1
|
Di Tomo P, Alessio N, Falone S, Pietrangelo L, Lanuti P, Cordone V, Santini SJ, Di Pietrantonio N, Marchisio M, Protasi F, Di Pietro N, Formoso G, Amicarelli F, Galderisi U, Pandolfi A. Endothelial cells from umbilical cord of women affected by gestational diabetes: A suitable in vitro model to study mechanisms of early vascular senescence in diabetes. FASEB J 2021; 35:e21662. [PMID: 34046935 DOI: 10.1096/fj.202002072rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022]
Abstract
Human umbilical cord endothelial cells (HUVECs) obtained from women affected by gestational diabetes (GD-HUVECs) display durable pro-atherogenic modifications and might be considered a valid in vitro model for studying chronic hyperglycemia effects on early endothelial senescence. Here, we demonstrated that GD- compared to C-HUVECs (controls) exhibited oxidative stress, altered both mitochondrial membrane potential and antioxidant response, significant increase of senescent cells characterized by a reduced NAD-dependent deacetylase sirtuin-1 (SIRT1) activity together with an increase in cyclin-dependent kinase inhibitor-2A (P16), cyclin-dependent kinase inhibitor-1 (P21), and tumor protein p53 (P53) acetylation. This was associated with the p300 activation, and its silencing significantly reduced the GD-HUVECs increased protein levels of P300 and Ac-P53 thus indicating a persistent endothelial senescence via SIRT1/P300/P53/P21 pathway. Overall, our data suggest that GD-HUVECs can represent an "endothelial hyperglycemic memory" model to investigate in vitro the early endothelium senescence in cells chronically exposed to hyperglycemia in vivo.
Collapse
Affiliation(s)
- Pamela Di Tomo
- Department of Medical and Oral Sciences and Biotechnologies, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Nicola Alessio
- Department of Experimental Medicine, University of Campania "L. Vanvitelli", Napoli, Italy
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Laura Pietrangelo
- Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Italy
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Paola Lanuti
- Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Italy
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Valeria Cordone
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Silvano Junior Santini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Nadia Di Pietrantonio
- Department of Medical and Oral Sciences and Biotechnologies, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Marco Marchisio
- Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Italy
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Feliciano Protasi
- Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Italy
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Natalia Di Pietro
- Department of Medical and Oral Sciences and Biotechnologies, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Gloria Formoso
- Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Italy
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, University of Campania "L. Vanvitelli", Napoli, Italy
| | - Assunta Pandolfi
- Department of Medical and Oral Sciences and Biotechnologies, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Italy
| |
Collapse
|
2
|
Francisco FA, Saavedra LPJ, Junior MDF, Barra C, Matafome P, Mathias PCF, Gomes RM. Early AGEing and metabolic diseases: is perinatal exposure to glycotoxins programming for adult-life metabolic syndrome? Nutr Rev 2021; 79:13-24. [PMID: 32951053 DOI: 10.1093/nutrit/nuaa074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Perinatal early nutritional disorders are critical for the developmental origins of health and disease. Glycotoxins, or advanced glycation end-products, and their precursors such as the methylglyoxal, which are formed endogenously and commonly found in processed foods and infant formulas, may be associated with acute and long-term metabolic disorders. Besides general aspects of glycotoxins, such as their endogenous production, exogenous sources, and their role in the development of metabolic syndrome, we discuss in this review the sources of perinatal exposure to glycotoxins and their involvement in metabolic programming mechanisms. The role of perinatal glycotoxin exposure in the onset of insulin resistance, central nervous system development, cardiovascular diseases, and early aging also are discussed, as are possible interventions that may prevent or reduce such effects.
Collapse
Affiliation(s)
- Flávio A Francisco
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringa, Maringa, PR, Brazil
| | - Lucas P J Saavedra
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringa, Maringa, PR, Brazil
| | - Marcos D F Junior
- Department of Physiological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Cátia Barra
- Institute of Physiology and Coimbra Institute of Clinical and Biomedical Research, Faculty of Medicine, and the Center for Innovative Biotechnology and Biomedicine, University of Coimbra; and the Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Paulo Matafome
- Institute of Physiology and Coimbra Institute of Clinical and Biomedical Research, Faculty of Medicine, and the Center for Innovative Biotechnology and Biomedicine, University of Coimbra; and the Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Paulo C F Mathias
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringa, Maringa, PR, Brazil
| | - Rodrigo M Gomes
- Department of Physiological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| |
Collapse
|
3
|
Nakano T, Kono M, Segawa K, Kurosaka S, Nakaoka Y, Morimoto Y, Mitani T. Effects of exposure to methylglyoxal on sperm motility and embryonic development after fertilization in mice. J Reprod Dev 2021; 67:123-133. [PMID: 33551390 PMCID: PMC8075723 DOI: 10.1262/jrd.2020-150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Methylglyoxal (MG) is a precursor for the generation of endogenous advanced glycation end-products involved in various diseases, including infertility. The
present study evaluated the motility and developmental competence after in vitro fertilization of mouse sperm which were exposed to MG in the
capacitation medium for 1.5 h. Sperm motility was analyzed using an SQA-V automated sperm quality analyzer. Intracellular reactive oxygen species (ROS),
membrane integrity, mitochondrial membrane potential, and DNA damage were assessed using flow cytometry. The matured oocytes were inseminated with MG-exposed
sperm, and subsequently, the fertilization and embryonic development in vitro were evaluated in vitro. The exposure of sperm
to MG did not considerably affect the swim-up of sperm but resulted in a deteriorated sperm motility in a concentration-dependent manner, which was associated
with a decreased mitochondrial activity. However, these effects was not accompanied by obvious ROS accumulation or DNA damage. Furthermore, MG diminished the
fertilization rate and developmental competence, even after normal fertilization. Collectively, a short-term exposure to MG during sperm capacitation had a
critical impact on sperm motility and subsequent embryonic development after fertilization. Considering that sperm would remain in vivo for up
to 3 days until fertilization, our findings suggest that sperm can be affected by MG in the female reproductive organs, which may be associated with
infertility.
Collapse
Affiliation(s)
- Tatsuya Nakano
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan.,IVF Namba Clinic, Osaka 550-0015, Japan
| | - Mizuki Kono
- Department of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| | - Kazuki Segawa
- Department of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| | - Satoshi Kurosaka
- Institute of Advanced Technology, Kindai University, Wakayama 642-0017, Japan
| | | | | | - Tasuku Mitani
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan.,Department of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| |
Collapse
|
4
|
Zhang X, Rodriguez-Niño A, Pastene DO, Pallavi P, van den Born J, Bakker SJL, Krämer BK, Yard BA. Methylglyoxal induces p53 activation and inhibits mTORC1 in human umbilical vein endothelial cells. Sci Rep 2021; 11:8004. [PMID: 33850227 PMCID: PMC8044125 DOI: 10.1038/s41598-021-87561-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 03/30/2021] [Indexed: 12/26/2022] Open
Abstract
Methylglyoxal (MGO), a precursor of advanced glycation end products (AGEs), is regarded as a pivotal mediator of vascular damage in patients with diabetes. We have previously reported that MGO induces transcriptional changes compatible with p53 activation in cultured human endothelial cells. To further substantiate this finding and to explore the underlying mechanisms and possible consequences of p53 activation, we aimed (1) to provide direct evidence for p53 activation in MGO-treated human umbilical vein endothelial cells (HUVECs), (2) to assess putative mechanisms by which this occurs, (3) to analyze down-stream effects on mTOR and autophagy pathways, and (4) to assess the potential benefit of carnosine herein. Exposure of HUVECs to 800 µM of MGO for 5 h induced p53 phosphorylation. This was paralleled by an increase in TUNEL and γ-H2AX positive cells, indicative for DNA damage. Compatible with p53 activation, MGO treatment resulted in cell cycle arrest, inhibition of mTORC1 and induction of autophagy. Carnosine co-treatment did not counteract MGO-driven effects. In conclusion, our results demonstrate that MGO elicits DNA damage and p53 activation in HUVECs, resulting in modulation of downstream pathways, e.g. mTORC1.
Collapse
Affiliation(s)
- Xinmiao Zhang
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, University Hospital Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Angelica Rodriguez-Niño
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, University Hospital Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Diego O Pastene
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, University Hospital Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Prama Pallavi
- Surgical Department, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Jacob van den Born
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stephan J L Bakker
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bernhard K Krämer
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, University Hospital Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Benito A Yard
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, University Hospital Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
5
|
Schalkwijk CG, Stehouwer CDA. Methylglyoxal, a Highly Reactive Dicarbonyl Compound, in Diabetes, Its Vascular Complications, and Other Age-Related Diseases. Physiol Rev 2020; 100:407-461. [DOI: 10.1152/physrev.00001.2019] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The formation and accumulation of methylglyoxal (MGO), a highly reactive dicarbonyl compound, has been implicated in the pathogenesis of type 2 diabetes, vascular complications of diabetes, and several other age-related chronic inflammatory diseases such as cardiovascular disease, cancer, and disorders of the central nervous system. MGO is mainly formed as a byproduct of glycolysis and, under physiological circumstances, detoxified by the glyoxalase system. MGO is the major precursor of nonenzymatic glycation of proteins and DNA, subsequently leading to the formation of advanced glycation end products (AGEs). MGO and MGO-derived AGEs can impact on organs and tissues affecting their functions and structure. In this review we summarize the formation of MGO, the detoxification of MGO by the glyoxalase system, and the biochemical pathways through which MGO is linked to the development of diabetes, vascular complications of diabetes, and other age-related diseases. Although interventions to treat MGO-associated complications are not yet available in the clinical setting, several strategies to lower MGO have been developed over the years. We will summarize several new directions to target MGO stress including glyoxalase inducers and MGO scavengers. Targeting MGO burden may provide new therapeutic applications to mitigate diseases in which MGO plays a crucial role.
Collapse
Affiliation(s)
- C. G. Schalkwijk
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands; and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - C. D. A. Stehouwer
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands; and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
6
|
Jiang L, Wang J, Wang Z, Huang W, Yang Y, Cai Z, Li K. Role of the Glyoxalase System in Alzheimer's Disease. J Alzheimers Dis 2019; 66:887-899. [PMID: 30400091 DOI: 10.3233/jad-180413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is an insidious and progressive neurodegenerative disease. The main pathological features of AD are the formation of amyloid-β deposits in the anterior cerebral cortex and hippocampus as well as the formation of intracellular neurofibrillary tangles. Thus far, accumulating evidence shows that glycation is closely related to AD. As a final product resulting from the crosslinking of a reducing sugar or other reactive carbonyls and a protein, the advanced glycation end products have been found to be associated with the formation of amyloid-β and neurofibrillary tangles in AD. As a saccharification inhibitor, the glyoxalase system and its substrate methylglyoxal (MG) were certified to be associated with AD onset and development. As an active substance of AGEs, MG could cause direct or indirect damage to nerve cells and tissues. MG is converted to D-lactic acid after decomposition by the glyoxalase system. Under normal circumstances, MG metabolism is in a dynamic equilibrium, whereas MG accumulates in cells in the case of aging or pathological states. Studies have shown that increasing glyoxalase activity and reducing the MG level can inhibit the generation of oxidative stress and AGEs, thereby alleviating the symptoms and signs of AD to some extent. This paper focuses on the relevant mechanisms of action of the glyoxalase system and MG in the pathogenesis of AD, as well as the potential of inhibiting the production of advanced glycation end products in the treatment of AD.
Collapse
Affiliation(s)
- Lianying Jiang
- Department of Neurology, Stem Cell Research and Clinical Translation Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jiafeng Wang
- Department of Neurology, Stem Cell Research and Clinical Translation Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhigang Wang
- Department of Neurosurgery, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Wenhui Huang
- Department of Neurology and Stroke Center, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yixia Yang
- Department of Neurology, Stem Cell Research and Clinical Translation Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhiyou Cai
- Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, People's Republic of China
| | - Keshen Li
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China; Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Santini SJ, Cordone V, Mijit M, Bignotti V, Aimola P, Dolo V, Falone S, Amicarelli F. SIRT1-Dependent Upregulation of Antiglycative Defense in HUVECs Is Essential for Resveratrol Protection against High Glucose Stress. Antioxidants (Basel) 2019; 8:antiox8090346. [PMID: 31480513 PMCID: PMC6770647 DOI: 10.3390/antiox8090346] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/09/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
Uncontrolled accumulation of methylglyoxal (MG) and reactive oxygen species (ROS) occurs in hyperglycemia-induced endothelial dysfunction associated with diabetes. Resveratrol (RSV) protects the endothelium upon high glucose (HG); however, the mechanisms underlying such protective effects are still debated. Here we identified key molecular players involved in the glycative/oxidative perturbations occurring in endothelial cells exposed to HG. In addition, we determined whether RSV essentially required SIRT1 to trigger adaptive responses in HG-challenged endothelial cells. We used primary human umbilical vein endothelial cells (HUVECs) undergoing a 24-h treatment with HG, with or without RSV and EX527 (i.e., SIRT1 inhibitor). We found that HG-induced glycative stress (GS) and oxidative stress (OS), by reducing SIRT1 activity, as well as by diminishing the efficiency of MG- and ROS-targeting protection. RSV totally abolished the HG-dependent cytotoxicity, and this was associated with SIRT1 upregulation, together with increased expression of GLO1, improved ROS-scavenging efficiency, and total suppression of HG-related GS and OS. Interestingly, RSV failed to induce effective response to HG cytotoxicity when EX527 was present, thus suggesting that the upregulation of SIRT1 is essential for RSV to activate the major antiglycative and antioxidative defense and avoid MG- and ROS-dependent molecular damages in HG environment.
Collapse
Affiliation(s)
- Silvano Jr Santini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy
| | - Valeria Cordone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Mahmut Mijit
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy
| | - Virginio Bignotti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy
| | - Pierpaolo Aimola
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy
| | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy.
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy.
| |
Collapse
|
8
|
Tseng YT, Tsai YH, Fülöp F, Chang FR, Lo YC. 2-Iodo-4'-Methoxychalcone Attenuates Methylglyoxal-Induced Neurotoxicity by Activation of GLP-1 Receptor and Enhancement of Neurotrophic Signal, Antioxidant Defense and Glyoxalase Pathway. Molecules 2019; 24:E2249. [PMID: 31208152 PMCID: PMC6631972 DOI: 10.3390/molecules24122249] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 01/06/2023] Open
Abstract
Methylglyoxal (MG) acts as a reactive precursor of advanced glycation end products (AGEs). This compound is often connected with pathologies such as diabetes, neurodegenerative processes and diseases of aging. 2-iodo-4'-methoxychalcone (CHA79), a synthetic halogen-containing chalcone derivative, has been reported its anti-diabetic activity. This study aims to investigate the potential protective capability of CHA79 against MG-mediated neurotoxicity in SH-SY5Y cells. Results indicated CHA79 increased viability of cells and attenuated the rate of apoptosis in MG-exposed SH-SY5Y. CHA79 up-regulated expression of anti-apoptotic protein (Bcl-2) and down-regulated apoptotic proteins (Bax, cytochrome c, caspase-3, caspase-9). Moreover, CHA79 significantly up-regulated expression of neurotrophic factors, including glucagon-like peptide-1 receptor (GLP-1R), brain derived neurotrophic factor (BDNF), p75NTR, p-TrkB, p-Akt, p-GK-3β and p-CREB. CHA79 attenuated MG-induced ROS production and enhanced the antioxidant defense including nuclear factor erythroid 2-related factor 2 (Nrf2), HO-1, SOD and GSH. Furthermore, CHA79 attenuated MG-induced reduction of glyoxalase-1 (GLO-1), a vital enzyme on removing AGE precursors. In conclusion, CHA79 is the first novel synthetic chalcone possessing the GLP-1R and GLO-1 activating properties. CHA 79 also exhibits neuroprotective effects against MG toxicity by enhancing neurotrophic signal, antioxidant defense and anti-apoptosis pathway.
Collapse
Affiliation(s)
- Yu-Ting Tseng
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Yi-Hong Tsai
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
- MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, Eötvös u. 6, H-6720 Szeged, Hungary.
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan.
| | - Yi-Ching Lo
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
9
|
Zhang SD, Wang P, Zhang J, Wang W, Yao LP, Gu CB, Efferth T, Fu YJ. 2'O-galloylhyperin attenuates LPS-induced acute lung injury via up-regulation antioxidation and inhibition of inflammatory responses in vivo. Chem Biol Interact 2019; 304:20-27. [PMID: 30849337 DOI: 10.1016/j.cbi.2019.02.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 01/30/2019] [Accepted: 02/28/2019] [Indexed: 10/27/2022]
Abstract
2'O-galloylhyperin, an active flavonol glycoside compound with remarkable anti-immune activity, was isolated from Pyrola [P. incarnata Fisch.]. However, the evidence of anti-inflammatory activity in pulmonary diseases was still not convincing. The aim of the present study was (1) to investigate the effect of 2'O-galloylhyperin on LPS-induced acute lung injury in mice, and (2) to identify the mechanisms of attenuation of inflammatory responses. The results demonstrated that 2'O-galloylhyperin significantly reduced LPS-induced inflammation damage in a dose-dependent manner. After LPS challenge, treatment with 2'O-galloylhyperin reduced the production of pro-inflammatory cytokines and chemokines, and also improved LPS-induced lung histopathology changes. 2'O-galloylhyperin also increased the activities of antioxidant enzymes, including SOD and GSH-Px to maintain cellular redox homeostasis. Furthermore, 2'O-galloylhyperin inhibited translocation of nuclear factor (NF-κB) activation and suppressed phosphorylation of MAPK signaling pathway consisting of p38, ERK, JNK. In addition, 2'O-galloylhyperin enhanced heme oxygenase-1 (HO-1) expression to block LPS-induced inflammation via activating nuclear factor-crythroid 2-related factor (Nrf2). Moreover, 2'O-galloylhyperin induced adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation. 2'O-galloylhyperin attenuated LPS-induced acute lung injury by inhibiting the MAPK and NF-κB signaling pathways, presumably related to up-regulation of the AMPK and Nrf2 signaling pathways. Furthermore, 2'O-galloylhyperin is a potential protective antioxidant to protect lung tissues from the acute injury.
Collapse
Affiliation(s)
- Sun-Dong Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Peng Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Jing Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Wei Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Li-Ping Yao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Cheng-Bo Gu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Thomas Efferth
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, 55128, Mainz, Germany
| | - Yu-Jie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; College of Forestry, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
10
|
Cordone V, Pecorelli A, Benedusi M, Santini S, Falone S, Hayek J, Amicarelli F, Valacchi G. Antiglycative Activity and RAGE Expression in Rett Syndrome. Cells 2019; 8:cells8020161. [PMID: 30781346 PMCID: PMC6406506 DOI: 10.3390/cells8020161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/09/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023] Open
Abstract
Rett syndrome (RTT) is a human neurodevelopmental disorder, whose pathogenesis has been linked to both oxidative stress and subclinical inflammatory status (OxInflammation). Methylglyoxal (MG), a glycolytic by-product with cytotoxic and pro-oxidant power, is the major precursor in vivo of advanced glycation end products (AGEs), which are known to exert their detrimental effect via receptor- (e.g., RAGE) or non-receptor-mediated mechanisms in several neurological diseases. On this basis, we aimed to compare fibroblasts from healthy subjects (CTR) with fibroblasts from RTT patients (N = 6 per group), by evaluating gene/protein expression patterns, and enzymatic activities of glyoxalases (GLOs), along with the levels of MG-dependent damage in both basal and MG-challenged conditions. Our results revealed that RTT is linked to an alteration of the GLOs system (specifically, increased GLO2 activity), that ensures unchanged MG-dependent damage levels. However, RTT cells underwent more pronounced cell death upon exogenous MG-treatment, as compared to CTR, and displayed lower RAGE levels than CTR, with no alterations following MG-treatment, thus suggesting that an adaptive response to dicarbonyl stress may occur. In conclusion, besides OxInflammation, RTT is associated with reshaping of the major defense systems against dicarbonyl stress, along with an altered cellular stress response towards pro-glycating insults.
Collapse
Affiliation(s)
- Valeria Cordone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy.
| | - Alessandra Pecorelli
- Plants for Human Health Institute, Animal Science Department, NC Research Campus, NC State University, 600 Laureate Way, Kannapolis, NC 28081, USA.
| | - Mascia Benedusi
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy.
| | - Silvano Santini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy.
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy.
| | - Joussef Hayek
- Child Neuropsychiatry Unit, University General Hospital, Azienda Ospedaliera Universitaria Senese, Viale M. Bracci 16, 53100 Siena, Italy.
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy.
| | - Giuseppe Valacchi
- Plants for Human Health Institute, Animal Science Department, NC Research Campus, NC State University, 600 Laureate Way, Kannapolis, NC 28081, USA.
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy.
| |
Collapse
|
11
|
Xie N, Geng N, Zhou D, Xu Y, Liu K, Liu Y, Liu J. Protective effects of anthocyanin against apoptosis and oxidative stress induced by arsanilic acid in DF-1 cells. Mol Biol Rep 2019; 46:301-308. [PMID: 30488373 DOI: 10.1007/s11033-018-4472-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/07/2018] [Indexed: 01/12/2023]
Abstract
Anthocyanin is a natural plant pigment that acts as an antioxidant and scavenges free radicals. This study aimed to investigate the potential protective role of nightshade anthocyanin (NA), a natural flavonoid compound, against the arsanilic acid (ASA)-induced cell death of DF-1 cells. DF-1 cells were initially exposed to ASA, and then NA was applied to the treated cells. Cell viability, intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and apoptosis were examined. Results showed that NA inhibited the ASA-induced decrease in cell viability, increase in ROS, and loss of MMP in DF-1 cells. Moreover, caspase-3 activation was inhibited by ASA supplementation and NA attenuated the ASA-induced increase in the percentage of apoptotic cells. In summary, our study suggested that NA can enhance ASA-induced cytotoxicity and apoptosis, thereby providing a basis for the molecular mechanisms of NA-mediated protection.
Collapse
Affiliation(s)
- Ning Xie
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Na Geng
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Dong Zhou
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Yuliang Xu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Kangping Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yongxia Liu
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, 712100, China.
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
12
|
Bellier J, Nokin MJ, Lardé E, Karoyan P, Peulen O, Castronovo V, Bellahcène A. Methylglyoxal, a potent inducer of AGEs, connects between diabetes and cancer. Diabetes Res Clin Pract 2019; 148:200-211. [PMID: 30664892 DOI: 10.1016/j.diabres.2019.01.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/04/2019] [Indexed: 02/08/2023]
Abstract
Diabetes is one of the most frequent diseases throughout the world and its incidence is predicted to exponentially progress in the future. This metabolic disorder is associated with major complications such as neuropathy, retinopathy, atherosclerosis, and diabetic nephropathy, the severity of which correlates with hyperglycemia, suggesting that they are triggered by high glucose condition. Reducing sugars and reactive carbonyl species such as methylglyoxal (MGO) lead to glycation of proteins, lipids and DNA and the gradual accumulation of advanced glycation end products (AGEs) in cells and tissues. While AGEs are clearly implicated in the pathogenesis of diabetes complications, their potential involvement during malignant tumor development, progression and resistance to therapy is an emerging concept. Meta-analysis studies established that patients with diabetes are at higher risk of developing cancer and show a higher mortality rate than cancer patients free of diabetes. In this review, we highlight the potential connection between hyperglycemia-associated AGEs formation on the one hand and the recent evidence of pro-tumoral effects of MGO stress on the other hand. We also discuss the marked interest in anti-glycation compounds in view of their strategic use to treat diabetic complications but also to protect against augmented cancer risk in patients with diabetes.
Collapse
Affiliation(s)
- Justine Bellier
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Belgium
| | - Marie-Julie Nokin
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Belgium
| | - Eva Lardé
- Laboratoire des Biomolécules, UMR 7203, Sorbonne Université, Paris, France
| | - Philippe Karoyan
- Laboratoire des Biomolécules, UMR 7203, Sorbonne Université, Paris, France
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Belgium
| | - Vincent Castronovo
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Belgium
| | - Akeila Bellahcène
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Belgium.
| |
Collapse
|
13
|
Bouayed J, Soulimani R. Evidence that hydrogen peroxide, a component of oxidative stress, induces high-anxiety-related behaviour in mice. Behav Brain Res 2018; 359:292-297. [PMID: 30423387 DOI: 10.1016/j.bbr.2018.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/24/2018] [Accepted: 11/06/2018] [Indexed: 02/08/2023]
Abstract
The link between oxidative stress and high-anxiety-related behaviour is uncontested; but the cause-effect relationship has yet to be completely elucidated. Here, the behavioural effects of hydrogen peroxide (H2O2), given to mice (n = 10 per group) in drinking water at 1%, were assessed in the light/dark choice test, the open field, the elevated-plus maze and the hole-board test. Compared to controls (drinking only water), subacute exposure (10-15 days) of mice to H2O2, the major component of reactive oxygen species (ROS) and the precursor of potent oxidants (hydroxyl radical and hypochlorous acid), affected emotional responses by inducing an anxious behaviour associated with hyperactivity. Our findings clearly showed that H2O2-treated mice exhibited anxiogenic behaviour in the light/dark choice test and in the hole-board test. Moreover, H2O2-treated mice displayed a hyperactive behaviour, revealed by a significant increase in the number of crossings made in the open field test relative to controls. Although H2O2-exposed mice made significantly less head-dippings in the open arms than controls, H2O2-induced hyperactivity may have blurred anxiogenic-like behaviour in H2O2-treated mice in the elevated-plus maze. Our findings provide the evidence that H2O2, an oxidizing component, caused high-anxiety-related behaviour associated with hyperactivity in mice. Antioxidants may play a role in preventing or attenuating oxidative stress-related anxiety.
Collapse
|
14
|
Ilea A, Băbţan AM, Boşca BA, Crişan M, Petrescu NB, Collino M, Sainz RM, Gerlach JQ, Câmpian RS. Advanced glycation end products (AGEs) in oral pathology. Arch Oral Biol 2018; 93:22-30. [DOI: 10.1016/j.archoralbio.2018.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/07/2018] [Accepted: 05/17/2018] [Indexed: 02/08/2023]
|
15
|
Donato L, Scimone C, Nicocia G, Denaro L, Robledo R, Sidoti A, D'Angelo R. GLO1 gene polymorphisms and their association with retinitis pigmentosa: a case-control study in a Sicilian population. Mol Biol Rep 2018; 45:1349-1355. [PMID: 30099685 DOI: 10.1007/s11033-018-4295-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 08/01/2018] [Indexed: 12/23/2022]
Abstract
Glyoxalase 1 (GLO1) is a ubiquitous cellular enzyme involved in detoxification of methylglyoxal (MGO), a cytotoxic byproduct of glycolysis, whose excess can cause oxidative stress. In retinitis pigmentosa (RP), the prevalent cause of blindness just during working life in the industrialized countries, oxidative stress represents one of the possible mechanisms leading to death of cones following that of rods in the retina. To date, the causes of secondary death of cones remain unclear and among proposed mechanisms are: the deprivation of trophic factors normally produced by healthy rods, a compromised uptake of nutrients to cones due to irreversible destruction of RPE-cone outer segment, microglial activation and following release of pro-inflammatory cytokines and rod-derived toxins. In present paper, role of oxidative stress due to an excess of MGO was evaluated. In particular, we wanted to determine whether single nucleotide polymorphisms (SNPs) in GLO1 influence enzyme activity, contributing to cone death in advanced RP. 120 healthy controls and 80 RP patients from Sicilian population were genotyped for three GLO1 common SNPs, rs1130534 (c.372A>T, p.G124G), rs2736654 (c.A332C, p.E111A) and rs1049346 (c.-7C>T, 5'-UTR). While c.A332C polymorphism was not associated with RP, c.372A>T showed an allelic association (T372 allele frequency = 70% vs 60% in controls, p = 0.0071). Conversely, c.-7C>T showed both genotypic (χ2 = 68.0952; p = 1.634e-15) and allelic associations (χ2 = 51.7094; p = 6.435e-13): mutated allele frequency was higher in controls than in patients, suggesting its possible protective role. RP susceptibility may be associated with two of the analyzed GLO1 polymorphisms (rs1130534 and rs1049346).
Collapse
Affiliation(s)
- Luigi Donato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Neuroscience-Applied, Molecular Genetics and Predictive Medicine, I.E.ME.S.T., Palermo, Italy.,Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, Italy
| | - Concetta Scimone
- Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Neuroscience-Applied, Molecular Genetics and Predictive Medicine, I.E.ME.S.T., Palermo, Italy.,Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, Italy
| | - Giacomo Nicocia
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Lucia Denaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, Italy
| | - Renato Robledo
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Antonina Sidoti
- Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Neuroscience-Applied, Molecular Genetics and Predictive Medicine, I.E.ME.S.T., Palermo, Italy. .,Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, Italy.
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, Italy
| |
Collapse
|
16
|
Paramita D, Wisnubroto J. Effect of methylglyoxal on reactive oxygen species, KI-67, and caspase-3 expression in MCF-7 cells. Exp Mol Pathol 2018; 105:76-80. [DOI: 10.1016/j.yexmp.2018.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 11/16/2022]
|
17
|
Namazi Sarvestani N, Saberi Firouzi S, Falak R, Karimi MY, Davoodzadeh Gholami M, Rangbar A, Hosseini A. Phosphodiesterase 4 and 7 inhibitors produce protective effects against high glucose-induced neurotoxicity in PC12 cells via modulation of the oxidative stress, apoptosis and inflammation pathways. Metab Brain Dis 2018; 33:1293-1306. [PMID: 29713919 DOI: 10.1007/s11011-018-0241-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/13/2018] [Indexed: 12/13/2022]
Abstract
Diabetic neuropathy (DN) is the most common diabetic complication. It is estimated diabetic population will increase to 592 million by the year 2035. This is while at least 50-60% of all diabetic patients will suffer from neuropathy in their lifetime. Oxidative stress, mitochondrial dysfunction, apoptosis, and inflammation are crucial pathways in development and progression of DN. Since there is also no selective and effective therapeutic agent to prevent or treat high glucose (HG)-induced neuronal cell injury, it is crucial to explore tools by which one can reduce factors related to these pathways. Phosphodiesterase 4 and 7 (PDE 4 and 7) regulate oxidative damage, neurodegenaration, and inflammatory responses through modulation of cyclic adenosine monophosphate (cAMP) level, and thus can be as important drug targets for regulating DN. The aim of this study was to evaluate the protective effects of inhibitors of PDE 4 and 7, named rolipram and BRL5048, on HG-induced neurotoxicity in PC12 cells as an in vitro cellular model for DN and determine the possible mechanisms for theirs effects. We report that the PC12 cells pre-treatment with rolipram (2 μM) and/or BRL5048 (0.2 μM) for 60 min and then exposing the cells to HG (4.5 g/L for 72 h) or normal glucose (NG) (1 g/L for 72 h) condition show: (1) significant attenuation in ROS, MDA and TNF-a levels, Bax/Bcl-2 ratio, expression of caspase 3 and UCP2 proteins; (2) significant increase in viability, GSH/GSSG ratio, MMP and ATP levels. All these data together led us to propose PDE 4 and 7 inhibitors, and specifically, rolipram and BRL5048, as potential drugs candidate to be further studied for the prevention and treatment of DN.
Collapse
Affiliation(s)
- Nazanin Namazi Sarvestani
- Department of Animal Biology, School of Biology, Department of Science, University of Tehran, Tehran, Iran
| | - Saeedeh Saberi Firouzi
- Department of Pharmacology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Akram Rangbar
- Department of Toxicology and Pharmacology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Li H, Tang Z, Chu P, Song Y, Yang Y, Sun B, Niu M, Qaed E, Shopit A, Han G, Ma X, Peng J, Hu M, Tang Z. Neuroprotective effect of phosphocreatine on oxidative stress and mitochondrial dysfunction induced apoptosis in vitro and in vivo: Involvement of dual PI3K/Akt and Nrf2/HO-1 pathways. Free Radic Biol Med 2018; 120:228-238. [PMID: 29559323 DOI: 10.1016/j.freeradbiomed.2018.03.014] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/03/2018] [Accepted: 03/09/2018] [Indexed: 12/15/2022]
Abstract
Methylglyoxal (MGO), an active metabolite of glucose, is observed in high levels in the tissues and blood of diabetic patients. Phosphocreatine (PCr), a high-energy phosphate compound, exhibits a range of pharmacological actions but little is well known of its neuroprotective action. The aim of the present study was to investigate the neuroprotective effects and the possible mechanisms of PCr. Diabetes is closely associated with neurodegenerative diseases, leading not only to the peripheral nervous system (PNS) and but also to central nervous system (CNS) damage. Therefore, we established two rat models of diabetes in vivo induced by MGO and streptozocin (STZ) respectively, while utilized differentiated PC-12 cells in vitro. Treatment of PC-12 cells with PCr markedly attenuated MGO-induced change of viability, apoptosis, accompanied by decreased levels of caspase-3, casapse-9 and Bcl-2/Bax protein ratio. Determination of cellular respiratory function was performed with intact PC-12 cells and homogenized hippocampal neuron tissue of rat. Reactive oxygen species (ROS) generation was assessed by membrane permeable fluorescent probe DCFH-DA. The expressions of Akt, Nrf2 and HO-1 were examined by Western blot. PCr pretreatment significantly reduced oxidative stress-induced high LDH, MDA level, and ROS production of PC-12 cells. PCr pretreatment also significantly decreased mitochondrial dysfunction in vitro and in vivo. In addition, PCr pretreatment increased the expression of p-Akt, Nrf2 and HO-1, and reduced the apoptosis. Moreover, the expression of Cleaved caspase3 was partially increased and the p-Akt, Nrf2 and HO-1 was partially reduced by a PI3K inhibitor (LY294002). While, compared with LY294002 groups, pre-treatment with PCr at the concentrations of 20 mM significantly reduced the expression of Cleaved caspase3 and increased the expression of p-Akt, Nrf2 and HO-1. Molecular docking assay showed that PCr possessed powerful affinity towards to Akt with lower binding energy. In conclusion, the neuroprotective effects of PCr in vitro and in vivo rely on normalizing mitochondrial function and reducing oxidative stress via Akt mediated Nrf2/HO-1 pathway, suggesting that PCr may be a novel therapeutic candidate for the treatment of diabetes-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Hailong Li
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Zhongyuan Tang
- Department of Orthodontics, School of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, PR China
| | - Peng Chu
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Yanlin Song
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Ying Yang
- Dalian Medical University, Affiliated Hosp 2, Neurological Intensive Care Un it, Dalian 116027, PR China
| | - Bin Sun
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Mengyue Niu
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Eskandar Qaed
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Abdullah Shopit
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Guozhu Han
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Xiaodong Ma
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Jinyong Peng
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Min Hu
- Department of Orthodontics, School of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, PR China.
| | - Zeyao Tang
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, PR China.
| |
Collapse
|
19
|
Saberi Firouzi S, Namazi Sarvestani N, Bakhtiarian A, Ghazi Khansari M, Karimi MY, Ranjbar A, Safa M, Hosseini A. Sildenafil protective effects on high glucose-induced neurotoxicity in PC12 cells: the role of oxidative stress, apoptosis, and inflammation pathways in an in vitro cellular model for diabetic neuropathy. Neurol Res 2018; 40:624-636. [PMID: 29623781 DOI: 10.1080/01616412.2018.1458813] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Objectives Diabetic neuropathy (DN) induces lifetime disability and there is currently no effective therapy to treat or to minimize patients suffering, so it is thereby imperative to develop therapeutic strategies for this disease. Since oxidative stress, mitochondrial dysfunction, apoptosis, and inflammation are crucial mechanisms in development and progression of DN, it is important to explore tools by which one can reduce factors related to these pathways. Herein, the understandings of the sildenafil neuroprotective effect through increase of cGMP level and the mediation of oxidative stress, apoptosis, and inflammation pathways on neurotoxicity induced by high glucose (HG) in PC12 cells as an in vitro cellular model for DN were investigated. Methods We reported that the PC12 cells pre-treatment with sildenafil (0.008 μM) for 60 min and then exposing the cells to HG (25 mM for 72 h) or normal glucose (NG) (5 mM for 72 h) condition, show: Results (1) significant attenuation in reactive oxygen species, MDA and TNF-a levels, Bax/Bcl-2 ratio, expression of caspase 3 and UCP2 proteins; (2) significant increase in viability, GSH/GSSG ratio, mitochondrial membrane potential, and ATP levels. Conclusion All these data together led us to propose neuroprotective effect of sildenafil is probably through its antioxidant, antiapoptotic, and anti-inflammatory activities. Of course, further studies are required to explain the underlying mechanism of the sildenafil effects.
Collapse
Affiliation(s)
- Saeedeh Saberi Firouzi
- a Faculty of Medicine, Department of Pharmacology , Tehran University of Medical Sciences , Tehran , Iran
| | - Nazanin Namazi Sarvestani
- b Department of Animal Biology, School of Biology, Department of Science , University of Tehran , Tehran , Iran
| | - Azam Bakhtiarian
- a Faculty of Medicine, Department of Pharmacology , Tehran University of Medical Sciences , Tehran , Iran
| | - Mahmoud Ghazi Khansari
- a Faculty of Medicine, Department of Pharmacology , Tehran University of Medical Sciences , Tehran , Iran
| | | | - Akram Ranjbar
- d Department of Toxicology and Pharmacology, School of Pharmacy , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Majid Safa
- e Faculty of Allied Medicine, Cellular and Molecular Research Center and Department of Hematology and blood banking , Iran University of Medical Sciences , Tehran , Iran
| | - Asieh Hosseini
- c Razi Drug Research Center , Iran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
20
|
Ravichandran M, Priebe S, Grigolon G, Rozanov L, Groth M, Laube B, Guthke R, Platzer M, Zarse K, Ristow M. Impairing L-Threonine Catabolism Promotes Healthspan through Methylglyoxal-Mediated Proteohormesis. Cell Metab 2018; 27:914-925.e5. [PMID: 29551589 DOI: 10.1016/j.cmet.2018.02.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 07/23/2017] [Accepted: 02/06/2018] [Indexed: 12/22/2022]
Abstract
Whether and how regulation of genes and pathways contributes to physiological aging is topic of intense scientific debate. By performing an RNA expression-based screen for genes downregulated during aging of three different species, we identified glycine-C-acetyltransferase (GCAT, EC 2.3.1.29). Impairing gcat expression promotes the lifespan of C. elegans by interfering with threonine catabolism to promote methylglyoxal (MGO; CAS 78-98-8) formation in an amine oxidase-dependent manner. MGO is a reactive dicarbonyl inducing diabetic complications in mammals by causing oxidative stress and damaging cellular components, including proteins. While high concentrations of MGO consistently exert toxicity in nematodes, we unexpectedly find that low-dose MGO promotes lifespan, resembling key mediators of gcat impairment. These were executed by the ubiquitin-proteasome system, namely PBS-3 and RPN-6.1 subunits, regulated by the stress-responsive transcriptional regulators SKN-1/NRF2 and HSF-1. Taken together, GCAT acts as an evolutionary conserved aging-related gene by orchestrating an unexpected nonlinear impact of proteotoxic MGO on longevity.
Collapse
Affiliation(s)
- Meenakshi Ravichandran
- Energy Metabolism Laboratory, Institute of Translational Medicine, D-HEST, Swiss Federal Institute of Technology (ETH) Zürich, Schwerzenbach 8603, Switzerland; Life Sciences Zürich Graduate School, Molecular and Translational Biomedicine Program, Zurich 8044, Switzerland
| | - Steffen Priebe
- Systems Biology and Bioinformatics Group, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena 07745, Germany
| | - Giovanna Grigolon
- Energy Metabolism Laboratory, Institute of Translational Medicine, D-HEST, Swiss Federal Institute of Technology (ETH) Zürich, Schwerzenbach 8603, Switzerland
| | - Leonid Rozanov
- Energy Metabolism Laboratory, Institute of Translational Medicine, D-HEST, Swiss Federal Institute of Technology (ETH) Zürich, Schwerzenbach 8603, Switzerland; Life Sciences Zürich Graduate School, Molecular and Translational Biomedicine Program, Zurich 8044, Switzerland
| | - Marco Groth
- Genome Analysis Group, Leibniz Institute on Aging, Fritz Lipmann Institute, Jena 07745, Germany
| | - Beate Laube
- Energy Metabolism Laboratory, Institute of Translational Medicine, D-HEST, Swiss Federal Institute of Technology (ETH) Zürich, Schwerzenbach 8603, Switzerland
| | - Reinhard Guthke
- Systems Biology and Bioinformatics Group, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena 07745, Germany
| | - Matthias Platzer
- Genome Analysis Group, Leibniz Institute on Aging, Fritz Lipmann Institute, Jena 07745, Germany
| | - Kim Zarse
- Energy Metabolism Laboratory, Institute of Translational Medicine, D-HEST, Swiss Federal Institute of Technology (ETH) Zürich, Schwerzenbach 8603, Switzerland
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, D-HEST, Swiss Federal Institute of Technology (ETH) Zürich, Schwerzenbach 8603, Switzerland.
| |
Collapse
|
21
|
Bellahcène A, Nokin MJ, Castronovo V, Schalkwijk C. Methylglyoxal-derived stress: An emerging biological factor involved in the onset and progression of cancer. Semin Cancer Biol 2018; 49:64-74. [DOI: 10.1016/j.semcancer.2017.05.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/18/2017] [Accepted: 05/22/2017] [Indexed: 02/07/2023]
|
22
|
Popelová A, Kákonová A, Hrubá L, Kuneš J, Maletínská L, Železná B. Potential neuroprotective and anti-apoptotic properties of a long-lasting stable analog of ghrelin: an in vitro study using SH-SY5Y cells. Physiol Res 2018; 67:339-346. [PMID: 29303606 DOI: 10.33549/physiolres.933761] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Neurodegenerative disorders, such as Alzheimer's disease (AD) and Parkinson's disease (PD), are increasing in prevalence. Currently, there are no effective and specific treatments for these disorders. Recently, positive effects of the orexigenic hormone ghrelin on memory and learning were demonstrated in mouse models of AD and PD. In this study, we tested the potential neuroprotective properties of a stable and long-lasting ghrelin analog, Dpr(3)ghrelin (Dpr(3)ghr), in SH-SY5Y neuroblastoma cells stressed with 1.2 mM methylglyoxal (MG), a toxic endogenous by-product of glycolysis, and we examined the impact of Dpr(3)ghr on apoptosis. Pre-treatment with both 10(-5) and 10(-7) M Dpr(3)ghr resulted in increased viability in SH-SY5Y cells (determined by MTT staining), as well as reduced cytotoxicity of MG in these cells (determined by LDH assay). Dpr(3)ghr increased viability by altering pro-apoptotic and viability markers: Bax was decreased, Bcl-2 was increased, and the Bax/Bcl-2 ratio was attenuated. The ghrelin receptor GHS-R1 and Dpr(3)ghr-induced activation of PBK/Akt were immuno-detected in SH-SY5Y cells to demonstrate the presence of GHS-R1 and GHS-R1 activation, respectively. We demonstrated that Dpr(3)ghr protected SH-SY5Y cells against MG-induced neurotoxicity and apoptosis. Our data suggest that stable ghrelin analogs may be candidates for the effective treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- A Popelová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
23
|
Methylglyoxal Induces Changes in the Glyoxalase System and Impairs Glutamate Uptake Activity in Primary Astrocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9574201. [PMID: 28685011 PMCID: PMC5480050 DOI: 10.1155/2017/9574201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/13/2017] [Accepted: 04/11/2017] [Indexed: 11/17/2022]
Abstract
The impairment of astrocyte functions is associated with diabetes mellitus and other neurodegenerative diseases. Astrocytes have been proposed to be essential cells for neuroprotection against elevated levels of methylglyoxal (MG), a highly reactive aldehyde derived from the glycolytic pathway. MG exposure impairs primary astrocyte viability, as evaluated by different assays, and these cells respond to MG elevation by increasing glyoxalase 1 activity and glutathione levels, which improve cell viability and survival. However, C6 glioma cells have shown strong signs of resistance against MG, without significant changes in the glyoxalase system. Results for aminoguanidine coincubation support the idea that MG toxicity is mediated by glycation. We found a significant decrease in glutamate uptake by astrocytes, without changes in the expression of the major transporters. Carbenoxolone, a nonspecific inhibitor of gap junctions, prevented the cytotoxicity induced by MG in astrocyte cultures. Thus, our data reinforce the idea that astrocyte viability depends on gap junctions and that the impairment induced by MG involves glutamate excitotoxicity. The astrocyte susceptibility to MG emphasizes the importance of this compound in neurodegenerative diseases, where the neuronal damage induced by MG may be aggravated by the commitment of the cells charged with MG clearance.
Collapse
|
24
|
Roy A, Ahir M, Bhattacharya S, Parida PK, Adhikary A, Jana K, Ray M. Induction of mitochondrial apoptotic pathway in triple negative breast carcinoma cells by methylglyoxal via generation of reactive oxygen species. Mol Carcinog 2017; 56:2086-2103. [PMID: 28418078 DOI: 10.1002/mc.22665] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/14/2017] [Accepted: 04/13/2017] [Indexed: 12/21/2022]
Abstract
Triple negative breast cancer (TNBC) tends to form aggressive tumors associated with high mortality and morbidity which urge the need for development of new therapeutic strategies. Recently, the normal metabolite Methylglyoxal (MG) has been documented for its anti-proliferative activity against human breast cancer. However, the mode of action of MG against TNBC remains open to question. In our study, we investigated the anticancer activity of MG in MDA MB 231 and 4T1 TNBC cell lines and elucidated the underlying mechanisms. MG dose-dependently caused cell death, induced apoptosis, and generated ROS in both the TNBC cell lines. Furthermore, such effects were attenuated in presence of ROS scavenger N-Acetyl cysteine. MG triggered mitochondrial cytochrome c release in the cytosol and up-regulated Bax while down-regulated anti-apoptotic protein Bcl-2. Additionally, MG treatment down-regulated phospho-akt and inhibited the nuclear translocation of the p65 subunit of NF-κB. MG exhibited a tumor suppressive effect in BALB/c mouse 4T1 breast tumor model as well. The cytotoxic effect was studied using MTT assay. Apoptosis, ROS generation, and mitochondrial dysfunction was evaluated by flow cytometry as well as fluorescence microscopy. Western blot assay was performed to analyze proteins responsible for apoptosis. This study demonstrated MG as a potent anticancer agent against TNBC both in vitro and in vivo. The findings will furnish fresh insights into the treatment of this subgroup of breast cancer.
Collapse
Affiliation(s)
- Anirban Roy
- Department of Biophysics, Bose Institute, Kolkata, West Bengal, India
| | - Manisha Ahir
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, West Bengal, India
| | - Saurav Bhattacharya
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, West Bengal, India
| | | | - Arghya Adhikary
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, West Bengal, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Manju Ray
- Department of Biophysics, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
25
|
Matafome P, Rodrigues T, Sena C, Seiça R. Methylglyoxal in Metabolic Disorders: Facts, Myths, and Promises. Med Res Rev 2017; 37:368-403. [PMID: 27636890 DOI: 10.1002/med.21410] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/07/2016] [Accepted: 08/12/2016] [Indexed: 08/26/2024]
Abstract
Glucose and fructose metabolism originates the highly reactive byproduct methylglyoxal (MG), which is a strong precursor of advanced glycation end products (AGE). The MG has been implicated in classical diabetic complications such as retinopathy, nephropathy, and neuropathy, but has also been recently associated with cardiovascular diseases and central nervous system disorders such as cerebrovascular diseases and dementia. Recent studies even suggested its involvement in insulin resistance and beta-cell dysfunction, contributing to the early development of type 2 diabetes and creating a vicious circle between glycation and hyperglycemia. Despite several drugs and natural compounds have been identified in the last years in order to scavenge MG and inhibit AGE formation, we are still far from having an effective strategy to prevent MG-induced mechanisms. This review summarizes the endogenous and exogenous sources of MG, also addressing the current controversy about the importance of exogenous MG sources. The mechanisms by which MG changes cell behavior and its involvement in type 2 diabetes development and complications and the pathophysiological implication are also summarized. Particular emphasis will be given to pathophysiological relevance of studies using higher MG doses, which may have produced biased results. Finally, we also overview the current knowledge about detoxification strategies, including modulation of endogenous enzymatic systems and exogenous compounds able to inhibit MG effects on biological systems.
Collapse
Affiliation(s)
- Paulo Matafome
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
- Department of Complementary Sciences, Coimbra Health School (ESTeSC), Instituto Politécnico de Coimbra, 3045-601, Coimbra, Portugal
| | - Tiago Rodrigues
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Cristina Sena
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Raquel Seiça
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| |
Collapse
|
26
|
Paul-Samojedny M, Łasut B, Pudełko A, Fila-Daniłow A, Kowalczyk M, Suchanek-Raif R, Zieliński M, Borkowska P, Kowalski J. Methylglyoxal (MGO) inhibits proliferation and induces cell death of human glioblastoma multiforme T98G and U87MG cells. Biomed Pharmacother 2016; 80:236-243. [DOI: 10.1016/j.biopha.2016.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/18/2016] [Accepted: 03/18/2016] [Indexed: 12/17/2022] Open
|
27
|
Falone S, Santini S, di Loreto S, Cordone V, Grannonico M, Cesare P, Cacchio M, Amicarelli F. Improved Mitochondrial and Methylglyoxal-Related Metabolisms Support Hyperproliferation Induced by 50 Hz Magnetic Field in Neuroblastoma Cells. J Cell Physiol 2016; 231:2014-25. [PMID: 26757151 DOI: 10.1002/jcp.25310] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/08/2016] [Indexed: 12/27/2022]
Abstract
Extremely low frequency magnetic fields (ELF-MF) are common environmental agents that are suspected to promote later stages of tumorigenesis, especially in brain-derived malignancies. Even though ELF magnetic fields have been previously linked to increased proliferation in neuroblastoma cells, no previous work has studied whether ELF-MF exposure may change key biomolecular features, such as anti-glycative defence and energy re-programming, both of which are currently considered as crucial factors involved in the phenotype and progression of many malignancies. Our study investigated whether the hyperproliferation that is induced in SH-SY5Y human neuroblastoma cells by a 50 Hz, 1 mT ELF magnetic field is supported by an improved defense towards methylglyoxal (MG), which is an endogenous cancer-static and glycating α-oxoaldehyde, and by rewiring of energy metabolism. Our findings show that not only the ELF magnetic field interfered with the biology of neuron-derived malignant cells, by de-differentiating further the cellular phenotype and by increasing the proliferative activity, but also triggered cytoprotective mechanisms through the enhancement of the defense against MG, along with a more efficient management of metabolic energy, presumably to support the rapid cell outgrowth. Intriguingly, we also revealed that the MF-induced bioeffects took place after an initial imbalance of the cellular homeostasis, which most likely created a transient unstable milieu. The biochemical pathways and molecular targets revealed in this research could be exploited for future approaches aimed at limiting or suppressing the deleterious effects of ELF magnetic fields. J. Cell. Physiol. 231: 2014-2025, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Silvano Santini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Silvia di Loreto
- Institute of Translational Pharmacology (IFT)-CNR, L'Aquila, Italy
| | - Valeria Cordone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Marta Grannonico
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Patrizia Cesare
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Marisa Cacchio
- Department of Biomedical Sciences, University "G. d'Annunzio", Via dei Vestini, Chieti Scalo (CH), Italy
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Institute of Translational Pharmacology (IFT)-CNR, L'Aquila, Italy
| |
Collapse
|
28
|
de Oliveira MR, Ferreira GC, Schuck PF, Dal Bosco SM. Role for the PI3K/Akt/Nrf2 signaling pathway in the protective effects of carnosic acid against methylglyoxal-induced neurotoxicity in SH-SY5Y neuroblastoma cells. Chem Biol Interact 2015; 242:396-406. [DOI: 10.1016/j.cbi.2015.11.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/07/2015] [Accepted: 11/04/2015] [Indexed: 02/07/2023]
|
29
|
Dornadula S, Elango B, Balashanmugam P, Palanisamy R, Kunka Mohanram R. Pathophysiological Insights of Methylglyoxal Induced Type-2 Diabetes. Chem Res Toxicol 2015; 28:1666-74. [DOI: 10.1021/acs.chemrestox.5b00171] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sireesh Dornadula
- SRM
Research Institute, SRM University, Kattankulathur-603 203, Tamilnadu, India
| | | | | | - Rajaguru Palanisamy
- Department
of Biotechnology, Anna University-BIT Campus, Tiruchirappalli-620 024, Tamilnadu, India
| | | |
Collapse
|
30
|
Sohn E, Kim J, Kim CS, Jo K, Kim JS. Extract of Rhizoma Polygonum cuspidatum reduces early renal podocyte injury in streptozotocin‑induced diabetic rats and its active compound emodin inhibits methylglyoxal‑mediated glycation of proteins. Mol Med Rep 2015; 12:5837-45. [PMID: 26299942 PMCID: PMC4581740 DOI: 10.3892/mmr.2015.4214] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 07/23/2015] [Indexed: 02/01/2023] Open
Abstract
Podocyte injury contributes to renal damage and, eventually, to the occurrence of proteinuria in diabetic nephropathy. The aim of the present study was to investigate the effect of an ethanol extract from Rhizoma Polygonum cuspidatum (P. cuspidatum) on proteinuria and podocyte injury, and elucidate the underlying mechanism for streptozotocin (STZ)-induced diabetic nephropathy. The protective effects of P. cuspidatum extract (PCE) on renal podocytes in STZ-induced diabetic rats were also investigated. PCE (100 or 350 mg/kg/day) was administered to STZ-induced diabetic rats for 16 weeks, and blood glucose levels, body weight and proteinuria were measured. A double labeling technique with the terminal deoxynucleotidyl transferase dUTP nick end labeling assay was performed and synaptopodin expression was observed. In addition, cleaved caspase-3, methylglyoxal (MGO) and 8-hydroxydeoxyguanosine (8-OHdG) expression levels were measured. STZ-induced diabetic rats developed hyperglycemia and proteinuria. Increased apoptosis of the podocytes and increased cleaved caspase-3, MGO and 8-OHdG expression levels, as well as decreased synaptopodin expression were detected in the glomeruli of STZ-induced diabetic rats. However, treatment with PCE for 16 weeks restored protein levels to normal, and reduced podocyte loss and apoptosis. Levels of caspase-3 and MGO expression, as well as oxidative stress were ameliorated by PCE treatment. In addition, emodin, a biologically active ingredient of PCE, exerted an MGO scavenging effect and inhibited MGO-derived advanced glycation end-product formation. These findings indicate that PCE may be administered to prevent proteinuria and podocyte loss in STZ-induced diabetic rats partly by inhibiting podocyte apoptosis and cleaved caspase-3 expression, and by restoring the balance of oxidative stress and MGO expression.
Collapse
Affiliation(s)
- Eunjin Sohn
- Korean Medicine Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 305‑811, Republic of Korea
| | - Junghyun Kim
- Korean Medicine Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 305‑811, Republic of Korea
| | - Chan Sik Kim
- Korean Medicine Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 305‑811, Republic of Korea
| | - Kyuhyung Jo
- Korean Medicine Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 305‑811, Republic of Korea
| | - Jin Sook Kim
- Korean Medicine Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 305‑811, Republic of Korea
| |
Collapse
|
31
|
The temporal and spatial dynamics of glyoxalase I following excitoxicity and brain ischaemia. Biochem Soc Trans 2015; 42:534-7. [PMID: 24646274 DOI: 10.1042/bst20140022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MG (methylglyoxal) is an inevitable metabolite derived from glycolysis leading to protein modification, mitochondrial dysfunction and cell death. The ubiquitous glyoxalase system detoxifies MG under GSH consumption by mean of Glo1 (glyoxalase I) as the rate-limiting enzyme. Neurons are highly vulnerable to MG, whereas astrocytes seem less susceptible due to their highly expressed glyoxalases. In neurodegenerative diseases, MG and Glo1 were found to be pivotal players in chronic CNS (central nervous system) diseases. Comparable results obtained upon MG treatment and NMDA (N-methyl-D-aspartate) receptor activation provided evidence of a possible link. Additional evidence was presented by alterations in Glo1 expression upon stimulation of excitotoxicity as an event in the aftermath of brain ischaemia. Glo1 expression was remarkably changed following ischaemia, and beneficial effects were found after exogenous application of Tat (transactivator of transcription)-Glo1. In summary, there are strong indications that Glo1 seems to be a suitable target to modulate the consequences of acute neuronal injury.
Collapse
|
32
|
Cummings KJ, Kreiss K. Occupational and environmental bronchiolar disorders. Semin Respir Crit Care Med 2015; 36:366-78. [PMID: 26024345 DOI: 10.1055/s-0035-1549452] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Occupational and environmental causes of bronchiolar disorders are recognized on the basis of case reports, case series, and, less commonly, epidemiologic investigations. Pathology may be limited to the bronchioles or also involve other components of the respiratory tract, including the alveoli. A range of clinical, functional, and radiographic findings, including symptomatic disease lacking abnormalities on noninvasive testing, poses a diagnostic challenge and highlights the value of surgical biopsy. Disease clusters in workplaces and communities have identified new etiologies, drawn attention to indolent disease that may otherwise have been categorized as idiopathic, and expanded the spectrum of histopathologic responses to an exposure. More sensitive noninvasive diagnostic tools, evidence-based therapies, and ongoing epidemiologic investigation of at-risk populations are needed to identify, treat, and prevent exposure-related bronchiolar disorders.
Collapse
Affiliation(s)
- Kristin J Cummings
- Division of Respiratory Disease Studies, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Kathleen Kreiss
- Division of Respiratory Disease Studies, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| |
Collapse
|
33
|
Angeloni C, Malaguti M, Rizzo B, Barbalace MC, Fabbri D, Hrelia S. Neuroprotective effect of sulforaphane against methylglyoxal cytotoxicity. Chem Res Toxicol 2015; 28:1234-45. [PMID: 25933243 DOI: 10.1021/acs.chemrestox.5b00067] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glycation, an endogenous process that leads to the production of advanced glycation end products (AGEs), plays a role in the etiopathogenesis of different neurodegenerative diseases, such as Alzheimer's disease (AD). Methylglyoxal is the most potent precursor of AGEs, and high levels of methylglyoxal have been found in the cerebrospinal fluid of AD patients. Methylglyoxal may contribute to AD both inducing extensive protein cross-linking and mediating oxidative stress. The aim of this study was to investigate the role of sulforaphane, an isothiocyanate found in cruciferous vegetables, in counteracting methylglyoxal-induced damage in SH-SY5Y neuroblastoma cells. The data demonstrated that sulforaphane protects cells against glycative damage by inhibiting activation of the caspase-3 enzyme, reducing the phosphorylation of MAPK signaling pathways (ERK1/2, JNK, and p38), reducing oxidative stress, and increasing intracellular glutathione levels. For the first time, we demonstrate that sulforaphane enhances the methylglyoxal detoxifying system, increasing the expression and activity of glyoxalase 1. Sulforaphane modulated brain-derived neurotrophic factor and its pathway, whose dysregulation is related to AD development. Moreover, sulforaphane was able to revert the reduction of glucose uptake caused by methylglyoxal. In conclusion, sulforaphane demonstrates pleiotropic behavior thanks to its ability to act on different cellular targets, suggesting a potential role in preventing/counteracting multifactorial neurodegenerative diseases such as Alzheimer's.
Collapse
Affiliation(s)
- Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Benedetta Rizzo
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | | | - Daniele Fabbri
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
34
|
Cardoso S, Carvalho C, Marinho R, Simões A, Sena CM, Matafome P, Santos MS, Seiça RM, Moreira PI. Effects of methylglyoxal and pyridoxamine in rat brain mitochondria bioenergetics and oxidative status. J Bioenerg Biomembr 2014; 46:347-355. [PMID: 24831520 DOI: 10.1007/s10863-014-9551-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/02/2014] [Indexed: 02/02/2023]
Abstract
Advanced glycation end products (AGEs) and methylglyoxal (MG), an important intermediate in AGEs synthesis, are thought to contribute to protein aging and to the pathogenesis of age-and diabetes-associated complications. This study was intended to investigate brain mitochondria bioenergetics and oxidative status of rats previously exposed to chronic treatment with MG and/or with pyridoxamine (PM), a glycation inhibitor. Brain mitochondrial fractions were obtained and several parameters were analyzed: respiratory chain [states 3 and 4 of respiration, respiratory control ratio (RCR), and ADP/O index] and phosphorylation system [transmembrane potential (ΔΨm), ADP-induced depolarization, repolarization lag phase, and ATP levels]; hydrogen peroxide (H2O2) production levels, mitochondrial aconitase activity, and malondialdehyde levels as well as non-enzymatic antioxidant defenses (vitamin E and glutathione levels) and enzymatic antioxidant defenses (glutathione disulfide reductase (GR), glutathione peroxidase (GPx), and manganese superoxide dismutase (MnSOD) activities). MG treatment induced a statistical significant decrease in RCR, aconitase and GR activities, and an increase in H2O2 production levels. The administration of PM did not counteract MG-induced effects and caused a significant decrease in ΔΨm. In mitochondria from control animals, PM caused an adaptive mechanism characterized by a decrease in aconitase and GR activities as well as an increase in both α-tocopherol levels and GPx and MnSOD activities. Altogether our results show that high levels of MG promote brain mitochondrial impairment and PM is not able to reverse MG-induced effects.
Collapse
Affiliation(s)
- Susana Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Role of methylglyoxal in Alzheimer's disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:238485. [PMID: 24734229 PMCID: PMC3966409 DOI: 10.1155/2014/238485] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/28/2014] [Accepted: 01/30/2014] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease is the most common and lethal neurodegenerative disorder. The major hallmarks of Alzheimer's disease are extracellular aggregation of amyloid β peptides and, the presence of intracellular neurofibrillary tangles formed by precipitation/aggregation of hyperphosphorylated tau protein. The etiology of Alzheimer's disease is multifactorial and a full understanding of its pathogenesis remains elusive. Some years ago, it has been suggested that glycation may contribute to both extensive protein cross-linking and oxidative stress in Alzheimer's disease. Glycation is an endogenous process that leads to the production of a class of compounds known as advanced glycation end products (AGEs). Interestingly, increased levels of AGEs have been observed in brains of Alzheimer's disease patients. Methylglyoxal, a reactive intermediate of cellular metabolism, is the most potent precursor of AGEs and is strictly correlated with an increase of oxidative stress in Alzheimer's disease. Many studies are showing that methylglyoxal and methylglyoxal-derived AGEs play a key role in the etiopathogenesis of Alzheimer's disease.
Collapse
|
36
|
Hassan W, Silva CEB, Mohammadzai IU, da Rocha JBT, Landeira-Fernandez J. Association of oxidative stress to the genesis of anxiety: implications for possible therapeutic interventions. Curr Neuropharmacol 2014; 12:120-39. [PMID: 24669207 PMCID: PMC3964744 DOI: 10.2174/1570159x11666131120232135] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 06/16/2013] [Accepted: 11/02/2013] [Indexed: 12/27/2022] Open
Abstract
Oxidative stress caused by reactive species, including reactive oxygen species, reactive nitrogen species, and unbound, adventitious metal ions (e.g., iron [Fe] and copper [Cu]), is an underlying cause of various neurodegenerative diseases. These reactive species are an inevitable by-product of cellular respiration or other metabolic processes that may cause the oxidation of lipids, nucleic acids, and proteins. Oxidative stress has recently been implicated in depression and anxiety-related disorders. Furthermore, the manifestation of anxiety in numerous psychiatric disorders, such as generalized anxiety disorder, depressive disorder, panic disorder, phobia, obsessive-compulsive disorder, and posttraumatic stress disorder, highlights the importance of studying the underlying biology of these disorders to gain a better understanding of the disease and to identify common biomarkers for these disorders. Most recently, the expression of glutathione reductase 1 and glyoxalase 1, which are genes involved in antioxidative metabolism, were reported to be correlated with anxiety-related phenotypes. This review focuses on direct and indirect evidence of the potential involvement of oxidative stress in the genesis of anxiety and discusses different opinions that exist in this field. Antioxidant therapeutic strategies are also discussed, highlighting the importance of oxidative stress in the etiology, incidence, progression, and prevention of psychiatric disorders.
Collapse
Affiliation(s)
- Waseem Hassan
- Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | | | - Imdad Ullah Mohammadzai
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Joao Batista Teixeira da Rocha
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | |
Collapse
|
37
|
Temporal dynamics of glyoxalase 1 in secondary neuronal injury. PLoS One 2014; 9:e87364. [PMID: 24498315 PMCID: PMC3911945 DOI: 10.1371/journal.pone.0087364] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 12/21/2013] [Indexed: 12/11/2022] Open
Abstract
Background Enhanced glycolysis leads to elevated levels of the toxic metabolite methylglyoxal which contributes to loss of protein-function, metabolic imbalance and cell death. Neurons were shown being highly susceptible to methylglyoxal toxicity. Glyoxalase 1 as an ubiquitous enzyme reflects the main detoxifying enzyme of methylglyoxal and underlies changes during aging and neurodegeneration. However, little is known about dynamics of Glyoxalase 1 following neuronal lesions so far. Methods To determine a possible involvement of Glyoxalase 1 in acute brain injury, we analysed the temporal dynamics of Glyoxalase 1 distribution and expression by immunohistochemistry and Western Blot analysis. Organotypic hippocampal slice cultures were excitotoxically (N-methyl-D-aspartate, 50 µM for 4 hours) lesioned in vitro (5 minutes to 72 hours). Additionally, permanent middle cerebral artery occlusion was performed (75 minutes to 60 days). Results We found (i) a predominant localisation of Glyoxalase 1 in endothelial cells in non-lesioned brains (ii) a time-dependent up-regulation and re-distribution of Glyoxalase 1 in neurons and astrocytes and (iii) a strong increase in Glyoxalase 1 dimers after neuronal injury (24 hours to 72 hours) when compared to monomers of the protein. Conclusions The high dynamics of Glyoxalase 1 expression and distribution following neuronal injury may indicate a novel role of Glyoxalase 1.
Collapse
|
38
|
Watanabe K, Okada K, Fukabori R, Hayashi Y, Asahi K, Terawaki H, Kobayashi K, Watanabe T, Nakayama M. Methylglyoxal (MG) and cerebro-renal interaction: does long-term orally administered MG cause cognitive impairment in normal Sprague-Dawley rats? Toxins (Basel) 2014; 6:254-69. [PMID: 24402234 PMCID: PMC3920260 DOI: 10.3390/toxins6010254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/24/2013] [Accepted: 12/31/2013] [Indexed: 11/23/2022] Open
Abstract
Methylglyoxal (MG), one of the uremic toxins, is a highly reactive alpha-dicarbonyl compound. Recent clinical studies have demonstrated the close associations of cognitive impairment (CI) with plasma MG levels and presence of kidney dysfunction. Therefore, the present study aims to examine whether MG is a direct causative substance for CI development. Eight-week-old male Sprague-Dawley (SD) rats were divided into two groups: control (n = 9) and MG group (n = 10; 0.5% MG in drinking water), and fed a normal diet for 12 months. Cognitive function was evaluated by two behavioral tests (object exploration test and radial-arm maze test) in early (4–6 months of age) and late phase (7–12 months of age). Serum MG was significantly elevated in the MG group (495.8 ± 38.1 vs. 244.8 ± 28.2 nM; p < 0.001) at the end of study. The groups did not differ in cognitive function during the course of study. No time-course differences were found in oxidative stress markers between the two groups, while, antioxidants such as glutathione peroxidase and superoxide dismutase activities were significantly increased in the MG group compared to the control. Long-term MG administration to rats with normal kidney function did not cause CI. A counter-balanced activation of the systemic anti-oxidant system may offset the toxicity of MG in this model. Pathogenetic significance of MG for CI requires further investigation.
Collapse
Affiliation(s)
- Kimio Watanabe
- Department of Nephrology, Hypertension, Diabetology, Endocrinology and Metabolism, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan.
| | - Kana Okada
- Department of Nephrology, Hypertension, Diabetology, Endocrinology and Metabolism, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan.
| | - Ryoji Fukabori
- Department of Nephrology, Hypertension, Diabetology, Endocrinology and Metabolism, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan.
| | - Yoshimitsu Hayashi
- Department of Nephrology, Hypertension, Diabetology, Endocrinology and Metabolism, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan.
| | - Koichi Asahi
- Department of Nephrology, Hypertension, Diabetology, Endocrinology and Metabolism, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan.
| | - Hiroyuki Terawaki
- Department of Nephrology, Hypertension, Diabetology, Endocrinology and Metabolism, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan.
| | - Kazuto Kobayashi
- Department of Nephrology, Hypertension, Diabetology, Endocrinology and Metabolism, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan.
| | - Tsuyoshi Watanabe
- Department of Nephrology, Hypertension, Diabetology, Endocrinology and Metabolism, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan.
| | - Masaaki Nakayama
- Department of Nephrology, Hypertension, Diabetology, Endocrinology and Metabolism, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan.
| |
Collapse
|
39
|
Suh KS, Choi EM, Rhee SY, Kim YS. Methylglyoxal induces oxidative stress and mitochondrial dysfunction in osteoblastic MC3T3-E1 cells. Free Radic Res 2013; 48:206-17. [PMID: 24164256 DOI: 10.3109/10715762.2013.859387] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Methylglyoxal is a reactive dicarbonyl compound produced by glycolytic processing and identified as a precursor of advanced glycation end products. The elevated methylglyoxal levels in patients with diabetes are believed to contribute to diabetic complications, including bone defects. The objective of this study was to evaluate the effect of methylglyoxal on the function of osteoblastic MC3T3-E1 cells. The data indicated that methylglyoxal decreased osteoblast differentiation and induced osteoblast cytotoxicity. Pretreatment of MC3T3-E1 cells with aminoguanidine (a carbonyl scavenger), Trolox (an antioxidant), and cyclosporin A (a blocker of the mitochondrial permeability transition pore) prevented methylglyoxal-induced cytotoxicity in MC3T3-E1 cells. However, BAPTA/AM (an intracellular Ca(2+) chelator) and dantrolene (an inhibitor of endoplasmic reticulum Ca(2+) release) did not reverse the cytotoxic effect of methylglyoxal. Methylglyoxal increased the formation of intracellular reactive oxygen species, mitochondrial superoxide, and cardiolipin peroxidation in osteoblastic MC3T3-E1 cells. Methylglyoxal also decreased the mitochondrial membrane potential and intracellular ATP and nitric oxide levels, suggesting that carbonyl stress-induced loss of mitochondrial integrity contributes to the cytotoxicity of methylglyoxal. Furthermore, the results demonstrated that methylglyoxal induced protein adduct formation, inactivation of glyoxalase I, and activation of glyoxalase II. Aminoguanidine reversed all aforementioned effects of methylglyoxal. Taken together, these data support the notion that high methylglyoxal concentrations have detrimental effects on osteoblasts through a mechanism involving oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- K S Suh
- Research Institute of Endocrinology, Kyung Hee University Hospital , Seoul , Republic of Korea
| | | | | | | |
Collapse
|
40
|
Long-lasting changes in DNA methylation following short-term hypoxic exposure in primary hippocampal neuronal cultures. PLoS One 2013; 8:e77859. [PMID: 24205000 PMCID: PMC3808424 DOI: 10.1371/journal.pone.0077859] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 09/04/2013] [Indexed: 12/14/2022] Open
Abstract
While the effects of hypoxia on gene expression have been investigated in the CNS to some extent, we currently do not know what role epigenetics plays in the transcription of many genes during such hypoxic stress. To start understanding the role of epigenetic changes during hypoxia, we investigated the long-term effect of hypoxia on gene expression and DNA methylation in hippocampal neuronal cells. Primary murine hippocampal neuronal cells were cultured for 7 days. Hypoxic stress of 1% O2, 5% CO2 for 24 hours was applied on Day 3, conditions we found to maximize cellular hypoxic stress response without inducing cell death. Cells were returned to normoxia for 4 days following the period of hypoxic stress. On Day 7, Methyl-Sensitive Cut Counting (MSCC) was used to identify a genome-wide methylation profile of the hippocampal cell lines to assess methylation changes resulting from hypoxia. RNA-Seq was also done on Day 7 to analyze changes in gene transcription. Phenotypic analysis showed that neuronal processes were significantly shorter after 1 day of hypoxia, but there was a catch-up growth of these processes after return to normoxia. Transcriptome profiling using RNA-Seq revealed 369 differentially expressed genes with 225 being upregulated, many of which form networks shown to affect CNS development and function. Importantly, the expression level of 59 genes could be correlated to the changes in DNA methylation in their promoter regions. CpG islands, in particular, had a strong tendency to remain hypomethylated long after hypoxic stress was removed. From this study, we conclude that short-term, sub-lethal hypoxia results in long-lasting changes to genome wide DNA methylation status and that some of these changes can be highly correlated with transcriptional modulation in a number of genes involved in functional pathways that have been previously implicated in neural growth and development.
Collapse
|
41
|
Hanssen NM, Wouters K, Huijberts MS, Gijbels MJ, Sluimer JC, Scheijen JL, Heeneman S, Biessen EA, Daemen MJ, Brownlee M, de Kleijn DP, Stehouwer CD, Pasterkamp G, Schalkwijk CG. Higher levels of advanced glycation endproducts in human carotid atherosclerotic plaques are associated with a rupture-prone phenotype. Eur Heart J 2013; 35:1137-46. [DOI: 10.1093/eurheartj/eht402] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
42
|
Abstract
Methylglyoxal (MG) is a highly reactive compound derived mainly from glucose and fructose metabolism. This metabolite has been implicated in diabetic complications as it is a strong AGE precursor. Furthermore, recent studies suggested a role for MG in insulin resistance and beta-cell dysfunction. Although several drugs have been developed in the recent years to scavenge MG and inhibit AGE formation, we are still far from having an effective strategy to prevent MG-induced mechanisms. This review summarizes the mechanisms of MG formation, detoxification, and action. Furthermore, we review the current knowledge about its implication on the pathophysiology and complications of obesity and diabetes.
Collapse
Affiliation(s)
- Paulo Matafome
- Laboratory of Physiology, Institute of Biomedical Research on Light and Image (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| | | | | |
Collapse
|
43
|
Tatone C, Amicarelli F. The aging ovary--the poor granulosa cells. Fertil Steril 2013; 99:12-17. [PMID: 23273984 DOI: 10.1016/j.fertnstert.2012.11.029] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 11/17/2012] [Accepted: 11/19/2012] [Indexed: 11/24/2022]
Abstract
The development of a competent oocyte intimately depends on the maintenance of energetic homeostasis in the ovarian and follicular microenvironment. On this basis, it is very likely that the oocyte ages as the ovary ages. Starting from the molecular evidence for energy perturbations in the whole ovary, we review current knowledge on the involvement of endogenous highly reactive metabolites in follicle aging. The first part provides an update of recent findings that confirm the key role of oxidative stress in aged granulosa cells. The second part focuses on studies providing evidence for the implication of advanced glycation end product (AGE) in aging reproductive dysfunction. With their prolonged half-life and ability to act as signaling molecules AGEs may gradually accumulate in the ovary and potentiate the wide spatiotemporal spread of oxidative stress. Clinical evidence for this view supports the hypothesis that AGE is a good candidate as a predictive marker and therapeutic target in new strategies for improving reproductive counseling in aging women.
Collapse
Affiliation(s)
- Carla Tatone
- Department of Life, Health, and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Fernanda Amicarelli
- Department of Life, Health, and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
44
|
Antognelli C, Mezzasoma L, Fettucciari K, Talesa VN. A novel mechanism of methylglyoxal cytotoxicity in prostate cancer cells. Int J Biochem Cell Biol 2013; 45:836-44. [DOI: 10.1016/j.biocel.2013.01.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 12/02/2012] [Accepted: 01/08/2013] [Indexed: 11/28/2022]
|
45
|
Hubbs AF, Sargent LM, Porter DW, Sager TM, Chen BT, Frazer DG, Castranova V, Sriram K, Nurkiewicz TR, Reynolds SH, Battelli LA, Schwegler-Berry D, McKinney W, Fluharty KL, Mercer RR. Nanotechnology: toxicologic pathology. Toxicol Pathol 2013; 41:395-409. [PMID: 23389777 DOI: 10.1177/0192623312467403] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanotechnology involves technology, science, and engineering in dimensions less than 100 nm. A virtually infinite number of potential nanoscale products can be produced from many different molecules and their combinations. The exponentially increasing number of nanoscale products will solve critical needs in engineering, science, and medicine. However, the virtually infinite number of potential nanotechnology products is a challenge for toxicologic pathologists. Because of their size, nanoparticulates can have therapeutic and toxic effects distinct from micron-sized particulates of the same composition. In the nanoscale, distinct intercellular and intracellular translocation pathways may provide a different distribution than that obtained by micron-sized particulates. Nanoparticulates interact with subcellular structures including microtubules, actin filaments, centrosomes, and chromatin; interactions that may be facilitated in the nanoscale. Features that distinguish nanoparticulates from fine particulates include increased surface area per unit mass and quantum effects. In addition, some nanotechnology products, including the fullerenes, have a novel and reactive surface. Augmented microscopic procedures including enhanced dark-field imaging, immunofluorescence, field-emission scanning electron microscopy, transmission electron microscopy, and confocal microscopy are useful when evaluating nanoparticulate toxicologic pathology. Thus, the pathology assessment is facilitated by understanding the unique features at the nanoscale and the tools that can assist in evaluating nanotoxicology studies.
Collapse
Affiliation(s)
- Ann F Hubbs
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hansen F, de Souza DF, Silveira SDL, Hoefel AL, Fontoura JB, Tramontina AC, Bobermin LD, Leite MC, Perry MLS, Gonçalves CA. Methylglyoxal alters glucose metabolism and increases AGEs content in C6 glioma cells. Metab Brain Dis 2012; 27:531-9. [PMID: 22802013 DOI: 10.1007/s11011-012-9329-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 07/04/2012] [Indexed: 12/14/2022]
Abstract
Methylglyoxal is a dicarbonyl compound that is physiologically produced by enzymatic and non-enzymatic reactions. It can lead to cytotoxicity, which is mainly related to Advanced Glycation End Products (AGEs) formation. Methylglyoxal and AGEs are involved in the pathogenesis of Neurodegenerative Diseases (ND) and, in these situations, can cause the impairment of energetic metabolism. Astroglial cells play critical roles in brain metabolism and the appropriate functioning of astrocytes is essential for the survival and function of neurons. However, there are only a few studies evaluating the effect of methylglyoxal on astroglial cells. The aim of this study was to evaluate the effect of methylglyoxal exposure, over short (1 and 3 h) and long term (24 h) periods, on glucose, glycine and lactate metabolism in C6 glioma cells, as well as investigate the glyoxalase system and AGEs formation. Glucose uptake and glucose oxidation to CO(2) increased in 1 h and the conversion of glucose to lipids increased at 3 h. In addition, glycine oxidation to CO(2) and conversion of glycine to lipids increased at 1 h, whereas the incorporation of glycine in proteins decreased at 1 and 3 h. Methylglyoxal decreased glyoxalase I and II activities and increased AGEs content within 24 h. Lactate oxidation and lactate levels were not modified by methylglyoxal exposure. These data provide evidence that methylglyoxal may impair glucose metabolism and can affect glyoxalase activity. In periods of increased methylglyoxal exposure, such alterations could be exacerbated, leading to further increases in intracellular methylglyoxal and AGEs, and therefore triggering and/or worsening ND.
Collapse
Affiliation(s)
- Fernanda Hansen
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Falone S, D'Alessandro A, Mirabilio A, Cacchio M, Di Ilio C, Di Loreto S, Amicarelli F. Late-onset running biphasically improves redox balance, energy- and methylglyoxal-related status, as well as SIRT1 expression in mouse hippocampus. PLoS One 2012; 7:e48334. [PMID: 23110231 PMCID: PMC3482192 DOI: 10.1371/journal.pone.0048334] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/24/2012] [Indexed: 01/20/2023] Open
Abstract
Despite the active research in this field, molecular mechanisms underlying exercise-induced beneficial effects on brain physiology and functions are still matter of debate, especially with regard to biological processes activated by regular exercise affecting the onset and progression of hippocampal aging in individuals unfamiliar with habitual physical activity. Since such responses seem to be mediated by changes in antioxidative, antiglycative and metabolic status, a possible exercise-induced coordinated response involving redox, methylglyoxal- and sirtuin-related molecular networks may be hypothesized. In this study, hippocampi of CD1 mice undergoing the transition from mature to middle age were analyzed for redox-related profile, oxidative and methylglyoxal-dependent damage patterns, energy metabolism, sirtuin1 and glyoxalase1 expression after a 2- or 4-mo treadmill running program. Our findings suggested that the 4-mo regular running lowered the chance of dicarbonyl and oxidative stress, activated mitochondrial catabolism and preserved sirtuin1-related neuroprotection. Surprisingly, the same cellular pathways were negatively affected by the first 2 months of exercise, thus showing an interesting biphasic response. In conclusion, the duration of exercise caused a profound shift in the response to regular running within the rodent hippocampus in a time-dependent fashion. This research revealed important details of the interaction between exercise and mammal hippocampus during the transition from mature to middle age, and this might help to develop non-pharmacological approaches aimed at retarding brain senescence, even in individuals unfamiliar with habitual exercise.
Collapse
Affiliation(s)
- Stefano Falone
- Department of Basic and Applied Biology, University of L'Aquila, L'Aquila (AQ), Italy
| | | | - Alessandro Mirabilio
- Department of Basic and Applied Biology, University of L'Aquila, L'Aquila (AQ), Italy
| | - Marisa Cacchio
- Department of Basic and Applied Medical Sciences, University “G. d'Annunzio”, Chieti Scalo (CH), Italy
| | - Carmine Di Ilio
- Department of Biomedical Sciences, University “G. d'Annunzio”, Chieti Scalo (CH), Italy
| | - Silvia Di Loreto
- Institute of Translational Pharmacology (IFT) – National Research Council (CNR), L'Aquila (AQ), Italy
| | - Fernanda Amicarelli
- Department of Basic and Applied Biology, University of L'Aquila, L'Aquila (AQ), Italy
- * E-mail:
| |
Collapse
|
48
|
Jeong WJ, Rho JH, Yoon YG, Yoo SH, Jeong NY, Ryu WY, Ahn HB, Park WC, Rho SH, Yoon HS, Choi YH, Yoo YH. Cytoplasmic and nuclear anti-apoptotic roles of αB-crystallin in retinal pigment epithelial cells. PLoS One 2012; 7:e45754. [PMID: 23049853 PMCID: PMC3458930 DOI: 10.1371/journal.pone.0045754] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/24/2012] [Indexed: 01/13/2023] Open
Abstract
In addition to its well-characterized role in the lens, αB-crystallin performs other functions. Methylglyoxal (MGO) can alter the function of the basement membrane of retinal pigment epithelial (RPE) cells. Thus, if MGO is not efficiently detoxified, it can induce adverse reactions in RPE cells. In this study, we examined the mechanisms underlying the anti-apoptotic activity of αB-crystallin in the human retinal pigment epithelial cell line ARPE-19 following MGO treatment using various assays, including nuclear staining, flow cytometry, DNA electrophoresis, pulse field gel electrophoresis, western blot analysis, confocal microscopy and co-immunoprecipitation assays. To directly assess the role of phosphorylation of αB-crystallin, we used site-directed mutagenesis to convert relevant serine residues to alanine residues. Using these techniques, we demonstrated that MGO induces apoptosis in ARPE-19 cells. Silencing αB-crystallin sensitized ARPE-19 cells to MGO-induced apoptosis, indicating that αB-crystallin protects ARPE-19 cells from MGO-induced apoptosis. Furthermore, we found that αB-crystallin interacts with the caspase subtypes, caspase-2L, -2S, -3, -4, -7, -8, -9 and -12 in untreated control ARPE-19 cells and that MGO treatment caused the dissociation of these caspase subtypes from αB-crystallin; transfection of S19A, S45A or S59A mutants caused the depletion of αB-crystallin from the nuclei of untreated control RPE cells leading to the release of caspase subtypes. Additionally, transfection of these mutants enhanced MGO-induced apoptosis in ARPE-19 cells, indicating that phosphorylation of nuclear αB-crystallin on serine residues 19, 45 and 59 plays a pivotal role in preventing apoptosis in ARPE-19 cells. Taken together, these results suggest that αB-crystallin prevents caspase activation by physically interacting with caspase subtypes in the cytoplasm and nucleus, thereby protecting RPE cells from MGO-induced apoptosis.
Collapse
Affiliation(s)
- Woo Jin Jeong
- Department of Ophthalmology, Dong-A University College of Medicine, Seo-gu, Busan, Republic of Korea
| | - Jee Hyun Rho
- Department of Ophthalmology, Dong-A University College of Medicine, Seo-gu, Busan, Republic of Korea
| | - Young Geol Yoon
- Department of Anatomy and Cell Biology, Dong-A University College of Medicine and Mitochondria Hub Regulation Center, Seo-gu, Busan, Republic of Korea
| | - Seung Hee Yoo
- Department of Anatomy and Cell Biology, Dong-A University College of Medicine and Mitochondria Hub Regulation Center, Seo-gu, Busan, Republic of Korea
| | - Na Young Jeong
- Department of Anatomy and Cell Biology, Dong-A University College of Medicine and Mitochondria Hub Regulation Center, Seo-gu, Busan, Republic of Korea
| | - Won Yeol Ryu
- Department of Ophthalmology, Dong-A University College of Medicine, Seo-gu, Busan, Republic of Korea
| | - Hee Bae Ahn
- Department of Ophthalmology, Dong-A University College of Medicine, Seo-gu, Busan, Republic of Korea
| | - Woo Chan Park
- Department of Ophthalmology, Dong-A University College of Medicine, Seo-gu, Busan, Republic of Korea
| | - Sae Heun Rho
- Department of Ophthalmology, Dong-A University College of Medicine, Seo-gu, Busan, Republic of Korea
| | - Hee Seong Yoon
- Sungmo Eye Hospital, Inc., Haeundae-gu, Busan, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry and Research Institute of Oriental Medicine, Dongeui University College of Oriental Medicine, Busanjin-gu, Busan, Republic of Korea
| | - Young Hyun Yoo
- Department of Anatomy and Cell Biology, Dong-A University College of Medicine and Mitochondria Hub Regulation Center, Seo-gu, Busan, Republic of Korea
- * E-mail:
| |
Collapse
|
49
|
Hubbs AF, Cumpston AM, Goldsmith WT, Battelli LA, Kashon ML, Jackson MC, Frazer DG, Fedan JS, Goravanahally MP, Castranova V, Kreiss K, Willard PA, Friend S, Schwegler-Berry D, Fluharty KL, Sriram K. Respiratory and olfactory cytotoxicity of inhaled 2,3-pentanedione in Sprague-Dawley rats. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:829-44. [PMID: 22894831 DOI: 10.1016/j.ajpath.2012.05.021] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 04/20/2012] [Accepted: 05/22/2012] [Indexed: 10/28/2022]
Abstract
Flavorings-related lung disease is a potentially disabling disease of food industry workers associated with exposure to the α-diketone butter flavoring, diacetyl (2,3-butanedione). To investigate the hypothesis that another α-diketone flavoring, 2,3-pentanedione, would cause airway damage, rats that inhaled air, 2,3-pentanedione (112, 241, 318, or 354 ppm), or diacetyl (240 ppm) for 6 hours were sacrificed the following day. Rats inhaling 2,3-pentanedione developed necrotizing rhinitis, tracheitis, and bronchitis comparable to diacetyl-induced injury. To investigate delayed toxicity, additional rats inhaled 318 (range, 317.9-318.9) ppm 2,3-pentanedione for 6 hours and were sacrificed 0 to 2, 12 to 14, or 18 to 20 hours after exposure. Respiratory epithelial injury in the upper nose involved both apoptosis and necrosis, which progressed through 12 to 14 hours after exposure. Olfactory neuroepithelial injury included loss of olfactory neurons that showed reduced expression of the 2,3-pentanedione-metabolizing enzyme, dicarbonyl/L-xylulose reductase, relative to sustentacular cells. Caspase 3 activation occasionally involved olfactory nerve bundles that synapse in the olfactory bulb (OB). An additional group of rats inhaling 270 ppm 2,3-pentanedione for 6 hours 41 minutes showed increased expression of IL-6 and nitric oxide synthase-2 and decreased expression of vascular endothelial growth factor A in the OB, striatum, hippocampus, and cerebellum using real-time PCR. Claudin-1 expression increased in the OB and striatum. We conclude that 2,3-pentanedione is a respiratory hazard that can also alter gene expression in the brain.
Collapse
Affiliation(s)
- Ann F Hubbs
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Radu BM, Dumitrescu DI, Mustaciosu CC, Radu M. Dual effect of methylglyoxal on the intracellular Ca2+ signaling and neurite outgrowth in mouse sensory neurons. Cell Mol Neurobiol 2012; 32:1047-57. [PMID: 22402835 PMCID: PMC11498478 DOI: 10.1007/s10571-012-9823-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 02/21/2012] [Indexed: 12/18/2022]
Abstract
The formation of advanced glycation end products is one of the major factors involved in diabetic neuropathy, aging, and neurodegenerative diseases. Reactive carbonyl compounds, such as methylglyoxal (MG), play a key role in cross-linking to various proteins in the extracellular matrix, especially in neurons, which have a high rate of oxidative metabolism. The MG effect was tested on dorsal root ganglia primary neurons in cultures from adult male Balb/c mice. Lower MG doses contribute to an increased adherence of neurons on their support and an increased glia proliferation, as proved by MTS assay and bright-field microscopy. Time-lapse fluorescence microscopy by Fura-2 was performed for monitoring the relative fluorescence ratio changes (ΔR/R(0)) upon depolarization and immunofluorescence staining for quantifying the degree of neurites extension. The relative change in fluorescence ratio modifies the amplitude and dispersion depending on the subtype of sensory neurons, the medium-sized neurons are more sensitive to MG treatment when compared to small ones. Low MG concentrations (0-150 μM) increase neuronal viability, excitability, and the capacity of neurite extension, while higher concentrations (250-750 μM) are cytotoxic in a dose-dependent manner. In our opinion, MG could be metabolized by the glyoxalase system inside sensory neurons up to a threshold concentration, afterwards disturbing the cell equilibrium. Our study points out that MG has a dual effect concentration dependent on the neuronal viability, excitability, and neurite outgrowth, but only the excitability changes are soma-sized dependent. In conclusion, our data may partially explain the distinct neuronal modifications in various neurodegenerative pathologies.
Collapse
Affiliation(s)
- Beatrice Mihaela Radu
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Anatomy and Histology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| | - Diana Ionela Dumitrescu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| | - Cosmin Catalin Mustaciosu
- Department of Life and Environmental Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, 077125 Bucharest-Magurele, Romania
| | - Mihai Radu
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Anatomy and Histology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
- Department of Life and Environmental Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, 077125 Bucharest-Magurele, Romania
| |
Collapse
|