1
|
Moldwin T, Azran LS, Segev I. A generalized mathematical framework for the calcium control hypothesis describes weight-dependent synaptic plasticity. J Comput Neurosci 2025:10.1007/s10827-025-00894-6. [PMID: 40100329 DOI: 10.1007/s10827-025-00894-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 03/20/2025]
Abstract
The brain modifies synaptic strengths to store new information via long-term potentiation (LTP) and long-term depression (LTD). Evidence has mounted that long-term synaptic plasticity is controlled via concentrations of calcium ([Ca2+]) in postsynaptic dendritic spines. Several mathematical models describe this phenomenon, including those of Shouval, Bear, and Cooper (SBC) (Shouval et al., 2002, 2010) and Graupner and Brunel (GB) (Graupner & Brunel, 2012). Here we suggest a generalized version of the SBC and GB models, the fixed point - learning rate (FPLR) framework, where the synaptic [Ca2+] specifies a fixed point toward which the synaptic weight approaches asymptotically at a [Ca2+]-dependent rate. The FPLR framework offers a straightforward phenomenological interpretation of calcium-based plasticity: the calcium concentration tells the synaptic weight where it is going and how quickly it goes there. The FPLR framework can flexibly incorporate various experimental findings, including the existence of multiple regions of [Ca2+] where no plasticity occurs, or plasticity observed experimentally in cerebellar Purkinje cells, where the directionality of calcium-based synaptic changes is reversed relative to cortical and hippocampal neurons. We also suggest a modeling approach that captures the dependency of late-phase plasticity stabilization on protein synthesis. We demonstrate that due to the asymptotic nature of synaptic changes in the FPLR rule, the plastic changes induced by frequency- and spike-timing-dependent plasticity protocols are weight-dependent. Finally, we show how the FPLR framework can explain the weight-dependence observed in behavioral time scale plasticity (BTSP).
Collapse
Affiliation(s)
- Toviah Moldwin
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Li Shay Azran
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Idan Segev
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
2
|
Ramakrishna S, Radhakrishna BK, Kaladiyil AP, Shah NM, Basavaraju N, Freude KK, Kommaddi RP, Muddashetty RS. Distinct calcium sources regulate temporal profiles of NMDAR and mGluR-mediated protein synthesis. Life Sci Alliance 2024; 7:e202402594. [PMID: 38749544 PMCID: PMC11096670 DOI: 10.26508/lsa.202402594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
Calcium signaling is integral for neuronal activity and synaptic plasticity. We demonstrate that the calcium response generated by different sources modulates neuronal activity-mediated protein synthesis, another process essential for synaptic plasticity. Stimulation of NMDARs generates a protein synthesis response involving three phases-increased translation inhibition, followed by a decrease in translation inhibition, and increased translation activation. We show that these phases are linked to NMDAR-mediated calcium response. Calcium influx through NMDARs elicits increased translation inhibition, which is necessary for the successive phases. Calcium through L-VGCCs acts as a switch from translation inhibition to the activation phase. NMDAR-mediated translation activation requires the contribution of L-VGCCs, RyRs, and SOCE. Furthermore, we show that IP3-mediated calcium release and SOCE are essential for mGluR-mediated translation up-regulation. Finally, we signify the relevance of our findings in the context of Alzheimer's disease. Using neurons derived from human fAD iPSCs and transgenic AD mice, we demonstrate the dysregulation of NMDAR-mediated calcium and translation response. Our study highlights the complex interplay between calcium signaling and protein synthesis, and its implications in neurodegeneration.
Collapse
Affiliation(s)
- Sarayu Ramakrishna
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| | - Bindushree K Radhakrishna
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Ahamed P Kaladiyil
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| | - Nisa Manzoor Shah
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Nimisha Basavaraju
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Kristine K Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | | | - Ravi S Muddashetty
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| |
Collapse
|
3
|
Li G, McLaughlin DW, Peskin CS. A biochemical description of postsynaptic plasticity-with timescales ranging from milliseconds to seconds. Proc Natl Acad Sci U S A 2024; 121:e2311709121. [PMID: 38324573 PMCID: PMC10873618 DOI: 10.1073/pnas.2311709121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/29/2023] [Indexed: 02/09/2024] Open
Abstract
Synaptic plasticity [long-term potentiation/depression (LTP/D)], is a cellular mechanism underlying learning. Two distinct types of early LTP/D (E-LTP/D), acting on very different time scales, have been observed experimentally-spike timing dependent plasticity (STDP), on time scales of tens of ms; and behavioral time scale synaptic plasticity (BTSP), on time scales of seconds. BTSP is a candidate for a mechanism underlying rapid learning of spatial location by place cells. Here, a computational model of the induction of E-LTP/D at a spine head of a synapse of a hippocampal pyramidal neuron is developed. The single-compartment model represents two interacting biochemical pathways for the activation (phosphorylation) of the kinase (CaMKII) with a phosphatase, with ion inflow through channels (NMDAR, CaV1,Na). The biochemical reactions are represented by a deterministic system of differential equations, with a detailed description of the activation of CaMKII that includes the opening of the compact state of CaMKII. This single model captures realistic responses (temporal profiles with the differing timescales) of STDP and BTSP and their asymmetries. The simulations distinguish several mechanisms underlying STDP vs. BTSP, including i) the flow of [Formula: see text] through NMDAR vs. CaV1 channels, and ii) the origin of several time scales in the activation of CaMKII. The model also realizes a priming mechanism for E-LTP that is induced by [Formula: see text] flow through CaV1.3 channels. Once in the spine head, this small additional [Formula: see text] opens the compact state of CaMKII, placing CaMKII ready for subsequent induction of LTP.
Collapse
Affiliation(s)
- Guanchun Li
- Courant Institute and Center for Neural Science, Department of Mathematics, New York University, New York, NY10012
| | - David W. McLaughlin
- Courant Institute and Center for Neural Science, Department of Mathematics, New York University, New York, NY10012
- Center for Neural Science, Department of Neural Science, New York University, New York, NY10012
- Institute of Mathematical Science, Mathematics Department, New York University-Shanghai, Shanghai200122, China
- Neuroscience Institute of New York University Langone Health, New York University, New York, NY10016
| | - Charles S. Peskin
- Courant Institute and Center for Neural Science, Department of Mathematics, New York University, New York, NY10012
- Center for Neural Science, Department of Neural Science, New York University, New York, NY10012
| |
Collapse
|
4
|
Nicoll RA, Schulman H. Synaptic memory and CaMKII. Physiol Rev 2023; 103:2877-2925. [PMID: 37290118 PMCID: PMC10642921 DOI: 10.1152/physrev.00034.2022] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 06/10/2023] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) and long-term potentiation (LTP) were discovered within a decade of each other and have been inextricably intertwined ever since. However, like many marriages, it has had its up and downs. Based on the unique biochemical properties of CaMKII, it was proposed as a memory molecule before any physiological linkage was made to LTP. However, as reviewed here, the convincing linkage of CaMKII to synaptic physiology and behavior took many decades. New technologies were critical in this journey, including in vitro brain slices, mouse genetics, single-cell molecular genetics, pharmacological reagents, protein structure, and two-photon microscopy, as were new investigators attracted by the exciting challenge. This review tracks this journey and assesses the state of this marriage 40 years on. The collective literature impels us to propose a relatively simple model for synaptic memory involving the following steps that drive the process: 1) Ca2+ entry through N-methyl-d-aspartate (NMDA) receptors activates CaMKII. 2) CaMKII undergoes autophosphorylation resulting in constitutive, Ca2+-independent activity and exposure of a binding site for the NMDA receptor subunit GluN2B. 3) Active CaMKII translocates to the postsynaptic density (PSD) and binds to the cytoplasmic C-tail of GluN2B. 4) The CaMKII-GluN2B complex initiates a structural rearrangement of the PSD that may involve liquid-liquid phase separation. 5) This rearrangement involves the PSD-95 scaffolding protein, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), and their transmembrane AMPAR-regulatory protein (TARP) auxiliary subunits, resulting in an accumulation of AMPARs in the PSD that underlies synaptic potentiation. 6) The stability of the modified PSD is maintained by the stability of the CaMKII-GluN2B complex. 7) By a process of subunit exchange or interholoenzyme phosphorylation CaMKII maintains synaptic potentiation in the face of CaMKII protein turnover. There are many other important proteins that participate in enlargement of the synaptic spine or modulation of the steps that drive and maintain the potentiation. In this review we critically discuss the data underlying each of the steps. As will become clear, some of these steps are more firmly grounded than others, and we provide suggestions as to how the evidence supporting these steps can be strengthened or, based on the new data, be replaced. Although the journey has been a long one, the prospect of having a detailed cellular and molecular understanding of learning and memory is at hand.
Collapse
Affiliation(s)
- Roger A Nicoll
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California, United States
| | - Howard Schulman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California, United States
- Panorama Research Institute, Sunnyvale, California, United States
| |
Collapse
|
5
|
Moldwin T, Kalmenson M, Segev I. Asymmetric Voltage Attenuation in Dendrites Can Enable Hierarchical Heterosynaptic Plasticity. eNeuro 2023; 10:ENEURO.0014-23.2023. [PMID: 37414554 PMCID: PMC10354808 DOI: 10.1523/eneuro.0014-23.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/16/2023] [Accepted: 06/14/2023] [Indexed: 07/08/2023] Open
Abstract
Long-term synaptic plasticity is mediated via cytosolic calcium concentrations ([Ca2+]). Using a synaptic model that implements calcium-based long-term plasticity via two sources of Ca2+ - NMDA receptors and voltage-gated calcium channels (VGCCs) - we show in dendritic cable simulations that the interplay between these two calcium sources can result in a diverse array of heterosynaptic effects. When spatially clustered synaptic input produces a local NMDA spike, the resulting dendritic depolarization can activate VGCCs at nonactivated spines, resulting in heterosynaptic plasticity. NMDA spike activation at a given dendritic location will tend to depolarize dendritic regions that are located distally to the input site more than dendritic sites that are proximal to it. This asymmetry can produce a hierarchical effect in branching dendrites, where an NMDA spike at a proximal branch can induce heterosynaptic plasticity primarily at branches that are distal to it. We also explored how simultaneously activated synaptic clusters located at different dendritic locations synergistically affect the plasticity at the active synapses, as well as the heterosynaptic plasticity of an inactive synapse "sandwiched" between them. We conclude that the inherent electrical asymmetry of dendritic trees enables sophisticated schemes for spatially targeted supervision of heterosynaptic plasticity.
Collapse
Affiliation(s)
| | - Menachem Kalmenson
- Department of Neurobiology, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Idan Segev
- Edmond and Lily Safra Center for Brain Sciences
- Department of Neurobiology, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
6
|
Jiang F, Bello ST, Gao Q, Lai Y, Li X, He L. Advances in the Electrophysiological Recordings of Long-Term Potentiation. Int J Mol Sci 2023; 24:ijms24087134. [PMID: 37108295 PMCID: PMC10138642 DOI: 10.3390/ijms24087134] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Understanding neuronal firing patterns and long-term potentiation (LTP) induction in studying learning, memory, and neurological diseases is critical. However, recently, despite the rapid advancement in neuroscience, we are still constrained by the experimental design, detection tools for exploring the mechanisms and pathways involved in LTP induction, and detection ability of neuronal action potentiation signals. This review will reiterate LTP-related electrophysiological recordings in the mammalian brain for nearly 50 years and explain how excitatory and inhibitory neural LTP results have been detected and described by field- and single-cell potentials, respectively. Furthermore, we focus on describing the classic model of LTP of inhibition and discuss the inhibitory neuron activity when excitatory neurons are activated to induce LTP. Finally, we propose recording excitatory and inhibitory neurons under the same experimental conditions by combining various electrophysiological technologies and novel design suggestions for future research. We discussed different types of synaptic plasticity, and the potential of astrocytes to induce LTP also deserves to be explored in the future.
Collapse
Affiliation(s)
- Feixu Jiang
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
| | | | - Qianqian Gao
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
| | - Yuanying Lai
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
| | - Xiao Li
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Ling He
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
7
|
Zhang YY, Ren KD, Luo XJ, Peng J. COVID-19-induced neurological symptoms: focus on the role of metal ions. Inflammopharmacology 2023; 31:611-631. [PMID: 36892679 PMCID: PMC9996599 DOI: 10.1007/s10787-023-01176-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/10/2023]
Abstract
Neurological symptoms are prevalent in both the acute and post-acute phases of coronavirus disease 2019 (COVID-19), and they are becoming a major concern for the prognosis of COVID-19 patients. Accumulation evidence has suggested that metal ion disorders occur in the central nervous system (CNS) of COVID-19 patients. Metal ions participate in the development, metabolism, redox and neurotransmitter transmission in the CNS and are tightly regulated by metal ion channels. COVID-19 infection causes neurological metal disorders and metal ion channels abnormal switching, subsequently resulting in neuroinflammation, oxidative stress, excitotoxicity, neuronal cell death, and eventually eliciting a series of COVID-19-induced neurological symptoms. Therefore, metal homeostasis-related signaling pathways are emerging as promising therapeutic targets for mitigating COVID-19-induced neurological symptoms. This review provides a summary for the latest advances in research related to the physiological and pathophysiological functions of metal ions and metal ion channels, as well as their role in COVID-19-induced neurological symptoms. In addition, currently available modulators of metal ions and their channels are also discussed. Collectively, the current work offers a few recommendations according to published reports and in-depth reflections to ameliorate COVID-19-induced neurological symptoms. Further studies need to focus on the crosstalk and interactions between different metal ions and their channels. Simultaneous pharmacological intervention of two or more metal signaling pathway disorders may provide clinical advantages in treating COVID-19-induced neurological symptoms.
Collapse
Affiliation(s)
- Yi-Yue Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Kai-Di Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
8
|
Dong L, Xia P, Tian L, Tian C, Zhao W, Zhao L, Duan J, Zhao Y, Zheng Y. A Review of Aspects of Synaptic Plasticity in Hippocampus via mT Extremely Low-Frequency Magnetic Fields. Bioelectromagnetics 2023; 44:63-70. [PMID: 36786476 DOI: 10.1002/bem.22437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/20/2022] [Accepted: 01/28/2023] [Indexed: 02/15/2023]
Abstract
The subthreshold magnetic modulation technique stimulates cells with mT extremely low-frequency magnetic fields (ELF-MFs), which are insufficient to induce neuronal action potentials. Although they cannot directly induce resting neurons to discharge, mT magnetic stimulation can regulate the excitability of the nervous system, which regulates learning and memory by some unknown mechanisms. Herein, we describe the regulation of mT ELF-MFs with different parameters on synaptic plasticity in hippocampal neurons. Additionally, we summarize the latest research on the possible mechanism of the effect of ELF-MFs on synaptic plasticity. Some studies have shown that ELF-MFs are able to inhibit long-term potentiation (LTP) by increasing concentration of intracellular Ca2+ concentration ([Ca2+ ]i ), as well as concentration of reactive oxygen species. The research in this paper has significance for the comprehensive understanding of relevant neurological mechanisms of learning and memory by mT ELF-MFs stimulation. However, more high-quality research is necessary to determine the regulatory mechanism of mT ELF-MFs on synaptic plasticity in order to optimize this technique as a treatment for neurological diseases. © 2023 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Lei Dong
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Pei Xia
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Lei Tian
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Chunxiao Tian
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Wenjun Zhao
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Ling Zhao
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Jiakang Duan
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Yuhan Zhao
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Yu Zheng
- School of Life Sciences, Tiangong University, Tianjin, China
| |
Collapse
|
9
|
Ma K, Rothwell JC, Goetz SM. A revised calcium-dependent model of transcranial magnetic theta-burst stimulation. Clin Neurophysiol 2022; 144:41-49. [PMID: 36242947 DOI: 10.1016/j.clinph.2022.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/02/2022] [Accepted: 09/15/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Calcium dependency is presently an essential assumption in modelling the neuromodulatory effects of transcranial magnetic stimulation. Y.Z.Huang et al.developed the first neuromodulation model to explain the bidirectional effects of theta-burst stimulation (TBS) based on the postsynaptic intracellular calcium concentration elevation. However, we discover that the published computer code is not consistent with the model formulation, neither do the parameters and derived plots consequently match the formulations. Here we intend to fix the computer code and re-calibrate the model. METHODS We corrected the affected difference equations and re-calibrated the revised model with experimental data using non-convex optimisation based on a L2 penalty. RESULTS The revised model outperforms the initial model in characterising the relative motor-evoked potential levels of TBS-induced after-effects in various conditions. CONCLUSIONS We corrected the inconsistencies in the previous model and computer code and provided a complete calibration to support the research that is based on it. SIGNIFICANCE This work improves the accuracy and secures the scope of the model, which is necessary to retain a rich body of research resulting from the model. Furthermore, this model provides both a quantitative model for several parameters of TBS and a basic model foundation for future refinement.
Collapse
Affiliation(s)
- Ke Ma
- Department of Engineering, School of Technology, University of Cambridge, Cambridge, United Kingdom.
| | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Stephan M Goetz
- Department of Engineering, School of Technology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
10
|
Eickhoff A, Tjaden J, Stahlke S, Vorgerd M, Theis V, Matschke V, Theiss C. Effects of progesterone on T-type-Ca 2+-channel expression in Purkinje cells. Neural Regen Res 2022; 17:2465-2471. [PMID: 35535898 PMCID: PMC9120685 DOI: 10.4103/1673-5374.339008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Plasticity of cerebellar Purkinje cells (PC) is influenced by progesterone via the classical progesterone receptors PR-A and PR-B by stimulating dendritogenesis, spinogenesis, and synaptogenesis in these cells. Dissociated PC cultures were used to analyze progesterone effects at a molecular level on the voltage-gated T-type-Ca2+-channels Cav3.1, Cav3.2, and Cav3.3 as they helped determine neuronal plasticity by regulating Ca2+-influx in neuronal cells. The results showed direct effects of progesterone on the mRNA expression of T-type-Ca2+-channels, as well as on the protein kinases A and C being involved in downstream signaling pathways that play an important role in neuronal plasticity. For the mRNA expression studies of T-type-Ca2+-channels and protein kinases of the signaling cascade, laser microdissection and purified PC cultures of different maturation stages were used. Immunohistochemical staining was also performed to characterize the localization of T-type-Ca2+-channels in PC. Experimental progesterone treatment was performed on the purified PC culture for 24 and 48 hours. Our results show that progesterone increases the expression of Cav3.1 and Cav3.3 and associated protein kinases A and C in PC at the mRNA level within 48 hours after treatment at latest. These effects extend the current knowledge of the function of progesterone in the central nervous system and provide an explanatory approach for its influence on neuronal plasticity.
Collapse
Affiliation(s)
- Annika Eickhoff
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| | - Jonas Tjaden
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| | - Sarah Stahlke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, Neuromuscular Center Ruhrgebiet, University Hospital Bergmannsheil, Ruhr-Universität Bochum, Bochum, Germany
| | - Verena Theis
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
11
|
Wu XL, Yan QJ, Zhu F. Abnormal synaptic plasticity and impaired cognition in schizophrenia. World J Psychiatry 2022; 12:541-557. [PMID: 35582335 PMCID: PMC9048451 DOI: 10.5498/wjp.v12.i4.541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/28/2021] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia (SCZ) is a severe mental illness that affects several brain domains with relation to cognition and behaviour. SCZ symptoms are typically classified into three categories, namely, positive, negative, and cognitive. The etiology of SCZ is thought to be multifactorial and poorly understood. Accumulating evidence has indicated abnormal synaptic plasticity and cognitive impairments in SCZ. Synaptic plasticity is thought to be induced at appropriate synapses during memory formation and has a critical role in the cognitive symptoms of SCZ. Many factors, including synaptic structure changes, aberrant expression of plasticity-related genes, and abnormal synaptic transmission, may influence synaptic plasticity and play vital roles in SCZ. In this article, we briefly summarize the morphology of the synapse, the neurobiology of synaptic plasticity, and the role of synaptic plasticity, and review potential mechanisms underlying abnormal synaptic plasticity in SCZ. These abnormalities involve dendritic spines, postsynaptic density, and long-term potentiation-like plasticity. We also focus on cognitive dysfunction, which reflects impaired connectivity in SCZ. Additionally, the potential targets for the treatment of SCZ are discussed in this article. Therefore, understanding abnormal synaptic plasticity and impaired cognition in SCZ has an essential role in drug therapy.
Collapse
Affiliation(s)
- Xiu-Lin Wu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Qiu-Jin Yan
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Fan Zhu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
12
|
Xia P, Zheng Y, Dong L, Tian C. Short-Term Extremely Low-Frequency Electromagnetic Field Inhibits Synaptic Plasticity of Schaffer Collateral-CA1 Synapses in Rat Hippocampus via the Ca 2+/Calcineurin Pathway. ACS Chem Neurosci 2021; 12:3550-3557. [PMID: 34498467 DOI: 10.1021/acschemneuro.1c00500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this study, we investigate the intrinsic mechanism by which an extremely low-frequency electromagnetic field (ELF-EMF) influences neurons in the Schaffer collateral-CA1 (SC-CA1) region of rat hippocampus using electrophysiological techniques. ELF-EMF has an interesting effect on synaptic plasticity: it weakens long-term potentiation and enhances long-term depression. Here, the magnetic field effect disappeared after a blockade of voltage-gated calcium channels and calcineurin, which are key components in the Ca2+/calcineurin pathway, with two blockers, cadmium chloride and cyclosporin A. This fully establishes that the effect of ELF-EMF on synaptic plasticity is mediated by the Ca2+/calcineurin pathway and represents a novel technique for studying the specific mechanisms of action of ELF-EMF on learning and memory.
Collapse
Affiliation(s)
- Pei Xia
- School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Yu Zheng
- School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Lei Dong
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300387, China
| | - Chunxiao Tian
- School of Life Sciences, Tiangong University, Tianjin 300387, China
| |
Collapse
|
13
|
Dulewicz M, Kulczyńska-Przybik A, Słowik A, Borawska R, Mroczko B. Neurogranin and Neuronal Pentraxin Receptor as Synaptic Dysfunction Biomarkers in Alzheimer's Disease. J Clin Med 2021; 10:jcm10194575. [PMID: 34640593 PMCID: PMC8509697 DOI: 10.3390/jcm10194575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/24/2022] Open
Abstract
Synaptic loss and dysfunction are one of the earliest signs of neurodegeneration associated with cognitive decline in Alzheimer’s disease (AD). It seems that by assessing proteins related to synapses, one may reflect their dysfunction and improve the understanding of neurobiological processes in the early stage of the disease. To our best knowledge, this is the first study that analyzes the CSF concentrations of two synaptic proteins together, such as neurogranin (Ng) and neuronal pentraxins receptor (NPTXR) in relation to neurochemical dementia biomarkers in Alzheimer’s disease. Methods: Ng, NPTXR and classical AD biomarkers concentrations were measured in the CSF of patients with AD and non-demented controls (CTRL) using an enzyme-linked immunosorbent assay (ELISA) and Luminex xMAP technology. Results: The CSF level of Ng was significantly higher, whereas the NPTXR was significantly lower in the AD patients than in cognitively healthy controls. As a first, we calculated the NPTXR/Ng ratio as an indicator of synaptic disturbance. The patients with AD presented a significantly decreased NPTXR/Ng ratio. The correlation was observed between both proteins in the AD and the whole study group. Furthermore, the relationship between the Ng level and pTau181 was found in the AD group of patients. Conclusions: The Ng and NPTXR concentrations in CSF are promising synaptic dysfunction biomarkers reflecting pathological changes in AD.
Collapse
Affiliation(s)
- Maciej Dulewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.-P.); (R.B.); (B.M.)
- Correspondence:
| | - Agnieszka Kulczyńska-Przybik
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.-P.); (R.B.); (B.M.)
| | - Agnieszka Słowik
- Department of Neurology, Jagiellonian University, 30-688 Krakow, Poland;
| | - Renata Borawska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.-P.); (R.B.); (B.M.)
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.-P.); (R.B.); (B.M.)
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
14
|
Lee K, Lee S. A nanoscale Cu 2-xSe ultrathin film deposited via atomic layer deposition and its memristive effects. NANOTECHNOLOGY 2021; 32:245202. [PMID: 33764902 DOI: 10.1088/1361-6528/abea36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An ultrathin film of copper selenide 50 nm thick was deposited using a home-made atomic layer deposition apparatus. Synthesized copper pivalate and bis(triethylsilyl) selenide precursors were used. The deposition rate at 160 °C was 0.48 Å per atomic layer deposition cycle. The thickness was monitored by an in situ ellipsometer and further analyzed by an atomic force microscope. The composition and structure of the film were confirmed by x-ray photoelectron spectroscopy, Raman spectroscopy, and x-ray diffraction to be Cu1.16Se. The fluorine-doped tin oxide/Cu1.16Se/tungsten wire memristor was fabricated and its memristive effect was investigated. The non-linear I-V curve and spike-timing-dependent plasticity of our Cu1.16Se memristor demonstrate that the short-term and long-term potentiation that occurs in a human brain can be mimicked by adjusting voltage-pulse intervals. A memristor is the electrical equivalent of a synapse. Our memristor has a 1 ms switching time, a 400 s retention time, Roff/on = 2, and reproducibility over 1000 cycles.
Collapse
Affiliation(s)
- Kyungsub Lee
- School of Chemistry, Seoul National University, Gwanak-Ro 1, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | | |
Collapse
|
15
|
The Potential of Corticospinal-Motoneuronal Plasticity for Recovery after Spinal Cord Injury. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2020; 8:293-298. [PMID: 33777502 DOI: 10.1007/s40141-020-00272-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose of review This review focuses on a relatively new neuromodulation method where transcranial magnetic stimulation over the primary motor cortex is paired with transcutaneous electrical stimulation over a peripheral nerve to induce plasticity at corticospinal-motoneuronal synapses. Recent findings Recovery of sensorimotor function after spinal cord injury largely depends on transmission in the corticospinal pathway. Significantly damaged corticospinal axons fail to regenerate and participate in functional recovery. Transmission in residual corticospinal axons can be assessed using non-invasive transcranial magnetic stimulation which combined with transcutaneous electrical stimulation can be used to improve voluntary motor output, as was recently demonstrated in clinical studies in humans with chronic incomplete spinal cord injury. These two stimuli are applied at precise inter-stimulus intervals to reinforce corticospinal synaptic transmission using principles of spike-timing dependent plasticity. Summary We discuss the neural mechanisms and application of this neuromodulation technique and its potential therapeutic effect on recovery of function in humans with chronic spinal cord injury.
Collapse
|
16
|
Oliver KF, Wahl AM, Dick M, Toenges JA, Kiser JN, Galliou JM, Moraes JGN, Burns GW, Dalton J, Spencer TE, Neibergs HL. Genomic Analysis of Spontaneous Abortion in Holstein Heifers and Primiparous Cows. Genes (Basel) 2019; 10:genes10120954. [PMID: 31766405 PMCID: PMC6969913 DOI: 10.3390/genes10120954] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022] Open
Abstract
Background: The objectives of this study were to identify loci, positional candidate genes, gene-sets, and pathways associated with spontaneous abortion (SA) in cattle and compare these results with previous human SA studies to determine if cattle are a good SA model for humans. Pregnancy was determined at gestation day 35 for Holstein heifers and cows. Genotypes from 43,984 SNPs of 499 pregnant heifers and 498 pregnant cows that calved at full term (FT) were compared to 62 heifers and 28 cows experiencing SA. A genome-wide association analysis, gene-set enrichment analysis–single nucleotide polymorphism, and ingenuity pathway analysis were used to identify regions, pathways, and master regulators associated with SA in heifers, cows, and a combined population. Results: Twenty-three loci and 21 positional candidate genes were associated (p < 1 × 10−5) with SA and one of these (KIR3DS1) has been associated with SA in humans. Eight gene-sets (NES > 3.0) were enriched in SA and one was previously reported as enriched in human SA. Four master regulators (p < 0.01) were associated with SA within two populations. Conclusions: One locus associated with SA was validated and 39 positional candidate and leading-edge genes and 2 gene-sets were enriched in SA in cattle and in humans.
Collapse
Affiliation(s)
- Kayleen F. Oliver
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 646310, USA; (K.F.O.); (A.M.W.); (M.D.); (J.A.T.); (J.N.K.); (J.M.G.)
| | - Alexandria M. Wahl
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 646310, USA; (K.F.O.); (A.M.W.); (M.D.); (J.A.T.); (J.N.K.); (J.M.G.)
| | - Mataya Dick
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 646310, USA; (K.F.O.); (A.M.W.); (M.D.); (J.A.T.); (J.N.K.); (J.M.G.)
| | - Jewel A. Toenges
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 646310, USA; (K.F.O.); (A.M.W.); (M.D.); (J.A.T.); (J.N.K.); (J.M.G.)
| | - Jennifer N. Kiser
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 646310, USA; (K.F.O.); (A.M.W.); (M.D.); (J.A.T.); (J.N.K.); (J.M.G.)
| | - Justine M. Galliou
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 646310, USA; (K.F.O.); (A.M.W.); (M.D.); (J.A.T.); (J.N.K.); (J.M.G.)
| | - Joao G. N. Moraes
- Animal Sciences Research Center, Division of Animal Sciences, University of Missouri, Columbia, MO S158A, USA (G.W.B.); (T.E.S.)
| | - Gregory W. Burns
- Animal Sciences Research Center, Division of Animal Sciences, University of Missouri, Columbia, MO S158A, USA (G.W.B.); (T.E.S.)
| | - Joseph Dalton
- Department of Animal and Veterinary Sciences, University of Idaho, Caldwell, ID 1904 E, USA;
| | - Thomas E. Spencer
- Animal Sciences Research Center, Division of Animal Sciences, University of Missouri, Columbia, MO S158A, USA (G.W.B.); (T.E.S.)
| | - Holly L. Neibergs
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 646310, USA; (K.F.O.); (A.M.W.); (M.D.); (J.A.T.); (J.N.K.); (J.M.G.)
- Correspondence: ; Tel.: +1-1509-335-6491
| |
Collapse
|
17
|
Zheng Y, Ma XX, Dong L, Ma W, Cheng JH. Effects of uninterrupted sinusoidal LF-EMF stimulation on LTP induced by different combinations of TBS/HFS at the Schaffer collateral-CA1 of synapses. Brain Res 2019; 1725:146487. [PMID: 31580873 DOI: 10.1016/j.brainres.2019.146487] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 08/31/2019] [Accepted: 09/29/2019] [Indexed: 10/25/2022]
Abstract
Long-term potentiation (LTP) is an important aspect of synaptic plasticity and is one of the main mechanisms involved in memory. Low-frequency electromagnetic fields (LF-EMFs) such as transcranial magnetic stimulation are emerging neuromodulation tools for the regulation of LTP. However, whether LF-EMFs have different effects on different types of LTP has not yet been verified. Herein, we studied the regulatory effects of 15 Hz/2 mT sinusoidal magnetic field as pre-magnetic stimulation on several types of LTP, which were induced by theta-burst(TBS) or high-frequency stimulation (HFS) or some combination of them, and applied N-methyl-D-aspartate receptor(NMDAR) antagonists to observe the relationship between the regulation of LTP by LF-EMFs and NMDAR in the Schaffer collateral pathway of rat brain slices in vitro. The results presented in this paper are the performance of TBS and HFS was not exactly the same and the recovery speed of TBS-LTP was faster than HFS-LTP after receiving the regulation of LF-EMFs; moreover, the LTP level was affected by the order of combination and the effect of pre-magnetic stimulation could maintain the entire process of the combined induction experiment, while NMDAR antagonists could not completely offset the influence of LF-EMFs. The memory patterns are diverse, and this study has shown LF-EMFs can regulate LTP such as TBS-LTP and HFS-LTP and can continuously affect multiple LTP induction processes. However, different memory processes may have different performance in the face of LF-EMFs regulation. In terms of the mechanism of LF-EMFs-induced LTP regulation, NMDARs may be involved in the process of LF-EMF regulation of LTP, but are not the only factor.
Collapse
Affiliation(s)
- Yu Zheng
- School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Xiao-Xu Ma
- School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Lei Dong
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Wei Ma
- School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Jian-Hao Cheng
- School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| |
Collapse
|
18
|
Hu E, Mergenthal A, Bingham CS, Song D, Bouteiller JM, Berger TW. A Glutamatergic Spine Model to Enable Multi-Scale Modeling of Nonlinear Calcium Dynamics. Front Comput Neurosci 2018; 12:58. [PMID: 30100870 PMCID: PMC6072875 DOI: 10.3389/fncom.2018.00058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 07/05/2018] [Indexed: 11/30/2022] Open
Abstract
In synapses, calcium is required for modulating synaptic transmission, plasticity, synaptogenesis, and synaptic pruning. The regulation of calcium dynamics within neurons involves cellular mechanisms such as synaptically activated channels and pumps, calcium buffers, and calcium sequestrating organelles. Many experimental studies tend to focus on only one or a small number of these mechanisms, as technical limitations make it difficult to observe all features at once. Computational modeling enables incorporation of many of these properties together, allowing for more complete and integrated studies. However, the scale of existing detailed models is often limited to synaptic and dendritic compartments as the computational burden rapidly increases when these models are integrated in cellular or network level simulations. In this article we present a computational model of calcium dynamics at the postsynaptic spine of a CA1 pyramidal neuron, as well as a methodology that enables its implementation in multi-scale, large-scale simulations. We first present a mechanistic model that includes individually validated models of various components involved in the regulation of calcium at the spine. We validated our mechanistic model by comparing simulated calcium levels to experimental data found in the literature. We performed additional simulations with the mechanistic model to determine how the simulated calcium activity varies with respect to presynaptic-postsynaptic stimulation intervals and spine distance from the soma. We then developed an input-output (IO) model that complements the mechanistic calcium model and provide a computationally efficient representation for use in larger scale modeling studies; we show the performance of the IO model compared to the mechanistic model in terms of accuracy and speed. The models presented here help achieve two objectives. First, the mechanistic model provides a comprehensive platform to describe spine calcium dynamics based on individual contributing factors. Second, the IO model is trained on the main dynamical features of the mechanistic model and enables nonlinear spine calcium modeling on the cell and network level simulation scales. Utilizing both model representations provide a multi-level perspective on calcium dynamics, originating from the molecular interactions at spines and propagating the effects to higher levels of activity involved in network behavior.
Collapse
Affiliation(s)
- Eric Hu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Adam Mergenthal
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Clayton S Bingham
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Dong Song
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Jean-Marie Bouteiller
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Theodore W Berger
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
19
|
Long-Term Depression Is Independent of GluN2 Subunit Composition. J Neurosci 2018; 38:4462-4470. [PMID: 29593052 DOI: 10.1523/jneurosci.0394-18.2018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 11/21/2022] Open
Abstract
NMDA receptors (NMDARs) mediate both long-term potentiation and long-term depression (LTD) and understanding how a single receptor can initiate both phenomena remains a major question in neuroscience. A prominent hypothesis implicates the NMDAR subunit composition, specifically GluN2A and GluN2B, in dictating the rules of synaptic plasticity. However, studies testing this hypothesis have yielded inconsistent and often contradictory results, especially for LTD. These inconsistent results may be due to challenges in the interpretation of subunit-selective pharmacology and in dissecting out the contributions of differential channel properties versus the interacting proteins unique to GluN2A or GluN2B. In this study, we address the pharmacological and biochemical challenges by using a single-neuron genetic approach to delete NMDAR subunits in conditional knock-out mice. In addition, the recently discovered non-ionotropic nature of NMDAR-dependent LTD allowed the rigorous assessment of unique subunit contributions to NMDAR-dependent LTD while eliminating the variable of differential charge transfer. Here we find that neither the GluN2A nor the GluN2B subunit is strictly necessary for either non-ionotropic or ionotropic LTD.SIGNIFICANCE STATEMENT NMDA receptors are key regulators of bidirectional synaptic plasticity. Understanding the mechanisms regulating bidirectional plasticity will guide development of therapeutic strategies to treat the dysfunctional synaptic plasticity in multiple neuropsychiatric disorders. Because of the unique properties of the NMDA receptor GluN2 subunits, they have been postulated to differentially affect synaptic plasticity. However, there has been significant controversy regarding the roles of the GluN2 subunits in synaptic long term depression (LTD). Using single-neuron knock-out of the GluN2 subunits, we show that LTD requires neither GluN2A nor GluN2B.
Collapse
|
20
|
Molecular mechanisms of detection and discrimination of dynamic signals. Sci Rep 2018; 8:2480. [PMID: 29410522 PMCID: PMC5802782 DOI: 10.1038/s41598-018-20842-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/24/2018] [Indexed: 12/25/2022] Open
Abstract
Many molecules decode not only the concentration of cellular signals, but also their temporal dynamics. However, little is known about the mechanisms that underlie the detection and discrimination of dynamic signals. We used computational modelling of the interaction of a ligand with multiple targets to investigate how kinetic and thermodynamic parameters regulate their capabilities to respond to dynamic signals. Our results demonstrated that the detection and discrimination of temporal features of signal inputs occur for reactions proceeding outside mass-action equilibrium. For these reactions, thermodynamic parameters such as affinity do not predict their outcomes. Additionally, we showed that, at non-equilibrium, the association rate constants determine the amount of product formed in reversible reactions. In contrast, the dissociation rate constants regulate the time interval required for reversible reactions to achieve equilibrium and, consequently, control their ability to detect and discriminate dynamic features of cellular signals.
Collapse
|
21
|
Díez-García A, Barros-Zulaica N, Núñez Á, Buño W, Fernández de Sevilla D. Bidirectional Hebbian Plasticity Induced by Low-Frequency Stimulation in Basal Dendrites of Rat Barrel Cortex Layer 5 Pyramidal Neurons. Front Cell Neurosci 2017; 11:8. [PMID: 28203145 PMCID: PMC5285403 DOI: 10.3389/fncel.2017.00008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/12/2017] [Indexed: 11/15/2022] Open
Abstract
According to Hebb's original hypothesis (Hebb, 1949), synapses are reinforced when presynaptic activity triggers postsynaptic firing, resulting in long-term potentiation (LTP) of synaptic efficacy. Long-term depression (LTD) is a use-dependent decrease in synaptic strength that is thought to be due to synaptic input causing a weak postsynaptic effect. Although the mechanisms that mediate long-term synaptic plasticity have been investigated for at least three decades not all question have as yet been answered. Therefore, we aimed at determining the mechanisms that generate LTP or LTD with the simplest possible protocol. Low-frequency stimulation of basal dendrite inputs in Layer 5 pyramidal neurons of the rat barrel cortex induces LTP. This stimulation triggered an EPSP, an action potential (AP) burst, and a Ca2+ spike. The same stimulation induced LTD following manipulations that reduced the Ca2+ spike and Ca2+ signal or the AP burst. Low-frequency whisker deflections induced similar bidirectional plasticity of action potential evoked responses in anesthetized rats. These results suggest that both in vitro and in vivo similar mechanisms regulate the balance between LTP and LTD. This simple induction form of bidirectional hebbian plasticity could be present in the natural conditions to regulate the detection, flow, and storage of sensorimotor information.
Collapse
Affiliation(s)
- Andrea Díez-García
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid Madrid, Spain
| | - Natali Barros-Zulaica
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid Madrid, Spain
| | - Ángel Núñez
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid Madrid, Spain
| | - Washington Buño
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain
| | - David Fernández de Sevilla
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de MadridMadrid, Spain; Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC)Madrid, Spain
| |
Collapse
|
22
|
Calcium threshold shift enables frequency-independent control of plasticity by an instructive signal. Proc Natl Acad Sci U S A 2016; 113:13221-13226. [PMID: 27799554 DOI: 10.1073/pnas.1613897113] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
At glutamatergic synapses, both long-term potentiation (LTP) and long-term depression (LTD) can be induced at the same synaptic activation frequency. Instructive signals determine whether LTP or LTD is induced, by modulating local calcium transients. Synapses maintain the ability to potentiate or depress over a wide frequency range, but it remains unknown how calcium-controlled plasticity operates when frequency variations alone cause differences in calcium amplitudes. We addressed this problem at cerebellar parallel fiber-Purkinje cell synapses, which can undergo LTD or LTP in response to 1-Hz and 100-Hz stimulation. We observed that high-frequency activation elicits larger spine calcium transients than low-frequency stimulation under all stimulus conditions, but, regardless of activation frequency, climbing fiber (CF) coactivation provides an instructive signal that further enhances calcium transients and promotes LTD. At both frequencies, buffering calcium prevents LTD induction and LTP results instead, identifying the enhanced calcium signal amplitude as the critical parameter contributed by the instructive CF signal. These observations show that it is not absolute calcium amplitudes that determine whether LTD or LTP is evoked but, instead, the LTD threshold slides, thus preserving the requirement for relatively larger calcium transients for LTD than for LTP induction at any given stimulus frequency. Cerebellar LTD depends on the activation of calcium/calmodulin-dependent kinase II (CaMKII). Using genetically modified (TT305/6VA and T305D) mice, we identified α-CaMKII inhibition upon autophosphorylation at Thr305/306 as a molecular event underlying the threshold shift. This mechanism enables frequency-independent plasticity control by the instructive CF signal based on relative, not absolute, calcium thresholds.
Collapse
|
23
|
Żakowski W. Neurochemistry of the Anterior Thalamic Nuclei. Mol Neurobiol 2016; 54:5248-5263. [DOI: 10.1007/s12035-016-0077-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/23/2016] [Indexed: 01/19/2023]
|
24
|
Abstract
Provocative emerging evidence suggests that the N-methyl-d-aspartate (NMDA) receptor can signal in the absence of ion flux through the receptor. This non-ionotropic signaling is thought to be due to agonist-induced conformational changes in the receptor, independently of channel opening. Non-ionotropic NMDA receptor signaling has been proposed to be sufficient to induce synaptic long-term depression (LTD), directly challenging the decades-old model that prolonged low-level calcium influx is required to induce LTD. Here, we briefly review these recent findings, focusing primarily on the potential role of non-ionotropic signaling in NMDA receptor-mediated LTD. Further reports concerning additional roles of non-ionotropic NMDA receptor signaling are also discussed. If validated, this new view of NMDA receptor-mediated signaling will usher in an exciting new era of exploring synapse function and dysfunction.
Collapse
Affiliation(s)
- John A Gray
- Center for Neuroscience, University of California, Davis, CA, USA; Department of Neurology, University of California, Davis, CA, USA
| | - Karen Zito
- Center for Neuroscience, University of California, Davis, CA, USA; Department of Neurobiology, Physiology & Behavior, University of California, Davis, CA, USA
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, CA, USA
| |
Collapse
|
25
|
Dietz B, Manahan-Vaughan D. Hippocampal long-term depression is facilitated by the acquisition and updating of memory of spatial auditory content and requires mGlu5 activation. Neuropharmacology 2016; 115:30-41. [PMID: 27055771 DOI: 10.1016/j.neuropharm.2016.02.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/22/2016] [Accepted: 02/22/2016] [Indexed: 12/21/2022]
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are key cellular processes that support memory formation. Whereas increases of synaptic strength by means of LTP may support the creation of a spatial memory 'engram', LTD appears to play an important role in refining and optimising experience-dependent encoding. A differentiation in the role of hippocampal subfields is apparent. For example, LTD in the dentate gyrus (DG) is enabled by novel learning about large visuospatial features, whereas in area CA1, it is enabled by learning about discrete aspects of spatial content, whereby, both discrete visuospatial and olfactospatial cues trigger LTD in CA1. Here, we explored to what extent local audiospatial cues facilitate information encoding in the form of LTD in these subfields. Coupling of low frequency afferent stimulation (LFS) with discretely localised, novel auditory tones in the sonic hearing, or ultrasonic range, facilitated short-term depression (STD) into LTD (>24 h) in CA1, but not DG. Re-exposure to the now familiar audiospatial configuration ca. 1 week later failed to enhance STD. Reconfiguration of the same audiospatial cues resulted anew in LTD when ultrasound, but not non-ultrasound cues were used. LTD facilitation that was triggered by novel exposure to spatially arranged tones, or to spatial reconfiguration of the same tones were both prevented by an antagonism of the metabotropic glutamate receptor, mGlu5. These data indicate that, if behaviourally salient enough, the hippocampus can use audiospatial cues to facilitate LTD that contributes to the encoding and updating of spatial representations. Effects are subfield-specific, and require mGlu5 activation, as is the case for visuospatial information processing. These data reinforce the likelihood that LTD supports the encoding of spatial features, and that this occurs in a qualitative and subfield-specific manner. They also support that mGlu5 is essential for synaptic encoding of spatial experience. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Collapse
Affiliation(s)
- Birte Dietz
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, 44780, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, 44780, Bochum, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, 44780, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, 44780, Bochum, Germany.
| |
Collapse
|
26
|
Hlushchenko I, Koskinen M, Hotulainen P. Dendritic spine actin dynamics in neuronal maturation and synaptic plasticity. Cytoskeleton (Hoboken) 2016; 73:435-41. [PMID: 26849484 DOI: 10.1002/cm.21280] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/27/2016] [Accepted: 01/27/2016] [Indexed: 11/09/2022]
Abstract
The majority of the postsynaptic terminals of excitatory synapses in the central nervous system exist on small bulbous structures on dendrites known as dendritic spines. The actin cytoskeleton is a structural element underlying the proper development and morphology of dendritic spines. Synaptic activity patterns rapidly change actin dynamics, leading to morphological changes in dendritic spines. In this mini-review, we will discuss recent findings on neuronal maturation and synaptic plasticity-induced changes in the dendritic spine actin cytoskeleton. We propose that actin dynamics in dendritic spines decrease through actin filament crosslinking during neuronal maturation. In long-term potentiation, we evaluate the model of fast breakdown of actin filaments through severing and rebuilding through polymerization and later stabilization through crosslinking. We will discuss the role of Ca(2+) in long-term depression, and suggest that actin filaments are dissolved through actin filament severing. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Iryna Hlushchenko
- Neuroscience Center, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Mikko Koskinen
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Pirta Hotulainen
- Neuroscience Center, University of Helsinki, Helsinki, Finland. .,Minerva Foundation Institute for Medical Research, Helsinki, Finland.
| |
Collapse
|
27
|
Abstract
UNLABELLED The elimination of dendritic spine synapses is a critical step in the refinement of neuronal circuits during development of the cerebral cortex. Several studies have shown that activity-induced shrinkage and retraction of dendritic spines depend on activation of the NMDA-type glutamate receptor (NMDAR), which leads to influx of extracellular calcium ions and activation of calcium-dependent phosphatases that modify regulators of the spine cytoskeleton, suggesting that influx of extracellular calcium ions drives spine shrinkage. Intriguingly, a recent report revealed a novel non-ionotropic function of the NMDAR in the regulation of synaptic strength, which relies on glutamate binding but is independent of ion flux through the receptor (Nabavi et al., 2013). Here, we tested whether non-ionotropic NMDAR signaling could also play a role in driving structural plasticity of dendritic spines. Using two-photon glutamate uncaging and time-lapse imaging of rat hippocampal CA1 neurons, we show that low-frequency glutamatergic stimulation results in shrinkage of dendritic spines even in the presence of the NMDAR d-serine/glycine binding site antagonist 7-chlorokynurenic acid (7CK), which fully blocks NMDAR-mediated currents and Ca(2+) transients. Notably, application of 7CK or MK-801 also converts spine enlargement resulting from a high-frequency uncaging stimulus into spine shrinkage, demonstrating that strong Ca(2+) influx through the NMDAR normally overcomes a non-ionotropic shrinkage signal to drive spine growth. Our results support a model in which NMDAR signaling, independent of ion flux, drives structural shrinkage at spiny synapses. SIGNIFICANCE STATEMENT Dendritic spine elimination is vital for the refinement of neural circuits during development and has been linked to improvements in behavioral performance in the adult. Spine shrinkage and elimination have been widely accepted to depend on Ca(2+) influx through NMDA-type glutamate receptors (NMDARs) in conjunction with long-term depression (LTD) of synaptic strength. Here, we use two-photon glutamate uncaging and time-lapse imaging to show that non-ionotropic NMDAR signaling can drive shrinkage of dendritic spines, independent of NMDAR-mediated Ca(2+) influx. Signaling through p38 MAPK was required for this activity-dependent spine shrinkage. Our results provide fundamental new insights into the signaling mechanisms that support experience-dependent changes in brain structure.
Collapse
|
28
|
Basu J, Siegelbaum SA. The Corticohippocampal Circuit, Synaptic Plasticity, and Memory. Cold Spring Harb Perspect Biol 2015; 7:7/11/a021733. [PMID: 26525152 DOI: 10.1101/cshperspect.a021733] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Synaptic plasticity serves as a cellular substrate for information storage in the central nervous system. The entorhinal cortex (EC) and hippocampus are interconnected brain areas supporting basic cognitive functions important for the formation and retrieval of declarative memories. Here, we discuss how information flow in the EC-hippocampal loop is organized through circuit design. We highlight recently identified corticohippocampal and intrahippocampal connections and how these long-range and local microcircuits contribute to learning. This review also describes various forms of activity-dependent mechanisms that change the strength of corticohippocampal synaptic transmission. A key point to emerge from these studies is that patterned activity and interaction of coincident inputs gives rise to associational plasticity and long-term regulation of information flow. Finally, we offer insights about how learning-related synaptic plasticity within the corticohippocampal circuit during sensory experiences may enable adaptive behaviors for encoding spatial, episodic, social, and contextual memories.
Collapse
Affiliation(s)
- Jayeeta Basu
- Department of Neuroscience and Physiology, NYU Neuroscience Institute, New York University School of Medicine, New York, New York 10016
| | - Steven A Siegelbaum
- Kavli Institute for Brain Science, Columbia University, New York, New York 10032 Department of Neuroscience, Columbia University, New York, New York 10032 Department of Pharmacology, Columbia University, New York, New York 10032
| |
Collapse
|
29
|
Chistiakova M, Bannon NM, Chen JY, Bazhenov M, Volgushev M. Homeostatic role of heterosynaptic plasticity: models and experiments. Front Comput Neurosci 2015; 9:89. [PMID: 26217218 PMCID: PMC4500102 DOI: 10.3389/fncom.2015.00089] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/25/2015] [Indexed: 12/15/2022] Open
Abstract
Homosynaptic Hebbian-type plasticity provides a cellular mechanism of learning and refinement of connectivity during development in a variety of biological systems. In this review we argue that a complimentary form of plasticity-heterosynaptic plasticity-represents a necessary cellular component for homeostatic regulation of synaptic weights and neuronal activity. The required properties of a homeostatic mechanism which acutely constrains the runaway dynamics imposed by Hebbian associative plasticity have been well-articulated by theoretical and modeling studies. Such mechanism(s) should robustly support the stability of operation of neuronal networks and synaptic competition, include changes at non-active synapses, and operate on a similar time scale to Hebbian-type plasticity. The experimentally observed properties of heterosynaptic plasticity have introduced it as a strong candidate to fulfill this homeostatic role. Subsequent modeling studies which incorporate heterosynaptic plasticity into model neurons with Hebbian synapses (utilizing an STDP learning rule) have confirmed its ability to robustly provide stability and competition. In contrast, properties of homeostatic synaptic scaling, which is triggered by extreme and long lasting (hours and days) changes of neuronal activity, do not fit two crucial requirements for a hypothetical homeostatic mechanism needed to provide stability of operation in the face of on-going synaptic changes driven by Hebbian-type learning rules. Both the trigger and the time scale of homeostatic synaptic scaling are fundamentally different from those of the Hebbian-type plasticity. We conclude that heterosynaptic plasticity, which is triggered by the same episodes of strong postsynaptic activity and operates on the same time scale as Hebbian-type associative plasticity, is ideally suited to serve a homeostatic role during on-going synaptic plasticity.
Collapse
Affiliation(s)
| | | | - Jen-Yung Chen
- Department of Cell Biology and Neuroscience, University of California, RiversideRiverside, CA, USA
| | - Maxim Bazhenov
- Department of Cell Biology and Neuroscience, University of California, RiversideRiverside, CA, USA
| | - Maxim Volgushev
- Department of Psychology, University of ConnecticutStorrs, CT, USA
| |
Collapse
|
30
|
Intensity sensitive modulation effect of theta burst form of median nerve stimulation on the monosynaptic spinal reflex. Neural Plast 2015; 2015:704849. [PMID: 25821603 PMCID: PMC4364050 DOI: 10.1155/2015/704849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/22/2015] [Indexed: 01/05/2023] Open
Abstract
The effects of electrical stimulation of median nerve with a continuous theta burst pattern (EcTBS) on the spinal H-reflex were studied. Different intensities and durations of EcTBS were given to the median nerve to 11 healthy individuals. The amplitude ratio of the H-reflex to maximum M wave (H/M ratio), corticospinal excitability and inhibition measured using motor evoked potentials (MEPs), short-interval intracortical inhibition and facilitation (SICI/ICF), spinal reciprocal inhibition (RI), and postactivation depression (PAD) were measured before and after EcTBS. In result, the H/M ratio was reduced followed by EcTBS at 90% H-reflex threshold, and the effect lasted longer after 1200 pulses than after 600 pulses of EcTBS. In contrast, EcTBS at 110% threshold facilitated the H/M ratio, while at 80% threshold it had no effect. Maximum M wave, MEPs, SICI/ICF, RI, and PAD all remained unchanged after EcTBS. In conclusion, EcTBS produced lasting effects purely on the H-reflex, probably, through effects on postsynaptic plasticity. The effect of EcTBS depends on the intensity and duration of stimulation. EcTBS is beneficial to research on mechanisms of human plasticity. Moreover, its ability to modulate spinal excitability is expected to have therapeutic benefits on neurological disorders involving spinal cord dysfunction.
Collapse
|
31
|
Abstract
Calcium plays a role in long-term plasticity by triggering postsynaptic signaling pathways for both the strengthening (LTP) and weakening (LTD) of synapses. Since these are opposing processes, several hypotheses have been developed to explain how calcium can trigger LTP in some situations and LTD in others. These hypotheses fall broadly into three categories, based on the amplitude of calcium concentration, the duration of the calcium elevation, and the location of the calcium influx. Here we review the experimental evidence for and against each of these hypotheses and the recent computational models utilizing each. We argue that with new experimental techniques for the precise visualization of calcium and new computational techniques for the modeling of calcium diffusion, it is time to take a new look at the location hypothesis.
Collapse
Affiliation(s)
- R C Evans
- George Mason University, The Krasnow Institute for Advanced Studies, MS 2A1, Fairfax, Virginia 22030-444
| | - K T Blackwell
- George Mason University, The Krasnow Institute for Advanced Studies, MS 2A1, Fairfax, Virginia 22030-444
| |
Collapse
|
32
|
Echeveste R, Gros C. Two-trace model for spike-timing-dependent synaptic plasticity. Neural Comput 2015; 27:672-98. [PMID: 25602766 DOI: 10.1162/neco_a_00707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We present an effective model for timing-dependent synaptic plasticity (STDP) in terms of two interacting traces, corresponding to the fraction of activated NMDA receptors and the [Formula: see text] concentration in the dendritic spine of the postsynaptic neuron. This model intends to bridge the worlds of existing simplistic phenomenological rules and highly detailed models, thus constituting a practical tool for the study of the interplay of neural activity and synaptic plasticity in extended spiking neural networks. For isolated pairs of pre- and postsynaptic spikes, the standard pairwise STDP rule is reproduced, with appropriate parameters determining the respective weights and timescales for the causal and the anticausal contributions. The model contains otherwise only three free parameters, which can be adjusted to reproduce triplet nonlinearities in hippocampal culture and cortical slices. We also investigate the transition from time-dependent to rate-dependent plasticity occurring for both correlated and uncorrelated spike patterns.
Collapse
Affiliation(s)
- Rodrigo Echeveste
- Institute for Theoretical Physics, Goethe University Frankfurt, Hessen 60438, Germany
| | | |
Collapse
|
33
|
Lu S, Zeng F, Dong W, Liu A, Li X, Luo J. Controlling Ion Conductance and Channels to Achieve Synaptic-like Frequency Selectivity. NANO-MICRO LETTERS 2015; 7:121-126. [PMID: 30464962 PMCID: PMC6223968 DOI: 10.1007/s40820-014-0024-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 11/18/2014] [Indexed: 05/08/2023]
Abstract
Enhancing ion conductance and controlling transport pathway in organic electrolyte could be used to modulate ionic kinetics to handle signals. In a Pt/Poly(3-hexylthiophene-2,5-diyl)/Polyethylene+LiCF3SO3/Pt hetero-junction, the electrolyte layer handled at high temperature showed nano-fiber microstructures accompanied with greatly improved salt solubility. Ions with high mobility were confined in the nano-fibrous channels leading to the semiconducting polymer layer, which is favorable for modulating dynamic doping at the semiconducting polymer/electrolyte interface by pulse frequency. Such a device realized synaptic-like frequency selectivity, i.e., depression at low frequency stimulation but potentiation at high-frequency stimulation.
Collapse
Affiliation(s)
- Siheng Lu
- Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, People’s Republic of China
| | - Fei Zeng
- Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, People’s Republic of China
| | - Wenshuai Dong
- Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, People’s Republic of China
| | - Ao Liu
- Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, People’s Republic of China
| | - Xiaojun Li
- Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, People’s Republic of China
| | - Jingting Luo
- Institute of Thin Film Physics and Applications, Shenzhen Key Laboratory of Sensor Technology, Shenzhen University, Shenzhen, People’s Republic of China
| |
Collapse
|
34
|
van Beugen BJ, Qiao X, Simmons DH, De Zeeuw CI, Hansel C. Enhanced AMPA receptor function promotes cerebellar long-term depression rather than potentiation. ACTA ACUST UNITED AC 2014; 21:662-7. [PMID: 25403454 PMCID: PMC4236409 DOI: 10.1101/lm.035220.114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ampakines are allosteric modulators of AMPA receptors that facilitate hippocampal long-term potentiation (LTP) and learning, and have been considered for the treatment of cognition and memory deficits. Here, we show that the ampakine CX546 raises the amplitude and slows the decay time of excitatory postsynaptic currents (EPSCs) at cerebellar parallel fiber (PF) to Purkinje cell synapses, thus resembling CX546 effects described at hippocampal synapses. Using the fluorescent calcium indicator dye Oregon Green BAPTA-2 and an ultra-high-speed CCD camera, we also monitored calcium transients in Purkinje cell dendrites. In the presence of CX546 in the bath, PF-evoked calcium transients were enhanced and prolonged, suggesting that CX546 not only enhances synaptic transmission, but also boosts dendritic calcium signaling at cerebellar synapses. In contrast to previous observations in the hippocampus, however, CX546 applied during cerebellar recordings facilitates long-term depression (LTD) rather than LTP at PF synapses. These findings show that ampakines selectively modify the LTP–LTD balance depending on the brain area and type of synapse, and may provide tools for the targeted regulation of synaptic memories.
Collapse
Affiliation(s)
- Boeke J van Beugen
- Department of Neuroscience, Erasmus University Medical Center, 3000 DR Rotterdam, The Netherlands Department of Neurobiology, University of Chicago, Chicago, Illinois 60637, USA
| | - Xin Qiao
- Department of Neuroscience, Erasmus University Medical Center, 3000 DR Rotterdam, The Netherlands
| | - Dana H Simmons
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637, USA
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus University Medical Center, 3000 DR Rotterdam, The Netherlands Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
| | - Christian Hansel
- Department of Neuroscience, Erasmus University Medical Center, 3000 DR Rotterdam, The Netherlands Department of Neurobiology, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
35
|
Higgins D, Graupner M, Brunel N. Memory maintenance in synapses with calcium-based plasticity in the presence of background activity. PLoS Comput Biol 2014; 10:e1003834. [PMID: 25275319 PMCID: PMC4183374 DOI: 10.1371/journal.pcbi.1003834] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/28/2014] [Indexed: 11/19/2022] Open
Abstract
Most models of learning and memory assume that memories are maintained in neuronal circuits by persistent synaptic modifications induced by specific patterns of pre- and postsynaptic activity. For this scenario to be viable, synaptic modifications must survive the ubiquitous ongoing activity present in neural circuits in vivo. In this paper, we investigate the time scales of memory maintenance in a calcium-based synaptic plasticity model that has been shown recently to be able to fit different experimental data-sets from hippocampal and neocortical preparations. We find that in the presence of background activity on the order of 1 Hz parameters that fit pyramidal layer 5 neocortical data lead to a very fast decay of synaptic efficacy, with time scales of minutes. We then identify two ways in which this memory time scale can be extended: (i) the extracellular calcium concentration in the experiments used to fit the model are larger than estimated concentrations in vivo. Lowering extracellular calcium concentration to in vivo levels leads to an increase in memory time scales of several orders of magnitude; (ii) adding a bistability mechanism so that each synapse has two stable states at sufficiently low background activity leads to a further boost in memory time scale, since memory decay is no longer described by an exponential decay from an initial state, but by an escape from a potential well. We argue that both features are expected to be present in synapses in vivo. These results are obtained first in a single synapse connecting two independent Poisson neurons, and then in simulations of a large network of excitatory and inhibitory integrate-and-fire neurons. Our results emphasise the need for studying plasticity at physiological extracellular calcium concentration, and highlight the role of synaptic bi- or multistability in the stability of learned synaptic structures. Synaptic plasticity is widely believed to be the main mechanism underlying learning and memory. In recent years, several mathematical plasticity rules have been shown to fit satisfactorily a wide range of experimental data in hippocampal and neocortical in vitro preparations. In particular, a model in which plasticity is driven by the postsynaptic calcium concentration was shown to reproduce successfully how synaptic changes depend on spike timing, specific spike patterns, and firing rate. The advantage of calcium-based rules is the possibility of predicting how changes in extracellular concentrations will affect plasticity. This is particularly significant in the view that in vitro studies are typically done at higher concentrations than the ones measured in vivo. Using such a rule, with parameters fitting in vitro data, we explore how long the memory of a particular synaptic change can be maintained in the presence of background neuronal activity, ubiquitously observed in cortex. We find that the memory time scales increase by several orders of magnitude when calcium concentrations are lowered from typical in vitro experiments to in vivo. Furthermore, we find that synaptic bistability further extends the memory time scale, and estimate that synaptic changes in vivo could be stable on the scale of weeks to months.
Collapse
Affiliation(s)
- David Higgins
- IBENS, École Normale Supérieure, Paris, France
- Departments of Statistics and Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| | - Michael Graupner
- Center for Neural Science, New York University, New York, New York, United States of America
| | - Nicolas Brunel
- Departments of Statistics and Neurobiology, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
36
|
Halstead JM, Lin YQ, Durraine L, Hamilton RS, Ball G, Neely GG, Bellen HJ, Davis I. Syncrip/hnRNP Q influences synaptic transmission and regulates BMP signaling at the Drosophila neuromuscular synapse. Biol Open 2014; 3:839-49. [PMID: 25171887 PMCID: PMC4163661 DOI: 10.1242/bio.20149027] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Synaptic plasticity involves the modulation of synaptic connections in response to neuronal activity via multiple pathways. One mechanism modulates synaptic transmission by retrograde signals from the post-synapse that influence the probability of vesicle release in the pre-synapse. Despite its importance, very few factors required for the expression of retrograde signals, and proper synaptic transmission, have been identified. Here, we identify the conserved RNA binding protein Syncrip as a new factor that modulates the efficiency of vesicle release from the motoneuron and is required for correct synapse structure. We show that syncrip is required genetically and its protein product is detected only in the muscle and not in the motoneuron itself. This unexpected non-autonomy is at least partly explained by the fact that Syncrip modulates retrograde BMP signals from the muscle back to the motoneuron. We show that Syncrip influences the levels of the Bone Morphogenic Protein ligand Glass Bottom Boat from the post-synapse and regulates the pre-synapse. Our results highlight the RNA-binding protein Syncrip as a novel regulator of synaptic output. Given its known role in regulating translation, we propose that Syncrip is important for maintaining a balance between the strength of presynaptic vesicle release and postsynaptic translation.
Collapse
Affiliation(s)
- James M Halstead
- Department of Biochemistry, South Parks Road, The University of Oxford, Oxford OX1 3QU, UK Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Yong Qi Lin
- Howard Hughes Medical Institute, Department of Molecular and Human Genetics, Department of Neuroscience, Program in Developmental Biology, Neurological Research Institute at Baylor College of Medicine, Houston, TX 77030, USA Neuroscience Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Lita Durraine
- Howard Hughes Medical Institute, Department of Molecular and Human Genetics, Department of Neuroscience, Program in Developmental Biology, Neurological Research Institute at Baylor College of Medicine, Houston, TX 77030, USA
| | - Russell S Hamilton
- Department of Biochemistry, South Parks Road, The University of Oxford, Oxford OX1 3QU, UK
| | - Graeme Ball
- Micron Imaging Facility, Department of Biochemistry, South Parks Road, The University of Oxford, Oxford OX1 3QU, UK
| | - Greg G Neely
- Neuroscience Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Hugo J Bellen
- Howard Hughes Medical Institute, Department of Molecular and Human Genetics, Department of Neuroscience, Program in Developmental Biology, Neurological Research Institute at Baylor College of Medicine, Houston, TX 77030, USA
| | - Ilan Davis
- Department of Biochemistry, South Parks Road, The University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
37
|
Ionotropic NMDA receptor signaling is required for the induction of long-term depression in the mouse hippocampal CA1 region. J Neurosci 2014; 34:5285-90. [PMID: 24719106 DOI: 10.1523/jneurosci.5419-13.2014] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Previous studies have provided strong support for the notion that NMDAR-mediated increases in postsynaptic Ca(2+) have a crucial role in the induction of long-term depression (LTD). This view has recently been challenged, however, by findings suggesting that LTD induction is instead attributable to an ion channel-independent, metabotropic form of NMDAR signaling. Thus, to explore the role of ionotropic versus metabotropic NMDAR signaling in LTD, we examined the effects of varying extracellular Ca(2+) levels or blocking NMDAR channel ion fluxes with MK-801 on LTD and NMDAR signaling in the mouse hippocampal CA1 region. We find that the induction of LTD in the adult hippocampus is highly sensitive to extracellular Ca(2+) levels and that MK-801 blocks NMDAR-dependent LTD in the hippocampus of both adult and immature mice. Moreover, MK-801 inhibits NMDAR-mediated activation of p38-MAPK and dephosphorylation of AMPAR GluA1 subunits at sites implicated in LTD. Thus, our results indicate that the induction of LTD in the hippocampal CA1 region is dependent on ionotropic, rather than metabotropic, NMDAR signaling.
Collapse
|
38
|
Roles for NF-κB and gene targets of NF-κB in synaptic plasticity, memory, and navigation. Mol Neurobiol 2013; 49:757-70. [PMID: 24122352 DOI: 10.1007/s12035-013-8555-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 09/19/2013] [Indexed: 01/04/2023]
Abstract
Although traditionally associated with immune function, the transcription factor nuclear factor kappa B (NF-κB) has garnered much attention in recent years as an important regulator of memory. Specifically, research has found that NF-κB, localized in both neurons and glia, is activated during the induction of long-term potentiation (LTP), a paradigm of synaptic plasticity and correlate of memory. Further, experimental manipulation of NF-κB activation or its blockade results in altered memory and spatial navigation abilities. Genetic knockout of specific NF-κB subunits in mice results in memory alterations. Collectively, such data suggest that NF-κB may be a requirement for memory, although the direction of the response (i.e., memory enhancement or deficit) is inconsistent. A limited number of gene targets of NF-κB have been recently identified in neurons, including neurotrophic factors, calcium-regulating proteins, other transcription factors, and molecules associated with neuronal outgrowth and remodeling. In turn, several key molecules are activators of NF-κB, including protein kinase C and [Ca(++)]i. Thus, NF-κB signaling is complex and under the regulation of numerous proteins involved in activity-dependent synaptic plasticity. The purpose of this review is to highlight the literature detailing a role for NF-κB in synaptic plasticity, memory, and spatial navigation. Secondly, this review will synthesize the research evaluating gene targets of NF-κB in synaptic plasticity and memory. Although there is ample evidence to suggest a critical role for NF-κB in memory, our understanding of its gene targets in neurons is limited and only beginning to be appreciated.
Collapse
|
39
|
Chung C. NMDA receptor as a newly identified member of the metabotropic glutamate receptor family: clinical implications for neurodegenerative diseases. Mol Cells 2013; 36:99-104. [PMID: 23740429 PMCID: PMC3887951 DOI: 10.1007/s10059-013-0113-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 12/17/2022] Open
Abstract
Recent reports have proposed a novel function for the N-methyl-D-aspartate (NMDA) receptor (NMDAR), a well-known excitatory, ionotropic receptor. A series of observations employing pharmacological techniques has proposed that upon ligand binding, this ionotropic receptor can actually function via signaling cascades independent of traditional ionotropic action. Moreover, the "metabotropic" action of NMDARs is suggested to mediate a form of synaptic plasticity, namely long-term synaptic depression (LTD), which shares cellular mechanisms with the synaptic deficits observed in Alzheimer's disease. Given that a growing body of clinical and preclinical evidence strongly recommends NMDAR antagonists for their therapeutic potentials and advantages in a variety of diseases, further investigation into their molecular and cellular mechanisms is required to better understand the "metabotropic" action of NMDARs.
Collapse
Affiliation(s)
- ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Korea.
| |
Collapse
|
40
|
Bar-Ilan L, Gidon A, Segev I. The role of dendritic inhibition in shaping the plasticity of excitatory synapses. Front Neural Circuits 2013; 6:118. [PMID: 23565076 PMCID: PMC3615258 DOI: 10.3389/fncir.2012.00118] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/19/2012] [Indexed: 11/17/2022] Open
Abstract
Using computational tools we explored the impact of local synaptic inhibition on the plasticity of excitatory synapses in dendrites. The latter critically depends on the intracellular concentration of calcium, which in turn, depends on membrane potential and thus on inhibitory activity in particular dendritic compartments. We systematically characterized the dependence of excitatory synaptic plasticity on dendritic morphology, loci and strength, as well as on the spatial distribution of inhibitory synapses and on the level of excitatory activity. Plasticity of excitatory synapses may attain three states: “protected” (unchanged), potentiated (long-term potentiation; LTP), or depressed (long-term depression; LTD). The transition between these three plasticity states could be finely tuned by synaptic inhibition with high spatial resolution. Strategic placement of inhibition could give rise to the co-existence of all three states over short dendritic branches. We compared the plasticity effect of the innervation patterns typical of different inhibitory subclasses—Chandelier, Basket, Martinotti, and Double Bouquet—in a detailed model of a layer 5 pyramidal cell. Our study suggests that dendritic inhibition plays a key role in shaping and fine-tuning excitatory synaptic plasticity in dendrites.
Collapse
Affiliation(s)
- Lital Bar-Ilan
- Department of Neurobiology, The Hebrew University of Jerusalem Israel
| | | | | |
Collapse
|
41
|
Żakowski W, Robak A. Developmental changes of calretinin immunoreactivity in the anterior thalamic nuclei of the guinea pig. J Chem Neuroanat 2013; 47:28-34. [DOI: 10.1016/j.jchemneu.2012.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/27/2012] [Accepted: 10/22/2012] [Indexed: 10/27/2022]
|
42
|
Li L, Stefan MI, Le Novère N. Calcium input frequency, duration and amplitude differentially modulate the relative activation of calcineurin and CaMKII. PLoS One 2012; 7:e43810. [PMID: 22962589 PMCID: PMC3433481 DOI: 10.1371/journal.pone.0043810] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 07/26/2012] [Indexed: 11/18/2022] Open
Abstract
NMDA receptor dependent long-term potentiation (LTP) and long-term depression (LTD) are two prominent forms of synaptic plasticity, both of which are triggered by post-synaptic calcium elevation. To understand how calcium selectively stimulates two opposing processes, we developed a detailed computational model and performed simulations with different calcium input frequencies, amplitudes, and durations. We show that with a total amount of calcium ions kept constant, high frequencies of calcium pulses stimulate calmodulin more efficiently. Calcium input activates both calcineurin and Ca2+/calmodulin-dependent protein kinase II (CaMKII) at all frequencies, but increased frequencies shift the relative activation from calcineurin to CaMKII. Irrespective of amplitude and duration of the inputs, the total amount of calcium ions injected adjusts the sensitivity of the system to calcium input frequencies. At a given frequency, the quantity of CaMKII activated is proportional to the total amount of calcium. Thus, an input of a small amount of calcium at high frequencies can induce the same activation of CaMKII as a larger amount, at lower frequencies. Finally, the extent of activation of CaMKII signals with high calcium frequency is further controlled by other factors, including the availability of calmodulin, and by the potency of phosphatase inhibitors.
Collapse
Affiliation(s)
| | | | - Nicolas Le Novère
- EMBL European Bioinformatics Institute, Hinxton, United Kingdom
- * E-mail:
| |
Collapse
|
43
|
Scarduzio M, Panichi R, Pettorossi VE, Grassi S. The repetition timing of high frequency afferent stimulation drives the bidirectional plasticity at central synapses in the rat medial vestibular nuclei. Neuroscience 2012; 223:1-11. [PMID: 22863673 DOI: 10.1016/j.neuroscience.2012.07.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 06/14/2012] [Accepted: 07/23/2012] [Indexed: 11/29/2022]
Abstract
In this study we show that high frequency stimulation (HFS, 100Hz) of afferent fibers to the medial vestibular nucleus (MVN) can induce opposite long-term modifications of synaptic responses in the type B neurons depending upon the stimulation pattern. Long burst stimulation (LBS: 2s) and short burst stimulation (SBS: 0.55s) were applied with different burst number (BN) and inter-burst intervals (IBI). It results that both LBS and SBS can induce either N-methyl-d aspartate receptors (NMDARs)-mediated long-term potentiation (LTP) or long-term depression (LTD), depending on temporal organization of repetitive bursts. In particular, the IBI plays a relevant role in guiding the shift from LTP to LTD since by using both LBS and SBS LTP is induced by shorter IBI than LTD. By contrast, the sign of long-term effect does not depend on the mean impulse frequency evaluated within the entire stimulation period. Therefore, the patterns of repetitive vestibular activation with different ratios between periods of increased activity and periods of basal activity may lead to LTP or LTD probably causing different levels of postsynaptic Ca(2+). On the whole, this study demonstrates that glutamatergic vestibular synapse in the MVN can undergo NMDAR-dependent bidirectional plasticity and puts forward a new aspect for understanding the adaptive and compensatory plasticity of the oculomotor responses.
Collapse
Affiliation(s)
- M Scarduzio
- Department of Internal Medicine, Section of Human Physiology, University of Perugia, Via del Giochetto, I-06126 Perugia, Italy
| | | | | | | |
Collapse
|
44
|
Analysis of neurotransmitter release mechanisms by photolysis of caged Ca²⁺ in an autaptic neuron culture system. Nat Protoc 2012; 7:1351-65. [PMID: 22722370 DOI: 10.1038/nprot.2012.074] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neurotransmitter release is triggered by membrane depolarization, Ca(2+) influx and Ca(2+) sensing by the release machinery, causing synaptic vesicle (SV) fusion with the plasma membrane. Interlinked is a complex membrane cycle in which vesicles are tethered to the release site, primed, fused and recycled. As many of these processes are Ca(2+) dependent and simultaneously occurring, it is difficult to dissect them experimentally. This problem can be partially circumvented by controlling synaptic Ca(2+) concentrations via UV photolysis of caged Ca(2+). We developed a culture protocol for Ca(2+) uncaging in small synapses on the basis of the generation of small glia cell islands with single neurons on top, which are sufficiently small to be covered with a UV-light flash. Neurons are loaded with the photolabile Ca(2+)-chelator nitrophenyl-EGTA and Ca(2+) indicators, and a UV flash is used to trigger Ca(2+)-uncaging and SV fusion. The protocol takes three weeks to complete and provides unprecedented insights into the mechanisms of transmitter release.
Collapse
|
45
|
Dynamic impact of temporal context of Ca²⁺ signals on inhibitory synaptic plasticity. Sci Rep 2011; 1:143. [PMID: 22355660 PMCID: PMC3216624 DOI: 10.1038/srep00143] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/14/2011] [Indexed: 11/14/2022] Open
Abstract
Neuronal activity-dependent synaptic plasticity, a basis for learning and memory, is tightly correlated with the pattern of increase in intracellular Ca2+ concentration ([Ca2+]i). Here, using combined application of electrophysiological experiments and systems biological simulation, we show that such a correlation dynamically changes depending on the context of [Ca2+]i increase. In a cerebellar Purkinje cell, long-term potentiation of inhibitory GABAA receptor responsiveness (called rebound potentiation; RP) was induced by [Ca2+]i increase in a temporally integrative manner through sustained activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII). However, the RP establishment was canceled by coupling of two patterns of RP-inducing [Ca2+]i increase depending on the temporal sequence. Negative feedback signaling by phospho-Thr305/306 CaMKII detected the [Ca2+]i context, and assisted the feedforward inhibition of CaMKII through PDE1, resulting in the RP impairment. The [Ca2+]i context-dependent dynamic regulation of synaptic plasticity might contribute to the temporal refinement of information flow in neuronal networks.
Collapse
|
46
|
Desai SA, Lnenicka GA. Characterization of postsynaptic Ca2+ signals at the Drosophila larval NMJ. J Neurophysiol 2011; 106:710-21. [PMID: 21593388 DOI: 10.1152/jn.00045.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Postsynaptic intracellular Ca(2+) concentration ([Ca(2+)](i)) has been proposed to play an important role in both synaptic plasticity and synaptic homeostasis. In particular, postsynaptic Ca(2+) signals can alter synaptic efficacy by influencing transmitter release, receptor sensitivity, and protein synthesis. We examined the postsynaptic Ca(2+) transients at the Drosophila larval neuromuscular junction (NMJ) by injecting the muscle fibers with Ca(2+) indicators rhod-2 and Oregon Green BAPTA-1 (OGB-1) and then monitoring their increased fluorescence during synaptic activity. We observed discrete postsynaptic Ca(2+) transients along the NMJ during single action potentials (APs) and quantal Ca(2+) transients produced by spontaneous transmitter release. Most of the evoked Ca(2+) transients resulted from the release of one or two quanta of transmitter and occurred largely at synaptic boutons. The magnitude of the Ca(2+) signals was correlated with synaptic efficacy; the Is terminals, which produce larger excitatory postsynaptic potentials (EPSPs) and have a greater quantal size than Ib terminals, produced a larger Ca(2+) signal per terminal length and larger quantal Ca(2+) signals than the Ib terminals. During a train of APs, the postsynaptic Ca(2+) signal increased but remained localized to the postsynaptic membrane. In addition, we showed that the plasma membrane Ca(2+)-ATPase (PMCA) played a role in extruding Ca(2+) from the postsynaptic region of the muscle. Drosophila melanogaster has a single PMCA gene, predicted to give rise to various isoforms by alternative splicing. Using RT-PCR, we detected the expression of multiple transcripts in muscle and nervous tissues; the physiological significance of the same is yet to be determined.
Collapse
Affiliation(s)
- Sunil A Desai
- Department of Biological Sciences, University at Albany, SUNY, Albany, NY 12222, USA
| | | |
Collapse
|
47
|
Huang YZ, Rothwell JC, Chen RS, Lu CS, Chuang WL. The theoretical model of theta burst form of repetitive transcranial magnetic stimulation. Clin Neurophysiol 2011; 122:1011-8. [PMID: 20869307 PMCID: PMC3046904 DOI: 10.1016/j.clinph.2010.08.016] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 08/28/2010] [Accepted: 08/30/2010] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Theta burst stimulation, a form of repetitive transcranial magnetic stimulation, can induce lasting changes in corticospinal excitability that are thought to involve long-term potentiation/depression (LTD/LTD)-like effects on cortical synapses. The pattern of delivery of TBS is crucial in determining the direction of change in synaptic efficiency. Previously we explained this by postulating (1) that a single burst of stimulation induces a mixture of excitatory and inhibitory effects and (2) those effects may cascade to produce long-lasting effects. Here we formalise those ideas into a simple mathematical model. METHODS The model is based on a simplified description of the glutamatergic synapse in which post-synaptic Ca(2+) entry initiates processes leading to different amount of potentiation and depression of synaptic transmission. The final effect on the synapse results from summation of the two effects. RESULTS The model using these assumptions can fit reported data. Metaplastic effects of voluntary contraction on the response to TBS can be incorporated by changing time constants in the model. CONCLUSIONS The pattern-dependent after-effects and interactions with voluntary contraction can be successfully modelled by using reasonable assumptions about known cellular mechanisms of plasticity. SIGNIFICANCE The model could provide insight into development of new plasticity induction protocols using TMS.
Collapse
Affiliation(s)
- Ying-Zu Huang
- Department of Neurology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taipei 10507, Taiwan.
| | | | | | | | | |
Collapse
|
48
|
Parvez S, Ramachandran B, Frey JU. Properties of subsequent induction of long-term potentiation and/or depression in one synaptic input in apical dendrites of hippocampal CA1 neurons in vitro. Neuroscience 2010; 171:712-20. [PMID: 20850506 DOI: 10.1016/j.neuroscience.2010.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 09/02/2010] [Accepted: 09/10/2010] [Indexed: 11/17/2022]
Abstract
The hippocampus is a prominent structure to study mechanisms of learning and memory at the cellular level. Long-term potentiation (LTP) as well as long-term depression (LTD) are the major cellular models which could underlie learning and memory formation. LTP and LTD consist of at least two phases, an early protein synthesis-independent transient stage (<4 h; E-LTP, E-LTD) as well as a prolonged phase (>4 h; L-LTP, L-LTD) requiring the synthesis of new proteins. It is known that during E-LTP the further induction of longer lasting LTP is precluded. However, if E-LTP is transformed into L-LTP, the same synapses now allow the induction of LTP again. We reproduced the LTP-results first and then investigated whether hippocampal LTP or LTD also prevents the establishment of subsequent LTD-induction in the same synaptic input. We show that the prior induction of LTP or LTD does not prevent a short-term depression (STD) but occludes LTD in apical dendrites of CA1 neurons in hippocampal slices in vitro during the early phase of LTP or LTD. However, LTD can again be induced in addition to STD after the establishment of L-LTP or L-LTD, that is about 4 h after the induction of the first event in the same synaptic input. We suggest that the neuronal input preserves the capacity for STD immediately after an initial potentiation or depression, but for the onset of additional longer lasting LTD in the same synaptic input, the establishment of the late plasticity form of the preceding event is critical.
Collapse
Affiliation(s)
- S Parvez
- Department of Neurophysiology, Leibniz-Institute for Neurobiology, Brenneckestrasse 6, 39118 Magdeburg, Germany
| | | | | |
Collapse
|
49
|
Rebesco JM, Stevenson IH, Körding KP, Solla SA, Miller LE. Rewiring neural interactions by micro-stimulation. Front Syst Neurosci 2010; 4. [PMID: 20838477 PMCID: PMC2936935 DOI: 10.3389/fnsys.2010.00039] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Accepted: 07/21/2010] [Indexed: 11/13/2022] Open
Abstract
Plasticity is a crucial component of normal brain function and a critical mechanism for recovery from injury. In vitro, associative pairing of presynaptic spiking and stimulus-induced postsynaptic depolarization causes changes in the synaptic efficacy of the presynaptic neuron, when activated by extrinsic stimulation. In vivo, such paradigms can alter the responses of whole groups of neurons to stimulation. Here, we used in vivo spike-triggered stimulation to drive plastic changes in rat forelimb sensorimotor cortex, which we monitored using a statistical measure of functional connectivity inferred from the spiking statistics of the neurons during normal, spontaneous behavior. These induced plastic changes in inferred functional connectivity depended on the latency between trigger spike and stimulation, and appear to reflect a robust reorganization of the network. Such targeted connectivity changes might provide a tool for rerouting the flow of information through a network, with implications for both rehabilitation and brain–machine interface applications.
Collapse
Affiliation(s)
- James M Rebesco
- Department of Physiology, Feinberg School of Medicine, Northwestern University Chicago, IL, USA
| | | | | | | | | |
Collapse
|
50
|
Involvement of inositol-1,4,5-trisphosphate receptors in the bidirectional synaptic plasticity induced in hippocampal CA1 neurons by 1–10 Hz low-frequency stimulation. Neuroscience 2010; 168:346-58. [DOI: 10.1016/j.neuroscience.2010.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 03/15/2010] [Accepted: 03/16/2010] [Indexed: 11/20/2022]
|