1
|
Ibuki FK, Bergamaschi CT, da Silva Pedrosa M, Nogueira FN. Effect of vitamin C and E on oxidative stress and antioxidant system in the salivary glands of STZ-induced diabetic rats. Arch Oral Biol 2020; 116:104765. [PMID: 32470831 DOI: 10.1016/j.archoralbio.2020.104765] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE We examined the effects of vitamin C and E supplementation in the prevention of oxidative stress in the salivary glands of STZ-induced diabetic rats. DESIGN Forty-eight male Wistar rats were divided into six groups (n = 8 in each): control (C), control supplemented with vitamin C (Cvc) and E (Cve), diabetic (D), and diabetic supplemented with vitamin C (Dvc) and E (Dve). Vitamin C (150 mg/kg) and E (300 mg/kg) were daily administered for 21 days. Serum ascorbic acid and α-tocopherol levels were quantified. Glandular levels of hydrogen peroxide (H2O2), superoxide anion (O2-), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), catalase (CAT), malondialdehyde (MDA) and the total antioxidant status (TAS) were estimated. RESULTS Vitamin C and E levels were reduced in D group. Vitamin C decreased the levels of O2- in the salivary gland of diabetic rats. Vitamin E increased the concentration of O2- in PA gland of diabetic animals. In the SM gland of the diabetic group, MDA, SOD, GPx and TAS increased. Dve presented reduced SOD activity and increased GR, GPx, and MDA. Dve increased GPx, Gr and TAS levels. In the PA gland, MDA, SOD, CAT, GPx, GR, and TAS were similar in C and D. TAS, SOD, CAT, GPx, and GR increased in Dvc. Vitamin E supplementation resulted in increased MDA and CAT levels and reduced SOD activity. CONCLUSION In the SM glands of the diabetic rats, vitamin C supplementation improved the antioxidant system, while vitamin E acted as pro-oxidant.
Collapse
Affiliation(s)
- Flavia Kazue Ibuki
- Department of Biomaterials and Oral Biology, Faculdade de Odontologia, Universidade de São Paulo (USP), São Paulo, Brazil.
| | - Cassia T Bergamaschi
- Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - Marlus da Silva Pedrosa
- Department of Biomaterials and Oral Biology, Faculdade de Odontologia, Universidade de São Paulo (USP), São Paulo, Brazil.
| | - Fernando Neves Nogueira
- Department of Biomaterials and Oral Biology, Faculdade de Odontologia, Universidade de São Paulo (USP), São Paulo, Brazil.
| |
Collapse
|
2
|
Ding SS, Sun P, Zhang Z, Liu X, Tian H, Huo YW, Wang LR, Han Y, Xing JP. Moderate Dose of Trolox Preventing the Deleterious Effects of Wi-Fi Radiation on Spermatozoa In vitro through Reduction of Oxidative Stress Damage. Chin Med J (Engl) 2018; 131:402-412. [PMID: 29451144 PMCID: PMC5830824 DOI: 10.4103/0366-6999.225045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: The worsening of semen quality, due to the application of Wi-Fi, can be ameliorated by Vitamin E. This study aimed to demonstrate whether a moderate dose of trolox, a new Vitamin E, inhibits oxidative damage on sperms in vitro after exposure to Wi-Fi radiation. Methods: Each of the twenty qualified semen, gathered from June to October 2014 in eugenics clinic, was separated into four aliquots, including sham, Wi-Fi-exposed, Wi-Fi plus 5 mmol/L trolox, and Wi-Fi plus 10 mmol/L trolox groups. At 0 min, all baseline parameters of the 20 samples were measured in sequence. Reactive oxygen species, glutathione, and superoxide dismutase were evaluated in the four aliquots at 45 and 90 min, as were sperm DNA fragments, sperm mitochondrial potential, relative amplification of sperm mitochondrial DNA, sperm vitality, and progressive and immotility sperm. The parameters were analyzed by one-way analysis of variance and Tukey's posttest. Results: Among Wi-Fi plus 5 mmol/L trolox, Wi-Fi-exposed and Wi-Fi plus 10 mmol/L trolox groups, reactive oxygen species levels (45 min: 3.80 ± 0.41 RLU·10−6·ml−1 vs. 7.50 ± 0.35 RLU·10−6·ml−1 vs. 6.70 ± 0.47 RLU·10−6·ml−1, P < 0.001; 90 min: 5.40 ± 0.21 RLU·10−6·ml−1 vs. 10.10 ± 0.31 RLU·10−6·ml−1 vs. 7.00 ± 0.42 RLU·10−6·ml−1, P < 0.001, respectively), percentages of tail DNA (45 min: 16.8 ± 2.0% vs. 31.9 ± 2.5% vs. 61.3 ± 1.6%, P < 0.001; 90 min: 19.7 ± 1.5% vs. 73.7 ± 1.3% vs. 73.1 ± 1.1%, P < 0.001, respectively), 8-hydroxy-2’-deoxyguanosine (45 min: 51.89 ± 1.46 pg/ml vs. 104.89 ± 2.19 pg/ml vs. 106.11 ± 1.81 pg/ml, P = 0.012; 90 min: 79.96 ± 1.73 pg/ml vs. 141.73 ± 2.90 pg/ml vs. 139.06 ± 2.79 pg/ml; P < 0.001), and percentages of immotility sperm (45 min: 27.7 ± 2.7% vs. 41.7 ± 2.2% vs. 41.7 ± 2.5%; 90 min: 29.9 ± 3.3% vs. 58.9 ± 4.0% vs. 63.1 ± 4.0%; all P < 0.001) were lowest, and glutathione peroxidase (45 min: 60.50 ± 1.54 U/ml vs. 37.09 ± 1.77 U/ml vs. 28.18 ± 1.06 U/ml; 90 min: 44.61 ± 1.23 U/ml vs. 16.86 ± 0.93 U/ml vs. 29.94 ± 1.56 U/ml; all P < 0.001), percentages of head DNA (45 min: 83.2 ± 2.0% vs. 68.2 ± 2.5% vs. 38.8 ± 1.6%; 90 min: 80.3 ± 1.5% vs. 26.3 ± 1.3% vs. 26.9 ± 1.1%; all P < 0.001), percentages of sperm vitality (45 min: 89.5 ± 1.6% vs. 70.7 ± 3.1% vs. 57.7 ± 2.4%; 90 min: 80.8 ± 2.2% vs. 40.4 ± 4.0% vs. 34.7 ± 3.9%; all P < 0.001), and progressive sperm (45 min: 69.3 ± 2.7% vs. 55.8 ± 2.2% vs. 55.4 ± 2.5%; 90 min: 67.2 ± 3.3% vs. 38.2 ± 4.0% vs. 33.9 ± 4.0%; all P < 0.001) were highest in Wi-Fi plus 5 mmol/L trolox group at 45 and 90 min, respectively. Other parameters were not affected, while the sham group maintained the baseline. Conclusion: This study found that 5 mmol/L trolox protected the Wi-Fi-exposed semen in vitro from the damage of electromagnetic radiation-induced oxidative stress.
Collapse
Affiliation(s)
- Shang-Shu Ding
- Department of Urology, School of Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ping Sun
- Department of Urology, School of Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhou Zhang
- Department of Andrology, Shaanxi Maternal and Child Care Service Center, Xi'an, Shaanxi 710061, China
| | - Xiang Liu
- Department of Andrology, Shaanxi Maternal and Child Care Service Center, Xi'an, Shaanxi 710061, China
| | - Hong Tian
- Research Center of Reproduction Medicine, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yong-Wei Huo
- Research Center of Reproduction Medicine, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Li-Rong Wang
- Research Center of Reproduction Medicine, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yan Han
- Department of Biochemistry, Institute of Biochemistry and Molecular Medicine, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jun-Ping Xing
- Department of Urology, School of Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
3
|
Abstract
The hydrophobicity of vitamin E poses transport and metabolic challenges to regulate its bioavailability and to prevent its accumulation in lipid-rich tissues such as adipose tissue, brain, and liver. Water-soluble precursors of vitamin E (α-tocopherol, αT), such as its esters with acetate (αTA), succinate (αTS), or phosphate (αTP), have increased solubility in water and stability against reaction with free radicals, but they are rapidly converted during their uptake into the lipid-soluble vitamin E. Therefore, the bioavailability of these precursors as intact molecules is low; nevertheless, at least for αTS and αTP, the recent research has revealed unique regulatory effects on signal transduction and gene expression and the modulation of cellular events ranging from proliferation, survival/apoptosis, lipid uptake and metabolism, phagocytosis, long term potentiation, cell migration, telomere maintenance, and angiogenesis. Moreover, water-soluble derivatives of vitamin E including some based on αTP are increasingly used as components of nanocarriers for enhanced and targeted delivery of drugs and other molecules (vitamins, including αT and αTP itself, vitamin D3, carnosine, caffeine, docosahexaenoic acid (DHA), insulin) and cofactors such as coenzyme Q10. In this review, the chemical characteristics, transport, metabolic pathways, and molecular mechanisms of action of αTP in cells and tissues are summarized and put into perspective with its possible role in the prevention of a number of diseases.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Miller School of Medicine, University of Miami, Miami, FL, United States.
| |
Collapse
|
4
|
Raymond LJ, Johnson WT. Supplemental Ascorbate or α-Tocopherol Induces Cell Death in Cu-Deficient HL-60 Cells. Exp Biol Med (Maywood) 2016. [DOI: 10.1177/153537020422900904] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cytochrome c oxidase (CCO) is the Cu-dependent, terminal respiratory complex of the mitochondrial electron transport chain. Inhibition of CCO can promote oxidative stress by increasing mitochondrial production of reactive oxygen species (ROS). Because mitochondria have an important role in apoptosis as both a target and source for ROS, enhanced ROS production resulting from inhibition of CCO by Cu deficiency may trigger apoptosis. The present study focuses on the mitochondrial effects of N,N'-bis(2-aminoethyl)-1, 3-propanediamine (TET), which inhibits CCO by causing cellular Cu deficiency, and the antioxidants ascorbate and α-tocopherol in a human promyelocyte leukemia cell line (HL-60). The following effects were observed: (i) TET reduced both cell growth and viability only in the presence of ascorbate or α-tocopherol; (ii) TET reduced CCO activity and increased mitochondrial ROS production as indicated by increased expression of Mn superoxide dismutase, but the induction of Mn superoxide dismutase was not affected by ascorbate or α-tocopherol; (iii) TET acted independently of ascorbate or α-tocopherol in disrupting mitochondrial membrane potential; (iv) TET did not increase caspase-8 activity in the absence of ascorbate or α-tocopherol; and (v) TET did not increase transfer of cytochrome c from mitochondria to the cytosol unless α-tocopherol was present. These findings indicate that reduction in CCO activity by TET-Induced Cu deficiency increased oxidative stress in HL-60 cells sufficiently to disrupt the electrochemical gradient of the inner mitochondrial membrane but did not trigger cell death. Also, ascorbate and α-tocopherol did not alleviate oxidative stress but may have become pro-oxidants, adding to the oxidant burden sufficiently to trigger cell death in TET-treated cells.
Collapse
Affiliation(s)
- Laura J. Raymond
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, 85202
| | - W. Thomas Johnson
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 85202
| |
Collapse
|
5
|
Bütün A, Nazıroğlu M, Demirci S, Çelik Ö, Uğuz AC. Riboflavin and Vitamin E Increase Brain Calcium and Antioxidants, and Microsomal Calcium-ATP-ase Values in Rat Headache Models Induced by Glyceryl Trinitrate. J Membr Biol 2014; 248:205-13. [DOI: 10.1007/s00232-014-9758-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/18/2014] [Indexed: 12/21/2022]
|
6
|
Tewari A, Mahendru V, Sinha A, Bilotta F. Antioxidants: The new frontier for translational research in cerebroprotection. J Anaesthesiol Clin Pharmacol 2014; 30:160-71. [PMID: 24803750 PMCID: PMC4009632 DOI: 10.4103/0970-9185.130001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It is important for the anesthesiologist to understand the etiology of free radical damage and how free-radical scavengers attenuate this, so that this knowledge can be applied to diverse neuro-pathological conditions. This review will concentrate on the role of reactive species of oxygen in the pathophysiology of organ dysfunction, specifically sub arachnoid hemorrhage (SAH), traumatic brain injury (TBI) as well as global central nervous system (CNS) hypoxic, ischemic and reperfusion states. We enumerate potential therapeutic modalities that are been currently investigated and of interest for future trials. Antioxidants are perhaps the next frontier of translational research, especially in neuro-anesthesiology.
Collapse
Affiliation(s)
- Anurag Tewari
- Department of Anesthesiology, Dayanand Medical College, Ludhiana, Punjab, India
| | - Vidhi Mahendru
- Department of Anesthesiology, All India Institute of Medical Sciences, New Delhi, India
| | - Ashish Sinha
- Department of Anesthesiology and Perioperative Medicine, Drexel University College of Medicine, Philadelphia, USA
| | - Federico Bilotta
- Department of Anesthesiology, Critical Care and Pain Medicine, “Sapienza” University of Rome, Rome, Italy
| |
Collapse
|
7
|
Zingg JM, Meydani M, Azzi A. α-Tocopheryl phosphate--an activated form of vitamin E important for angiogenesis and vasculogenesis? Biofactors 2012; 38:24-33. [PMID: 22281871 DOI: 10.1002/biof.198] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 12/22/2011] [Indexed: 12/13/2022]
Abstract
Vitamin E was originally discovered as a dietary factor essential for reproduction in rats. Since then, vitamin E has revealed many important molecular properties such as the scavenging of reactive oxygen and nitrogen species or the modulation of signal transduction and gene expression in antioxidant and nonantioxidant manners. A congenital disease, ataxia with vitamin E deficiency, which is characterized by impaired enrichment of α-tocopherol (αT) in plasma due to mutations in the α-tocopherol transfer protein gene, has been discovered. An effect of vitamin E on angiogenesis and vasculogenesis has been observed in several studies, and recently, it has been demonstrated in the placenta of pregnant ewes, possibly involving the stimulation of vascular endothelial growth factor (VEGF) expression. We recently observed that the phosphorylated form of αT, α-tocopheryl phosphate (αTP), increases the expression of VEGF. We propose that the stimulatory effect of αT on angiogenesis and vasculogenesis is potentiated by phosphorylation to αTP, which may act as a cofactor or active lipid mediator increasing VEGF expression. Increased VEGF expression and consequent enhanced angiogenesis and vasculogenesis induced by αTP may explain not only the essential roles of vitamin E on reproduction, but also its beneficial effects against pre-eclampsia, ischemia/reperfusion injury, and during wound healing. It may also serve as a survival factor for brain and muscle cells. The finding that αTP may regulate vasculogenesis may indicate potential, important pathophysiological implications.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Vascular Biology Laboratory, JM USDA-Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA.
| | | | | |
Collapse
|
8
|
Zingg JM, Meydani M, Azzi A. alpha-Tocopheryl phosphate--an active lipid mediator? Mol Nutr Food Res 2010; 54:679-92. [PMID: 20169583 DOI: 10.1002/mnfr.200900404] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The vitamin E (alpha-tocopherol, alphaT) derivative, alpha-tocopheryl phosphate (alphaTP), is detectable in small amounts in plasma, tissues, and cultured cells. Studies done in vitro and in vivo suggest that alphaT can become phosphorylated and alphaTP dephosphorylated, suggesting the existence of enzyme(s) with alphaT kinase or alphaTP phosphatase activity, respectively. As a supplement in animal studies, alphaTP can reach plasma concentrations similar to alphaT and only a part is dephosphorylated; thus, alphaTP may act both as pro-vitamin E, but also as phosphorylated form of vitamin E with possibly novel regulatory activities. Many effects of alphaTP have been described: in the test tube alphaTP modulates the activity of several enzymes; in cell culture alphaTP affects proliferation, apoptosis, signal transduction, and gene expression; in animal studies alphaTP prevents atherosclerosis, ischemia/reperfusion injury, and induces hippocampal long-term potentiation. At the molecular level, alphaTP may act as a cofactor for enzymes, as an active lipid mediator similar to other phosphorylated lipids, or indirectly by altering membrane characteristics such as lipid rafts, fluidity, and curvature. In this review, the molecular and cellular activities of alphaTP are examined and the possible functions of alphaTP as a natural compound, cofactor and active lipid mediator involved in signal transduction and gene expression discussed.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- JM USDA-Human Nutr. Res. Ctr. On Aging, Tufts University, Boston, MA, USA
| | | | | |
Collapse
|
9
|
Koshkaryev A, Barshtein G, Yedgar S. Vitamin E induces phosphatidylserine externalization and red cell adhesion to endothelial cells. Cell Biochem Biophys 2010; 56:109-14. [PMID: 20020330 DOI: 10.1007/s12013-009-9074-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Red blood cell (RBC) adhesion to vessel wall endothelium is a potent catalyst of vascular occlusion and occurs in oxidative stress states such as hemoglobinopathies and cardiovascular conditions. These are often treated with vitamin E (VitE), a "classic" antioxidant. In this study, we examined the effects of VitE on RBC adhesion to vascular endothelial cells (EC), and on translocation of phosphatidylserine (PS) to RBC surface, known as a potent mediator of RBC/EC adhesion, facilitating thrombus formation. Treatment of RBC with VitE strongly induces (up to sevenfold) PS externalization and enhances (up to 20-fold) their adherence to EC. The VitE hydrophilic analogue-Trolox-does not incorporate into cell membranes. Trolox did not exhibit any of these effects, implying that the VitE effect is due to its known ability to incorporate into cell membranes. The membrane-incorporated VitE significantly reduced the level of reactive oxygen species in H(2)O(2)-treated RBC, demonstrating that VitE elevates RBC/EC adhesion despite acting as an anti-oxidant. This study demonstrates for the first time that contrary to the common view of VitE as a beneficial supplement, VitE may introduce a circulatory risk by inducing flow-disturbing RBC adherence to blood vessel wall and the pro-thrombotic PS exposure.
Collapse
Affiliation(s)
- Alexander Koshkaryev
- Department of Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
10
|
The effect of oxygen and light on the structure and function of the neonatal rat retina. Doc Ophthalmol 2008; 118:37-54. [DOI: 10.1007/s10633-008-9128-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 04/07/2008] [Indexed: 10/22/2022]
|
11
|
Nocentini S, Guggiari M, Rouillard D, Surgis S. Exacerbating Effect of Vitamin E Supplementation on DNA Damage Induced in Cultured Human Normal Fibroblasts by UVA Radiation¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0730370eeoves2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Natale JE, Knight JB, Cheng Y, Rome JE, Gallo V. Metallothionein I and II mitigate age-dependent secondary brain injury. J Neurosci Res 2005; 78:303-14. [PMID: 15389833 DOI: 10.1002/jnr.20265] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Both the immediate insult and delayed apoptosis contribute to functional deficits after brain injury. Secondary, delayed apoptotic death is more rapid in immature than in adult CNS neurons, suggesting the presence of age-dependent protective factors. To understand the molecular pathobiology of secondary injury in the context of brain development, we identified changes in expression of oxidative stress response genes during postnatal development and target deprivation-induced neurodegeneration. The antioxidants metallothionein I and II (MT I/II) were increased markedly in the thalamus of adult C57BL/6 mice compared to mice <15 days old. Target deprivation generates reactive oxygen species that mediate neuronal apoptosis in the central nervous system; thus the more rapid apoptosis observed in the immature brain might be due to lower levels of MT I/II. We tested this hypothesis by documenting neuronal loss after target-deprivation injury. MT I/II-deficient adult mice experienced greater thalamic neuron loss at 96 hr after cortical injury compared to that in controls (80 +/- 2% vs. 57 +/- 4%, P < 0.01), but not greater overall neuronal loss (84 +/- 4% vs. 79 +/- 3%, MT I/II-deficient vs. controls). Ten-day-old MT I/II-deficient mice, however, experienced both faster onset of secondary neuronal death (30 vs. 48 hr) and greater overall neuronal loss (88 +/- 2% vs. 69 +/- 4%, P = 0.02). MT I/II are thus inhibitors of age-dependent secondary brain injury, and the low levels of MT I/II in immature brains explains, in part, the enhanced susceptibility of the young brain to neuronal loss after injury. These findings have implications for the development of age-specific therapeutic strategies to enhance recovery after brain injury.
Collapse
Affiliation(s)
- Joanne E Natale
- Research Center for Genetic Medicine, Children's National Medical Center, 111 Michigan Ave., NW, Washington, DC 20010, USA.
| | | | | | | | | |
Collapse
|
13
|
Scholik AR, Lee US, Chow CK, Yan HY. Dietary vitamin E protects the fathead minnow, Pimephales promelas, against noise exposure. Comp Biochem Physiol C Toxicol Pharmacol 2004; 137:313-23. [PMID: 15228949 DOI: 10.1016/j.cca.2004.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2003] [Revised: 03/02/2004] [Accepted: 03/04/2004] [Indexed: 11/17/2022]
Abstract
The fathead minnow (Pimephales promelas) was employed to examine if dietary vitamin E supplementation could protect the inner ear from the deleterious effects of noise. Fish were fed one of the three experimental diets containing either: (1) low vitamin E content (14.5 mg/kg diet as alpha-tocopheryl acetate), (2) an adequate amount of vitamin E (50 mg/kg), or (3) high vitamin E content (450 mg/kg). After 4 weeks on the diet, fish were exposed to either 2 or 24 h of intense white noise (142 dB re: 1 microPa, bandwidth 0.3-4.0 kHz). Auditory thresholds were measured, using the auditory brainstem response (ABR) technique, within 0.5 days following noise exposure or within a recovery period of 1.5 days. Additionally, liver samples were analyzed for vitamin E content. Increased vitamin E supplementation was dose-dependently associated with a reduction in statistically significant threshold shifts after noise exposure and an enhancement of recovery (i.e., more complete recovery over a shorter period) for fish exposed to either 2 or 24 h of noise. The results obtained suggest that dietary vitamin E affords protection against noise exposure in a cyprinid fish.
Collapse
Affiliation(s)
- Amy R Scholik
- Mechanosensory Physiology Laboratory, School of Biological Sciences, University of Kentucky, Lexington, KY 40506-0225, USA.
| | | | | | | |
Collapse
|
14
|
Miglio G, Varsaldi F, Francioli E, Battaglia A, Canonico PL, Lombardi G. Cabergoline protects SH-SY5Y neuronal cells in an in vitro model of ischemia. Eur J Pharmacol 2004; 489:157-65. [PMID: 15087238 DOI: 10.1016/j.ejphar.2004.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2003] [Revised: 02/26/2004] [Accepted: 03/02/2004] [Indexed: 11/21/2022]
Abstract
Dopamine receptor agonists are protective in different models of neurodegeneration by both receptor-dependent and -independent mechanisms. We used SH-SY5Y cells, differentiated into neuron-like type, to evaluate if cabergoline, a dopamine D2 receptor agonist endowed with anti-oxidant activity, protects the cells against ischemia (oxygen-glucose deprivation model). Cabergoline protected the cells from ischemia-induced cell death in a concentration-dependent manner (EC(50)=1.2 microM), as demonstrated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, lactate dehydrogenase (LDH) release, and fluorescein diacetate-propidium iodide staining. This effect, observed even when the drug was added after oxygen-glucose deprivation, was not mediated by either dopamine D2 receptor activation or anti-apoptotic Bcl-2 protein over-expression (Western blotting analysis), but was linked to a reduction in cellular free radical loading (2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) staining) and membrane lipid peroxidation (thiobarbituric acid-reacting test). In conclusion, cabergoline protects in vitro neurons against ischemia-induced cell death, suggesting its possible use in the therapy of other neurodegenerative diseases in addition to Parkinson's disease.
Collapse
Affiliation(s)
- Gianluca Miglio
- DISCAFF Department, University of Piemonte Orientale Amedeo Avogadro, Via Bovio 6, 28100 Novara, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Wang C, Nguyen HN, Maguire JL, Perry DC. Role of intracellular calcium stores in cell death from oxygen-glucose deprivation in a neuronal cell line. J Cereb Blood Flow Metab 2002; 22:206-14. [PMID: 11823718 DOI: 10.1097/00004647-200202000-00008] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To determine the role of calcium homeostasis in ischemic neuronal death, the authors used an in vitro model of oxygen-glucose deprivation in neuronal cell lines. Exposure of human neuroblastoma SH-SY5Y cells to 10-to 16-hour oxygen-glucose deprivation decreased viability to 50% or less, and longer exposure times killed almost all cells. The death following 10-to 16-hour oxygen-glucose deprivation was not manifested until 24 to 72 hours after exposure. Deprivation of both glucose and oxygen together was required for expression of toxicity at these exposure times. Dantrolene, which blocks the release of endoplasmic reticulum Ca2+ stores, partially protected SH-SY5Y cells from oxygen-glucose deprivation toxicity. The addition of dantrolene during the deprivation phase alone produced the maximal drug effect; no further protection was obtained by continued drug exposure during the recovery phase. Prevention of Ca2+ influx by chelation or channel blockade or the chelation of cytosolic Ca2+ did not inhibit oxygen-glucose deprivation toxicity. In contrast, increasing extracellular Ca2+ or stimulating Ca2+ influx did inhibit toxicity. Calcium measurements with fura-2 acetoxymethylester revealed that oxygen-glucose deprivation caused a significant reduction in thapsigargin-releasable endoplasmic reticular stores of Ca2+. These studies suggest that an important component of the neuronal toxicity in cerebral ischemia is due to disruption of calcium homeostasis, particularly to the depletion of intracellular Ca2+ stores.
Collapse
Affiliation(s)
- Chen Wang
- Department of Pharmacology, George Washington University Medical Center, Washington, District of Columbia 20037, USA
| | | | | | | |
Collapse
|
16
|
Nocentini S, Guggiari M, Rouillard D, Surgis S. Exacerbating effect of vitamin E supplementation on DNA damage induced in cultured human normal fibroblasts by UVA radiation. Photochem Photobiol 2001; 73:370-7. [PMID: 11332032 DOI: 10.1562/0031-8655(2001)073<0370:eeoves>2.0.co;2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effects of vitamin E supplementation were evaluated in cultured human normal fibroblasts exposed to ultraviolet A radiation (320-380 nm) (UVA). Cells were incubated in medium containing alpha-tocopherol, alpha-tocopherol acetate or the synthetic analog Trolox for 24 h prior to UVA exposure. DNA damage in the form of frank breaks and alkali-labile sites, collectively termed single-strand breaks (SSB), was assayed by the technique of single cell gel electrophoresis (comet assay), immediately following irradiation or after different repair periods. The generation of hydrogen peroxide (H2O2) and superoxide ion (O2.-) was measured by flow cytometry through the oxidation of indicators into fluorescent dyes. It was observed that pretreatment of cells with any form of vitamin E resulted in an increased susceptibility to the photoinduction of DNA SSB and in a longer persistence of damage, whereas no significant change was observed in the production of H2O2 and O2.- reactive oxygen species, compared to untreated controls. These findings indicate that in human normal fibroblasts, exogenously added vitamin E exerts a promoting activity on DNA damage upon UVA irradiation and might lead to increased cytotoxic and mutagenic risks.
Collapse
Affiliation(s)
- S Nocentini
- UMR CNRS/Institut Curie 218, Institut Curie, Section de Recherche, 26 rue d'Ulm, 75248, Paris, France.
| | | | | | | |
Collapse
|
17
|
Dubuisson ML, de Wergifosse B, Trouet A, Baguet F, Marchand-Brynaert J, Rees JF. Antioxidative properties of natural coelenterazine and synthetic methyl coelenterazine in rat hepatocytes subjected to tert-butyl hydroperoxide-induced oxidative stress. Biochem Pharmacol 2000; 60:471-8. [PMID: 10874121 DOI: 10.1016/s0006-2952(00)00359-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Coelenterazine (CLZn; 3, 7-dihydro-2-(p-hydroxybenzyl)-6-(p-hydroxyphenyl)-8-benzylimidazolo++ +[1 ,2-a]pyrazin-3-one), the substrate for bioluminescence reactions in many marine animals, is endowed with high antioxidant properties. This work investigated the antioxidative properties of CLZn in primary cultures of rat hepatocytes subjected to the oxidant tert-butyl hydroperoxide (t-BHP). Micromolar concentrations of CLZn increased survival and decreased lipid peroxidation in rat hepatocytes subjected for 6 hr to 2.5 x 10(-4) M t-BHP. However, the extent of protection was limited by a strong toxicity of CLZn (IC(50) = 6.9 x 10(-5) M). The presence of t-BHP increased the cellular toxicity of CLZn. Methyl coelenterazine (CLZm, 3, 7-dihydro-2-methyl-6-(p-hydroxyphenyl)-8 benzylimidazolo[1, 2-a]pyrazin-3-one), a synthetic analogue of CLZn, demonstrated excellent antioxidant properties, even at very low (3 x 10(-6) M) concentrations and was not toxic throughout most of its effective concentration range. CLZm proved far more effective than reference antioxidants such as Trolox C(R), alpha-tocopherol, BHT, and probucol. The assay of thiobarbituric reactive substances (TBARS) associated with cells and in the culture medium indicated that 10(-5) M CLZm provided a total protection against t-BHP-induced lipid peroxidation. This coelenterazine analogue could be used as a model compound for investigating the action mechanism of imidazolopyrazinones in mammalian hepatocytes.
Collapse
Affiliation(s)
- M L Dubuisson
- Unité;;-2 de Biologie Animale, Université Catholique de Louvain, Croix de Sud, 4-5, B-1348, Louvain-la-Neuve, Belgium.
| | | | | | | | | | | |
Collapse
|
18
|
Fyfe DJ, Abbey M. Effects of n-3 fatty acids on growth and survival of J774 macrophages. Prostaglandins Leukot Essent Fatty Acids 2000; 62:201-7. [PMID: 10841044 DOI: 10.1054/plef.2000.0142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To further understand potential mechanisms underlying the protective effects of eicosapentanoic acid (EPA) against atherosclerosis, J774 macrophages were used to explore cellular responses to growth in the presence of PUFA in vitro. Clonogenic assays indicated that 15 microg/ml of EPA killed over 90% of J774 populations. Docosapentaenoic acid (DPA) was more cytotoxic than either EPA or docosahexaenoic acid (DHA). EPA was shown to be elongated to DPA. Cytotoxicity induced by EPA was not inhibited by the presence of alpha-tocopherol (a-toc) in the medium. Immunological screening for caspase enzymes and microscopic examination indicated that apoptosis was not the major cause of cell death. Proliferation assays demonstrated that total cell numbers of EPA-treated cells were not significantly different to control cells. Increasing does of EPA were correlated with increasing levels of intracellular malondialdehyde (MDA). These observations suggest that EPA may influence the growth parameters of macrophages whilst inducing moderately elevated levels of oxidative stress.
Collapse
Affiliation(s)
- D J Fyfe
- CSIRO Health Sciences and Nutrition, Adelaide, SA, Australia.
| | | |
Collapse
|
19
|
Castagné V, Lefèvre K, Natero R, Clarke PG, Bedker DA. An optimal redox status for the survival of axotomized ganglion cells in the developing retina. Neuroscience 1999; 93:313-20. [PMID: 10430495 DOI: 10.1016/s0306-4522(99)00138-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The neuronal redox status influences the expression of genes involved in neuronal survival. We previously showed that antioxidants may reduce the number of dying ganglion cells following axotomy in chick embryos. In the present study, we show that various antioxidants, including the new spin trap azulenyl nitrone and 1,3-dimethyl-2-thiourea, protect axotomized ganglion cells, confirming that neuronal death involves an imbalance of the cellular redox status towards oxidation. However, high concentrations of antioxidants did not protect ganglion cells, suggesting that excessive reduction is detrimental for neurons. Simultaneous injections of two different antioxidants gave results only partly supporting this view. Combinations of azulenyl nitrone and N-acetyl cysteine in fact gave greater protection than either antioxidant alone, whereas N-acetyl cysteine lost its neuroprotective effects and diminished those of alpha-phenyl-N-tert-butyl nitrone when the two compounds were injected simultaneously. The results of the combined treatments suggest that azulenyl nitrone and alpha-phenyl-N-tert-butyl nitrone do not have the same chemical effects within the ganglion cells. Moreover, N-acetyl cysteine's own antioxidant properties enhance the spin trapping effects of azulenyl nitrone but potentiate the toxicity of alpha-phenyl-N-tert-butyl nitrone. Our main conclusion is that neuronal survival requires the maintenance of the redox status near an optimal set-point. "Reductive stress" may be as dangerous as oxidative stress.
Collapse
Affiliation(s)
- V Castagné
- Institut de Biologie Cellulaire et de Morphologie, Université de Lausanne, Switzerland
| | | | | | | | | |
Collapse
|