galenos.2018.2018.0167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background Postoperative complications occur after periodontal plastic surgeries, but an ideal treatment to overcome them has not been found yet. Aims To evaluate the effects of topically applied Oral-norm gel on the healing of excisional wounds. Study Design Animal experiment. Methods Excisional wounds with a diameter of 3 mm were made in the center of the palatal mucosa of 63 Sprague Dawley rats. Seven animals were sacrificed at time 0. The remaining rats were divided into two groups: a test group in which the topical Oral-norm gel was applied three times a day and a control group in which nothing was applied. Seven animals in each group were sacrificed at 3, 7, 14, and 21 days. Mean wound surface area was measured photographically, while wound healing and width were evaluated microscopically. Results The mean wound surface area decreased significantly after 3 days in both groups (p<0.001). Between days 3 and 7, the mean wound surface area decreased from 6.62 (2.85) to 0.83 (1.62) mm2 in the control group and 5.07 (0.88) to 1.42 (1.67) mm2 in the test group. The wound width decreased significantly on day 7 in both groups (p<0.001), with no further changes by day 14. Both groups had a significant increase in inflammation and vascularization on day 3 (p<0.001), with a reduction thereafter. No significant differences in macroscopic and microscopic measurements were observed between the groups at any time point (p>0.05). Conclusion The Oral-norm gel has no positive healing effects in the palatal mucosa of rats.
Collapse
Affiliation(s)
- Yasemin Sezgin
- Department of Periodontology, Başkent University School of Dentistry, Ankara, Turkey
| | - Mehtap Bilgin Çetin
- Department of Periodontology, Başkent University School of Dentistry, Ankara, Turkey
| | - Şule Bulut
- Department of Periodontology, Başkent University School of Dentistry, Ankara, Turkey
| | - Nilgün Özlem Alptekin
- Department of Periodontology, Başkent University School of Dentistry, Ankara, Turkey
| | - Pelin Börçek
- Department of Pathology, Başkent University School of Medicine, Ankara, Turkey
| |
Collapse
|
10
|
Tutun B, Elbe H, Vardi N, Parlakpinar H, Polat A, Gunaltili M, Guclu MM, Yasar EN. Dexpanthenol reduces diabetic nephropathy and renal oxidative stress in rats. Biotech Histochem 2018; 94:84-91. [PMID: 30317873 DOI: 10.1080/10520295.2018.1508746] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Hyperglycemia increases reactive oxygen species (ROS) and the resulting oxidative stress contributes to the development of diabetic complications. Dexpanthenol (Dxp) is the biological active form of pantothenic acid. We investigated whether Dxp administration could decrease oxidative stress as a way to treat renal complications of diabetes mellitus (DM). Thirty-two male Wistar albino rats were divided into four groups: control, Dxp, DM and DM + Dxp. Experimental diabetes was induced by a single dose of streptozotocin (STZ). After administration of STZ, the DM + Dxp group was administered 500 mg/kg Dxp intraperitoneally every day for 6 weeks. At the end of the study, blood glucose levels were measured and rats were sacrificed. Kidneys were embedded in paraffin, sectioned and stained with hematoxylin and eosin, and periodic acid-Schiff. The mean malondialdehyde levels, glutathione peroxidase, superoxide dismutase and catalase activities, and total antioxidant and total oxidant status also were measured. The control group was normal in histological appearance. We observed congestion, inflammation, glomerulosclerosis, tubular desquamation, loss of villi and hydropic degeneration in tubule cells in the DM group. Indicators of oxidative stress were elevated and antioxidant activity was reduced in the DM group compared to controls. In the DM + Dxp group, oxidative stress was decreased, antioxidant activity was increased and histopathological changes were reduced compared to the DM group. We found that Dxp exhibited ameliorative effects on STZ induced diabetic nephropathy by increasing antioxidant activity.
Collapse
Affiliation(s)
- B Tutun
- a Medical Faculty , Inonu University , Malatya , Turkey
| | - H Elbe
- b Medical Faculty, Department of Histology and Embryology , Mugla Sıtkı Kocman University , Mugla , Turkey
| | - N Vardi
- c Medical Faculty, Department of Histology and Embryology , Inonu University , Malatya , Turkey
| | - H Parlakpinar
- d Medical Faculty, Departments of Pharmacology , Inonu University , Malatya , Turkey
| | - A Polat
- e Medical Faculty, Physiology , Inonu University , Malatya , Turkey
| | - M Gunaltili
- a Medical Faculty , Inonu University , Malatya , Turkey
| | - M M Guclu
- a Medical Faculty , Inonu University , Malatya , Turkey
| | - E N Yasar
- a Medical Faculty , Inonu University , Malatya , Turkey
| |
Collapse
|
11
|
Wang Y, Liu Y, Cao Q, Shi X, Lu H, Gao S, Yang R. Metabolomic analysis for the protective effects of mangiferin on sepsis-induced lung injury in mice. Biomed Chromatogr 2018; 32:e4208. [PMID: 29431198 DOI: 10.1002/bmc.4208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/09/2018] [Accepted: 01/29/2018] [Indexed: 12/11/2022]
Abstract
This study aimed to investigate the efficacy of mangiferin, including its known antioxidant and anti-inflammatory effects on sepsis-induced lung injury induced by a classical cecal ligation and puncture (CLP) models in mouse using a metabolomics approach. A total of 24 mice were randomly divided into four groups: the sham group was given saline before sham operation. The CLP group received the CLP operation only. HMF and LMF groups were given mangiferin treatment of high dose and low dose of mangiferin, respectively, before the CLP operation. One week after treatment, the mice were sacrificed and their lungs were collected for metabolomics analysis. We developed ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry to perform lung metabolic profiling analysis. With the methods of principal component analysis and partial least squares discriminant analysis, 58 potential metabolites associated with amino acid metabolism, purine metabolism, lipid metabolism and energy regulation were observed to be increased or reduced in HMF and LMF groups compared with the CLP group. Conclusively, our results suggest that mangiferin plays a protective role in the moderation of sepsis-induced lung injury through reducing oxidative stress, regulating lipid metabolism and energy biosynthesis.
Collapse
Affiliation(s)
- Yilin Wang
- Student Unit, Navy Medical University, Shanghai, China
| | - Yang Liu
- Student Unit, Navy Medical University, Shanghai, China
| | - Qiqi Cao
- Student Unit, Navy Medical University, Shanghai, China
| | - Xuan Shi
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongtao Lu
- Department of Navy Aeromedicine, Navy Medical University, Shanghai, China
| | - Songyan Gao
- School of Pharmacy, Navy Medical University, Shanghai, China
| | - Rui Yang
- Department of Anesthesiology, Changzheng Hospital, Navy Medical University, Shanghai, China
| |
Collapse
|
12
|
Toplu Y, Sapmaz E, Parlakpinar H, Kelles M, Kalcioglu MT, Tanbek K, Kizilay A. The Effect of Dexpanthenol on Ototoxicity Induced by Cisplatin. Clin Exp Otorhinolaryngol 2016; 9:14-20. [PMID: 26976021 PMCID: PMC4792246 DOI: 10.21053/ceo.2016.9.1.14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 01/21/2015] [Accepted: 02/26/2015] [Indexed: 01/02/2023] Open
Abstract
Objectives This study was aimed to investigate the protective effects of dexpanthenol (Dxp) on against cisplatin-induced ototoxicity. Methods To examine this effect, distortion product otoacoustic emissions (DPOAEs) measurements and serum levels of oxidative and antioxidant status (including malondialdehyde, superoxide dismutase, catalase, glutathione, glutathione peroxidase, total oxidant status, total antioxidant status, and oxidative stress index) were evaluated. Thirty-two adult female Wistar albino rats were randomly divided into 4 equal groups; control (K), cisplatin (C), cisplatin plus Dxp (CD), and Dxp (D). In all groups DPOAEs measurements, between 996 and 10,078 Hz as DPOAEs and input/output functions, were performed on days 0, 1th, 5th, and 12th. Prior to death, the last DPOAEs measurements and blood samples were taken. Results In the C group, statistically significant differences were detected at all frequencies between 0 and 5 days and 0 and 12 days measurements (P<0.05). Serum level of oxidant and antioxidant status were detected statistically significantly changed in this group versus K group (P<0.05). Contrary to the C group, in the CD group hearing ability was seen largely preserved at many frequencies and serum levels of all biochemical parameters were shifted toward normal values, similar to the K group. No significant differences were detected in the either D or K group’s measurements. Conclusion According to these results, Dxp may prevent cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Yuksel Toplu
- Department of Otorhinolaryngology, Inonu University Medical Faculty, Malatya, Turkey
| | - Emrah Sapmaz
- Department of Otorhinolaryngology, Malatya State Hospital, Malatya, Turkey
| | - Hakan Parlakpinar
- Department of Pharmacology, Inonu University Medical Faculty, Malatya, Turkey
| | - Mehmet Kelles
- Department of Otorhinolaryngology, Sutcu Imam University Medical Faculty, Kahramanmaras, Turkey
| | - M Tayyar Kalcioglu
- Department of Otorhinolaryngology, Istanbul Medeniyet University Medical Faculty, Istanbul, Turkey
| | - Kevser Tanbek
- Department of Physiology, Inonu University Medical Faculty, Malatya, Turkey
| | - Ahmet Kizilay
- Department of Otorhinolaryngology, Inonu University Medical Faculty, Malatya, Turkey
| |
Collapse
|
13
|
Cagin YF, Atayan Y, Sahin N, Parlakpinar H, Polat A, Vardi N, Tagluk ME, Tanbek K, Yildiz A. Beneficial effects of dexpanthenol on mesenteric ischemia and reperfusion injury in experimental rat model. Free Radic Res 2016; 50:354-65. [DOI: 10.3109/10715762.2015.1126834] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Kavian N, Marut W, Servettaz A, Nicco C, Chéreau C, Lemaréchal H, Guilpain P, Chimini G, Galland F, Weill B, Naquet P, Batteux F. Pantethine Prevents Murine Systemic Sclerosis Through the Inhibition of Microparticle Shedding. Arthritis Rheumatol 2015; 67:1881-90. [PMID: 25776044 DOI: 10.1002/art.39121] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 03/12/2015] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Endothelial cell (EC) damage in systemic sclerosis (SSc) is reflected by the shedding of microparticles (MPs). The aim of this study was to show that inhibiting MP release using pantethine or by inactivating ATP-binding cassette transporter A1 (ABCA1) ameliorates murine SSc. METHODS First, the effects of pantethine on MP shedding and on basal oxidative and nitrosative stresses in ECs and fibroblasts were determined in vitro. The effects of pantethine were then tested in vivo. SSc was induced in BALB/c mice by daily intradermal injection of HOCl. Mice were simultaneously treated daily with pantethine by oral gavage. RESULTS In vitro, pantethine inhibited MP shedding from tumor necrosis factor-stimulated ECs and abrogated MP-induced oxidative and nitrosative stresses in ECs and fibroblasts. Ex vivo, pantethine also restored redox homeostasis in fibroblasts from mice with SSc. In vivo, mice with SSc displayed skin and lung fibrosis associated with increased levels of circulating MPs and markers of oxidative and endothelial stress, which were normalized by administration of pantethine or inactivation of ABCA1. CONCLUSION Pantethine is a well-tolerated molecule that represents a potential treatment of human SSc.
Collapse
Affiliation(s)
- Niloufar Kavian
- Université Paris Descartes, Sorbonne Paris-Cité, Institut Cochin, INSERM U1016, and Hôpital Cochin, AP-HP, Paris, France
| | - Wioleta Marut
- Université Paris Descartes, Sorbonne Paris-Cité, Institut Cochin, INSERM U1016, and Hôpital Cochin, AP-HP, Paris, France
| | - Amélie Servettaz
- Université Paris Descartes, Sorbonne Paris-Cité, Institut Cochin, INSERM U1016, and Hôpital Cochin, AP-HP, Paris, France, and Hôpital Robert Debré, Reims, France
| | - Carole Nicco
- Université Paris Descartes, Sorbonne Paris-Cité, Institut Cochin, INSERM U1016, and Hôpital Cochin, AP-HP, Paris, France
| | - Christiane Chéreau
- Université Paris Descartes, Sorbonne Paris-Cité, Institut Cochin, INSERM U1016, and Hôpital Cochin, AP-HP, Paris, France
| | | | | | - Giovanna Chimini
- Université d'Aix Marseille, Centre d'Immunologie de Marseille-Luminy, INSERM U631, and CNRS UMR6102, Marseille, France
| | - Franck Galland
- Université d'Aix Marseille, UM2, Centre d'Immunologie de Marseille-Luminy, INSERM U1104, and CNRS UMR7280, Marseille, France
| | - Bernard Weill
- Université Paris Descartes, Sorbonne Paris-Cité, Institut Cochin, INSERM U1016, and Hôpital Cochin, AP-HP, Paris, France
| | - Philippe Naquet
- Université d'Aix Marseille, UM2, Centre d'Immunologie de Marseille-Luminy, INSERM U1104, and CNRS UMR7280, Marseille, France
| | - Frédéric Batteux
- Université Paris Descartes, Sorbonne Paris-Cité, Institut Cochin, INSERM U1016, and Hôpital Cochin, AP-HP, Paris, France
| |
Collapse
|
15
|
Ozdemir R, Demirtas G, Parlakpinar H, Polat A, Tanbag K, Taslidere E, Karadag A. Dexpanthenol therapy reduces lung damage in a hyperoxic lung injury in neonatal rats. J Matern Fetal Neonatal Med 2015; 29:1801-7. [DOI: 10.3109/14767058.2015.1064104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Karadag A, Ozdemir R, Kurt A, Parlakpinar H, Polat A, Vardi N, Taslidere E, Karaman A. Protective effects of dexpanthenol in an experimental model of necrotizing enterocolitis. J Pediatr Surg 2015; 50:1119-24. [PMID: 25783305 DOI: 10.1016/j.jpedsurg.2014.10.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/10/2014] [Accepted: 10/10/2014] [Indexed: 01/16/2023]
Abstract
BACKGROUND/PURPOSE In pathogenesis of necrotizing enterocolitis (NEC), both oxidative stress and inflammation are considerable risk factors. The study was designed to evaluate whether administration of dexpanthenol (Dxp) is able to attenuate intestinal injury through the antioxidant and antiinflammatory mechanisms in a neonatal rat model of NEC. METHODS Forty newborn pups divided into four groups were included in the study: control, control+Dxp, NEC, and NEC+Dxp. NEC was induced by hyperosmolar formula and additionally the pups were exposed to hypoxia/hyperoxia and cold stress. They were sacrificed on postnatal day four, and their intestinal tissues were analyzed biochemically and histopathologically. RESULTS Dxp caused a significant decrease in intestinal damage as determined by the histological score, villus height and number of goblet cells in NEC groups (p<0.0001). Tissue malondialdehyde, total oxidant status, and oxidative stress indexes levels were higher in the NEC group than in the control and control+Dxp groups (p<0.001). These values were reduced in the pups treated with Dxp (p≤0.004). Superoxide dismutase, glutathione peroxidase, and reduced glutathione activities were significantly reduced in the NEC group compared to the others (p<0.005). Treatment with Dxp significantly reduced elevations in tissue homogenate levels of tumor necrosis factor-α and interleukin-1β in the NEC+Dxp group (p=0.002 and p=0.01, respectively). CONCLUSIONS Dexpanthenol seems to have antiinflammatory and antioxidant properties. Prophylaxis with Dxp has a potential to reduce the severity of intestinal damage in NEC in the animals.
Collapse
Affiliation(s)
- Ahmet Karadag
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Ramazan Ozdemir
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey.
| | - Ahmet Kurt
- Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Hakan Parlakpinar
- Department of Pharmacology, Inonu University School of Medicine, Malatya, Turkey
| | - Alaadin Polat
- Department of Physiology, Inonu University School of Medicine, Malatya, Turkey
| | - Nigar Vardi
- Department of Histology and Embryology, Inonu University School of Medicine, Malatya, Turkey
| | - Elif Taslidere
- Department of Histology and Embryology, Inonu University School of Medicine, Malatya, Turkey
| | - Abdurrahman Karaman
- Department of Pediatric Surgery, Inonu University School of Medicine, Malatya, Turkey
| |
Collapse
|
17
|
Green electrospun pantothenic acid/silk fibroin composite nanofibers: Fabrication, characterization and biological activity. Colloids Surf B Biointerfaces 2014; 117:14-20. [DOI: 10.1016/j.colsurfb.2013.12.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/06/2013] [Accepted: 12/16/2013] [Indexed: 11/21/2022]
|
18
|
Yang YHC, Vilin YY, Roberge M, Kurata HT, Johnson JD. Multiparameter screening reveals a role for Na+ channels in cytokine-induced β-cell death. Mol Endocrinol 2014; 28:406-17. [PMID: 24438339 DOI: 10.1210/me.2013-1257] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pancreatic β-cell death plays a role in both type 1 and type 2 diabetes, but clinical treatments that specifically target β-cell survival have not yet been developed. We have recently developed live-cell imaging-based, high-throughput screening methods capable of identifying factors that modulate pancreatic β-cell death, with the hope of finding drugs that can intervene in this process. In the present study, we used a high-content screen and the Prestwick Chemical Library of small molecules to identify drugs that block cell death resulting from exposure to a cocktail of cytotoxic cytokines (25 ng/mL TNF-α, 10 ng/mL IL-1β, and 10 ng/mL IFN-γ). Data analysis with self-organizing maps revealed that 19 drugs had profiles similar to that of the no cytokine condition, indicating protection. Carbamazepine, an antiepileptic Na(+) channel inhibitor, was particularly interesting because Na(+) channels are not generally considered targets for antiapoptotic therapy in diabetes and because the function of these channels in β-cells has not been well studied. We analyzed the expression and characteristics of Na(+) currents in mature β-cells from MIP-GFP mice. We confirmed the dose-dependent protective effects of carbamazepine and another use-dependent Na(+) channel blocker in cytokine-treated mouse islet cells. Carbamazepine down-regulated the proapoptotic and endoplasmic reticulum stress signaling induced by cytokines. Together, these studies point to Na(+) channels as a novel therapeutic target in diabetes.
Collapse
Affiliation(s)
- Yu Hsuan Carol Yang
- Department of Cellular and Physiological Sciences (Y.H.C.Y., J.D.J.), Department of Anesthesiology, Pharmacology, and Therapeutics (Y.Y.V., H.T.K.), and Department of Biochemistry and Molecular Biology (M.R.), University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|
19
|
Ermis H, Parlakpinar H, Gulbas G, Vardi N, Polat A, Cetin A, Kilic T, Aytemur ZA. Protective effect of dexpanthenol on bleomycin-induced pulmonary fibrosis in rats. Naunyn Schmiedebergs Arch Pharmacol 2013; 386:1103-10. [PMID: 23995256 DOI: 10.1007/s00210-013-0908-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/01/2013] [Indexed: 01/09/2023]
Abstract
Despite extensive studies, there is no effective treatment currently available other than pirfenidone for idiopathic pulmonary fibrosis. A protective effect of pantothenic acid and its derivatives on cell damage produced by oxygen radicals has been reported, but it has not been tested in bleomycin (BLM)--induced pulmonary fibrosis in rats. Therefore, we aimed to investigate the preventive effect of dexpanthenol (Dxp) on pulmonary fibrosis. Thirty-two rats were assigned to four groups as follows: (1) control group, (2) dexpanthenol (Dxp) group; 500 mg/kg Dxp continued intraperitoneally for 14 days, (3) bleomycin (BLM) group; a single intratracheal injection of BLM (2.5 mg/kg body weight in 0.25-ml phosphate buffered saline), and (4) BLM + Dxp-treated group; 500 mg/kg Dxp was administered 1 h before the intratracheal BLM injection and continued for 14 days i.p. The histopathological grades of lung inflammation and collagen deposition, tissue levels of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and myeloperoxidase (MPO) were measured. BLM provoked inflammation and collagen deposition (p < 0.0001), with a marked increase in myeloperoxidase (MPO) activity resembling increased inflammatory activity (p < 0.0001), which was prevented by Dxp (p < 0.0001, p = 0.02). BLM reduced tissue activities of SOD, GPx, and CAT compared to controls (p = 0.01, 0.03, 0.009). MDA was increased with BLM (p = 0.003). SOD (p = 0.001) and MDA (p = 0.016) levels were improved in group 4. The CAT levels in the BLM + Dxp group were close to those in the control group (p > 0.05). We showed that Dxp significantly prevents BLM-induced lung fibrosis in rats. Further studies are required to evaluate the role of Dxp in the treatment of lung fibrosis.
Collapse
Affiliation(s)
- Hilal Ermis
- Department of Pulmonary Medicine, Inonu University Faculty of Medicine Turgut Ozal Medical Center, Elazig Yolu 15.km, 44280, Malatya, Turkey,
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Getoff N. Vitamin-induced intracellular electrons are the mechanism for their well-known beneficial effects: a review. Nutrition 2013; 29:597-604. [PMID: 23306138 DOI: 10.1016/j.nut.2012.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 08/27/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
Abstract
A new conception of the action mechanisms of vitamins and some other compounds without a vitamin status is briefly presented. It is based on results obtained through pulse radiolysis, molecular radiation biological investigations, and in vitro studies. The data clearly show that antioxidant vitamins (C, E, β-carotene) and B vitamins and related compounds possess the capability to emit "solvated electrons" in aqueous solutions or polar media. In consequence, the well-known vitamin effects are attributed to the action of the emitted solvated electrons and the resulting vitamin free radicals rather than the vitamin molecules per se, as generally accepted.
Collapse
Affiliation(s)
- Nikola Getoff
- Section of Radiation Biology, Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
21
|
Wright D, Zampagni M, Evangelisti E, Conti S, D'Adamio G, Goti A, Becatti M, Fiorillo C, Taddei N, Cecchi C, Liguri G. Protective Properties of NovelS-Acyl-Glutathione Thioesters Against Ultraviolet-induced Oxidative Stress. Photochem Photobiol 2012; 89:442-52. [DOI: 10.1111/j.1751-1097.2012.01231.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 08/23/2012] [Indexed: 12/29/2022]
Affiliation(s)
- Daniel Wright
- Department of Biochemical Sciences; University of Florence; Firenze; Florence; Italy
| | - Mariagioia Zampagni
- Department of Biochemical Sciences; University of Florence; Firenze; Florence; Italy
| | - Elisa Evangelisti
- Department of Biochemical Sciences; University of Florence; Firenze; Florence; Italy
| | - Simona Conti
- Department of Biochemical Sciences; University of Florence; Firenze; Florence; Italy
| | - Giampiero D'Adamio
- Department of Chemistry “Ugo Schiff”; University of Florence; Sesto Fiorentino; Florence; Italy
| | - Andrea Goti
- Department of Chemistry “Ugo Schiff”; University of Florence; Sesto Fiorentino; Florence; Italy
| | - Matteo Becatti
- Department of Biochemical Sciences; University of Florence; Firenze; Florence; Italy
| | - Claudia Fiorillo
- Department of Biochemical Sciences; University of Florence; Firenze; Florence; Italy
| | - Niccolò Taddei
- Department of Biochemical Sciences; University of Florence; Firenze; Florence; Italy
| | - Cristina Cecchi
- Department of Biochemical Sciences; University of Florence; Firenze; Florence; Italy
| | - Gianfranco Liguri
- Department of Biochemical Sciences; University of Florence; Firenze; Florence; Italy
| |
Collapse
|
22
|
Mateo Anson N, Hemery YM, Bast A, Haenen GRMM. Optimizing the bioactive potential of wheat bran by processing. Food Funct 2012; 3:362-75. [PMID: 22336890 DOI: 10.1039/c2fo10241b] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Nuria Mateo Anson
- University of Maastricht, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | | | | | | |
Collapse
|
23
|
Altintas R, Parlakpinar H, Beytur A, Vardi N, Polat A, Sagir M, Odabas GP. Protective Effect of Dexpanthenol on Ischemia-Reperfusion-Induced Renal Injury in Rats. ACTA ACUST UNITED AC 2012; 36:220-30. [DOI: 10.1159/000343411] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2012] [Indexed: 12/20/2022]
|
24
|
Wiederholt T, Heise R, Skazik C, Marquardt Y, Joussen S, Erdmann K, Schröder H, Merk HF, Baron JM. Calcium pantothenate modulates gene expression in proliferating human dermal fibroblasts. Exp Dermatol 2009; 18:969-78. [DOI: 10.1111/j.1600-0625.2009.00884.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
25
|
Polypeptide from Chlamys farreri modulates UVB-induced activation of NF-κB signaling pathway and protection HaCaT cells from apoptosis. ACTA ACUST UNITED AC 2009; 153:49-55. [DOI: 10.1016/j.regpep.2008.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 09/04/2008] [Accepted: 11/09/2008] [Indexed: 11/20/2022]
|
26
|
Slyshenkov VS, Shevalye AA, Moiseenok AG. Pantothenate prevents disturbances in the synaptosomal glutathione system and functional state of synaptosomal membrane under oxidative stress conditions. NEUROCHEM J+ 2007. [DOI: 10.1134/s1819712407030105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Li JL, Liu N, Chen XH, Sun M, Wang CB. Inhibition of UVA-induced apoptotic signaling pathway by polypeptide from Chlamys farreri in human HaCaT keratinocytes. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2007; 46:263-8. [PMID: 17487501 DOI: 10.1007/s00411-007-0112-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 04/03/2007] [Indexed: 05/15/2023]
Abstract
Chronic UVA irradiation has been reported to induce photoaging and photocarcinogenesis. UVA is a potent inducer of reactive oxygen species (ROS), which can induce various biological processes, including apoptosis. Polypeptide from Chlamys farreri (PCF) is a novel marine active material isolated from the gonochoric Chinese scallop C. farreri. In our previous studies, PCF was found to be an effective antioxidant inhibiting UVA-induced ROS production and a potential inhibitory agent for UVA-induced apoptosis in the human keratinocyte cell line HaCaT. The intracellular mechanisms of how PCF protects HaCaT cells from UVA-induced apoptosis are not understood. Thus, we here investigate the effect of PCF on UVA-induced intracellular signaling of apoptosis. Pretreatment with the ROS scavenger N-acetylcysteine (NAC), the p38 MAPK inhibitor SB203580 or the caspase-3 inhibitor Ac-DEVD-CHO was found to effectively prevent UVA-induced apoptosis, indicating that ROS, p38 MAPK and caspase-3 play important roles in apoptosis. H(2)O(2)-induced apoptosis was attenuated by PCF, suggesting that PCF plays its anti-apoptotic role through its antioxidant activity. In addition, PCF treatment inhibited UVA-induced p38 MAPK activation and caspase-3 activation, as assayed by Western blot analysis and flow cytometry, respectively. Our results suggest that PCF attenuates UVA-induced apoptosis through a reduction of ROS generation and diminished p38 MAPK and caspase-3 activation.
Collapse
Affiliation(s)
- Jin-Lian Li
- Medical College, Qingdao University, Qingdao, China.
| | | | | | | | | |
Collapse
|
28
|
Etensel B, Ozkisacik S, Ozkara E, Serbest YA, Oztan O, Yazici M, Gürsoy H. The protective effect of dexpanthenol on testicular atrophy at 60th day following experimental testicular torsion. Pediatr Surg Int 2007; 23:271-5. [PMID: 17205291 DOI: 10.1007/s00383-006-1871-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2006] [Indexed: 12/27/2022]
Abstract
Despite the prompt diagnosis and treatment of testicular torsion (TT), there are problems with fertility and atrophy after testicular salvage. Dexpanthenol (Dxp) is the biologically active alcohol of pantothenic acid (PA). Dxp is converted to PA in tissues. PA increases the content of reduced glutathione (GSH), Coenzyme A and ATP synthesis in cells. GSH and glutathione-dependent peroxidases (GPX) are the major defense systems against oxidative stress. GPX-4 is the major antioxidant in testicular tissue. However, the activity of GPX-4 appeared and increased only after puberty. We investigated the effect of Dxp on testicular atrophy after TT at the 60th day. Rats were separated randomly into four groups. Group C: control group, group Td: torsion + detorsion, group Sal: torsion + saline + detorsion, group Dxp: torsion + Dxp + detorsion. The left testis was rotated 720 degrees for 2 h. In group Sal, normal saline and in group Dxp, Dexpanthenol were injected intraperitonally, 30 min before detorsion. After 60 days, the testicular weights and volumes were measured. Histopathology of the left testis was evaluated with mean seminiferous tubular diameter (MSTD) and mean testicular biopsy score (MTBS). The left (torsed) testicular weight and volume of groups Td and Sal were significantly lower compared to group Dxp. The MSTD and MTBS of group Td and Sal were significantly lower than group Dxp. Contralateral testicular weight and volume of groups Td, Sal and Dxp had no significant difference compared to the control group. Dxp significantly prevented testicular atrophy after 60 days of TT. Dxp has FDA approval, is safe, cost effective and readily available. Its relevance for clinical trials may especially be for the problem of testicular atrophy catastrophe, seen very frequently following testicular salvage.
Collapse
Affiliation(s)
- Barlas Etensel
- Department of Pediatric Surgery, Adnan Menderes University, Aydin, Turkey.
| | | | | | | | | | | | | |
Collapse
|
29
|
Etensel B, Ozkisacik S, Ozkara E, Karul A, Oztan O, Yazici M, Gürsoy H. Dexpanthenol attenuates lipid peroxidation and testicular damage at experimental ischemia and reperfusion injury. Pediatr Surg Int 2007; 23:177-81. [PMID: 16983563 DOI: 10.1007/s00383-006-1781-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2006] [Indexed: 10/24/2022]
Abstract
Prevention of tissue damage after testicular torsion caused by I/R injury is still a clinical and experimental problem. There are many experimental studies made with several chemicals in the literature for decreasing the effect of reactive oxygen species after ischemia and reperfusion. Dexpanthenol (Dxp) is the biologically active alcohol of pantothenic acid. Pantothenic acid increases the content of reduced glutathione, Coenzyme A and ATP in cell. We studied the effect of Dxp on lipid peroxidation and testicular damage. Forty adult rats were separated randomly into five groups: group Sh, Sham-operation; group TD, torsion-detorsion; group NS, torsion-normal saline-detorsion; group D, torsion-Dxp 250 mg/kg detorsion; group D2, torsion-Dxp 500 mg/kg detorsion group. Serum MDA levels were taken before detorsion, after torsion at the first and fifth minute and at the first hour. Tissue sample was taken at the first hour. The alterations of I/R injury on testis were histological graded. Serum MDA levels were significantly lower in group D2 compared to all groups. The histopathology score of group D2 was significantly lower than groups TD, NS and D. Histopathological score and serum MDA levels are strikingly compatible. Dxp attenuated lipid peroxidation and tissue damage at I/R injury. This effect depends on its antioxidant effect with increasingly reduced glutathione, Coenzyme A and ATP. The effect of Dxp on I/R injury has been shown for the first time in the experimental testicular torsion.
Collapse
Affiliation(s)
- Barlas Etensel
- Department of Pediatric Surgery, Adnan Menderes University, Aydin, Turkey.
| | | | | | | | | | | | | |
Collapse
|
30
|
Slyshenkov VS, Dymkowska D, Wojtczak L. Pantothenic acid and pantothenol increase biosynthesis of glutathione by boosting cell energetics. FEBS Lett 2004; 569:169-72. [PMID: 15225628 DOI: 10.1016/j.febslet.2004.05.044] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 05/19/2004] [Accepted: 05/25/2004] [Indexed: 12/21/2022]
Abstract
We have previously observed (summarized in BioFactors 17 (2003) 61) that pantothenic acid, pantothenol and other derivatives that are precursors of CoA protect cells and whole organs against peroxidative damage by increasing the content of cell glutathione. The present investigation was aimed to elucidate the mechanism of this increase in human lymphoblastoic (Jurkat) cells. It showed that incubation of the cells with pantothenic acid or pantothenol increased mainly the content of free glutathione, with little effect on protein-bound glutathione. Buthionine sulfoximine, an inhibitor of glutathione synthesis, prevented this increase. Increase of the content of free glutathione, as produced by pantothenic acid or pantothenol, was largely prevented by respiratory chain inhibitor rotenone, inhibitor of mitochondrial ATP synthesis oligomycin and uncoupler of oxidative phosphorylation of carbonyl cyanide 3-chlorophenylhydrazone. These treatments also decreased the cellular content of ATP. Preincubation with pantothenic acid or pantothenol also increased cell respiration with pyruvate as the exogenous substrate. Although no significant increase of total cell CoA content could be found, it is concluded that the increase of the glutathione level was due to increased production of ATP that was, in turn, a result of the increased content of mitochondrial CoA.
Collapse
|
31
|
Chen RF, Chou CL, Wang MR, Chen CF, Liao JF, Ho LK, Tao CW, Huang HS. Small-Molecule Anthracene-Induced Cytotoxicity and Induction of Apoptosis through Generation of Reactive Oxygen Species. Biol Pharm Bull 2004; 27:838-45. [PMID: 15187430 DOI: 10.1248/bpb.27.838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A series of anthracene derivatives have been synthesized, and their potential individual cytotoxicity was evaluated using Jurkat T cells and peripheral blood mononuclear cells (PBMCs) in vitro. These compounds, except for 2l, showed less cytotoxicity in PBMCs than mitoxantrone. We also analyzed the antiproliferative activity of these derivatives using the annexin V/propidium iodide assay. These synthetic compounds induced apoptosis, thus leading to antitumor effects. Compounds 2b, 2e, 2f, 2g, 2h, 2i, 2j, and mitoxantrone produced dose-dependent cytotoxicity, while the antiproliferative activity of the anthracene pharmacophore was retained in Jurkat T cells base on the detection of DNA degradation and membrane unpacking. These clearly indicate a correlation between cytotoxicity and antitumor activity. Unlike mitoxantrone, cytotoxic properties were observed, as documented by the reactivity of these novel compounds against Jurkat T cells and PBMCs as normal cells, respectively. Various concentrations of 2b, 2e, 2f, 2g, 2h, 2i, and 2j preparations also inhibited Jurkat T cell proliferation and induced apoptosis of Jurkat T cells, potentially confirmed through the detection of DNA degradation and membrane unpacking. In the present report we also investigated the antiinflammatory activity against phorbol-12-myristate-13-acetate induced superoxide anion production, a marker for an inflammatory mediator produced by neutrophils, with IC(50) (microM) values of 2b, 2h, 2l, and 2o of 4.28+/-0.89, 3.31+/-0.88, 4.38+/-0.25, and 5.45+/-1.78, respectively. These results suggest that, in addition to the specific chromosomal aberrations and cell death, elevated apoptosis could also be a marker for exposure to anthracene derivatives.
Collapse
Affiliation(s)
- Rong-Fu Chen
- Department and Institute of Pharmacology, National Yang-Ming University, Peitou, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Wojtczak L, Slyshenkov VS. Protection by pantothenic acid against apoptosis and cell damage by oxygen free radicals--the role of glutathione. Biofactors 2003; 17:61-73. [PMID: 12897429 DOI: 10.1002/biof.5520170107] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lech Wojtczak
- Nencki Institute of Experimental Biology, Pasteura 3, 02-093 Warsaw, Poland.
| | | |
Collapse
|