1
|
Jiang Z, Wang C, Du M, Cong R, Li A, Wang W, Zhang G, Li L. The Molecular Mechanism of Clock in Thermal Adaptation of Two Congeneric Oyster Species. Int J Mol Sci 2025; 26:1109. [PMID: 39940877 PMCID: PMC11817431 DOI: 10.3390/ijms26031109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Clock genes regulate physiological and metabolic processes by responding to changes in environmental light and temperature, and genetic variations in these genes may facilitate environmental adaptation, offering opportunities for resilience to climate change. However, the genetic and molecular mechanisms remain unclear in marine organisms. In this study, we investigated the role of a key clock gene, the circadian locomotor output cycles kaput (Clock), in thermal adaptation using DNA affinity purification sequencing (DAP-Seq) and RNA interference (RNAi)-based transcriptome analysis. In cold-adapted Crassostrea gigas and warm-adapted Crassostrea angulata, Clock was subject to environmental selection and exhibited contrasting expression patterns. The transcriptome analysis revealed 2054 differentially expressed genes (DEGs) following the knockdown of the Clock expression, while DAP-Seq identified 150,807 genes regulated by Clock, including 5273 genes located in promoter regions. The combined analyses identified 201 overlapping genes between the two datasets, of which 98 were annotated in public databases. These 98 genes displayed distinct expression patterns in C. gigas and C. angulata under heat stress, which were potentially regulated by Clock, indicating its role in a molecular regulatory network that responds to heat stress. Notably, a heat-shock protein 70 family gene (Hsp12b) and a tripartite motif-containing protein (Trim3) were significantly upregulated in C. angulata but showed no significant changes in C. gigas, further highlighting their critical roles in thermal adaptation. This study preliminarily constructs a thermal regulatory network involving Clock, providing insights into the molecular mechanisms of clock genes in thermal adaptation.
Collapse
Affiliation(s)
- Zhuxiang Jiang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Z.J.); (A.L.); (G.Z.)
- University of Chinese Academy of Sciences, Beijing 101408, China;
| | - Chaogang Wang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.W.); (R.C.); (W.W.)
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Mingyang Du
- University of Chinese Academy of Sciences, Beijing 101408, China;
| | - Rihao Cong
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.W.); (R.C.); (W.W.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266071, China
- Oyster Industrial Technology Institute of Zhanjiang, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524031, China
| | - Ao Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Z.J.); (A.L.); (G.Z.)
- University of Chinese Academy of Sciences, Beijing 101408, China;
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.W.); (R.C.); (W.W.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266071, China
- Oyster Industrial Technology Institute of Zhanjiang, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524031, China
| | - Wei Wang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.W.); (R.C.); (W.W.)
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| | - Guofan Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Z.J.); (A.L.); (G.Z.)
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.W.); (R.C.); (W.W.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266071, China
- Oyster Industrial Technology Institute of Zhanjiang, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524031, China
| | - Li Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Z.J.); (A.L.); (G.Z.)
- University of Chinese Academy of Sciences, Beijing 101408, China;
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.W.); (R.C.); (W.W.)
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
- Oyster Industrial Technology Institute of Zhanjiang, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524031, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| |
Collapse
|
2
|
Liu D, Liu L, Che X, Wu G. Discovery of paradoxical genes: reevaluating the prognostic impact of overexpressed genes in cancer. Front Cell Dev Biol 2025; 13:1525345. [PMID: 39911323 PMCID: PMC11794808 DOI: 10.3389/fcell.2025.1525345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025] Open
Abstract
Oncogenes are typically overexpressed in tumor tissues and often linked to poor prognosis. However, recent advancements in bioinformatics have revealed that many highly expressed genes in tumors are associated with better patient outcomes. These genes, which act as tumor suppressors, are referred to as "paradoxical genes." Analyzing The Cancer Genome Atlas (TCGA) confirmed the widespread presence of paradoxical genes, and KEGG analysis revealed their role in regulating tumor metabolism. Mechanistically, discrepancies between gene and protein expression-affected by pre- and post-transcriptional modifications-may drive this phenomenon. Mechanisms like upstream open reading frames and alternative splicing contribute to these inconsistencies. Many paradoxical genes modulate the tumor immune microenvironment, exerting tumor-suppressive effects. Further analysis shows that the stage- and tumor-specific expression of these genes, along with their environmental sensitivity, influence their dual roles in various signaling pathways. These findings highlight the importance of paradoxical genes in resisting tumor progression and maintaining cellular homeostasis, offering new avenues for targeted cancer therapy.
Collapse
Affiliation(s)
| | | | - Xiangyu Che
- *Correspondence: Guangzhen Wu, ; Xiangyu Che,
| | | |
Collapse
|
3
|
Li Q, Ge C, Li L. Quantitative DIA-based proteomics unveils ribosomal biogenesis pathways associated with increased final size in three-year-old Chinese mitten crab (Eriocheir sinensis). BMC Genomics 2025; 26:45. [PMID: 39825215 PMCID: PMC11740361 DOI: 10.1186/s12864-024-11202-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 12/31/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Temperature is a key determinant of ectotherms distribution and growth. During the Eriocheir sinensis breeding process, it was observed that crabs in high latitudes and altitude areas with low temperatures undergo diapause, they would overwinter and continue to grow into three-year-old individuals, whose final body size is significantly larger than the normal two-year-old crabs. The hepatopancreas is responsible for maintaining the nutritional balance and energy required for the crab survival. In this study, we aimed to compare the hepatopancreatic proteomic data between three-year-old and two-year-old crabs and clarify the relationship between genes and the final body size phenotype. RESULTS The analysis revealed that differentially expressed proteins were predominantly enriched in essential cellular processes such as ribosome, ribosome biogenesis, RNA degradation, proteasome, mRNA surveillance pathway, and RNA biogenesis. Increasing ribosome usage for protein biosynthesis was found to enhance the crab tolerance to low temperatures and extend their growth period. Simultaneously, the ubiquitin-proteasome pathway was primarily regulated to enhance the degradation of misfolded proteins induced by low temperatures, thus alleviating damage and ultimately resulting in a larger final size for the three-year-old crabs. CONCLUSION This study provides insights into how low temperatures contribute to individual body size differences and regulate the life cycle, providing a basis for the future artificial breeding of E. sinensis.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Ecological Protection and Restoration of Typical Plateau Wetlands, Bijie, Guizhou Province, 551700, China.
- College of Ecological Engineering, Guizhou University of Engineering Science, College Road, Bijie, Guizhou Province, 551700, China.
- Department of Biology, Carleton University, Ottawa, ON, K1S5B6, Canada.
| | - Chuanlong Ge
- Key Laboratory of Ecological Protection and Restoration of Typical Plateau Wetlands, Bijie, Guizhou Province, 551700, China
- College of Ecological Engineering, Guizhou University of Engineering Science, College Road, Bijie, Guizhou Province, 551700, China
| | - Lijuan Li
- Key Laboratory of Ecological Protection and Restoration of Typical Plateau Wetlands, Bijie, Guizhou Province, 551700, China
- College of Ecological Engineering, Guizhou University of Engineering Science, College Road, Bijie, Guizhou Province, 551700, China
| |
Collapse
|
4
|
Jing Y, Zhang T, Hu F, Liu G, Sun M. Single and combined effects of phenanthrene and cadmium on oxidative stress and detoxification related biomarkers in clams (Meretrix meretrix). Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110050. [PMID: 39378974 DOI: 10.1016/j.cbpc.2024.110050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Biomarkers concerning antioxidant reactions and detoxification metabolics were evaluated in Meretrix meretrix exposed to cadmium (Cd, 10 μg/L) and phenanthrene (PHE, 100 μg/L) individually and in combination (10 μg/L Cd + 100 μg/L PHE) for 7 days. The accumulation of Cd and PHE measured in the digestive gland, gill, mantle, and axe foot of the clam showed significant increase in combination treatment and it was higher than the single Cd or single PHE treatment. The activities of oxidative stress-related enzymes, the expression of Cu/Zn SOD, and the content of MDA increased after Cd and PHE exposure in the digestive gland and gill at most cases. In the digestive gland, CAT gene expression was significantly induced in Cd-single group and significantly inhibited in PHE-single group and Cd-PHE mixed group at both day 3 and day 7; in the gill, CAT gene expression was significantly inhibited in all groups at day 3 and except for Cd-single group at day 7. MT expression was significantly induced in Cd-single and Cd-PHE mixed groups at day 7, while hsp70 expression was significantly inhibited in PHE-single and Cd-PHE mixed groups at day 7. The results indicated that SOD, CAT, GST, MDA, Cu/Zn SOD, CAT, MT and hsp70 were sensitive to cadmium and PHE in a water environment, and can be used as indicators of marine heavy metal pollution.
Collapse
Affiliation(s)
- Yuanyuan Jing
- Marine Science Research Institute of Shandong Province (National Oceanographic Center, Qingdao), Key Laboratory of Benthic Fisheries Aquaculture and Enhancement, Qingdao 266104, PR China
| | - Tianwen Zhang
- Marine Science Research Institute of Shandong Province (National Oceanographic Center, Qingdao), Key Laboratory of Benthic Fisheries Aquaculture and Enhancement, Qingdao 266104, PR China
| | - Fanguang Hu
- Marine Science Research Institute of Shandong Province (National Oceanographic Center, Qingdao), Key Laboratory of Benthic Fisheries Aquaculture and Enhancement, Qingdao 266104, PR China
| | - Guangbin Liu
- Marine Science Research Institute of Shandong Province (National Oceanographic Center, Qingdao), Key Laboratory of Benthic Fisheries Aquaculture and Enhancement, Qingdao 266104, PR China
| | - Ming Sun
- Marine Science Research Institute of Shandong Province (National Oceanographic Center, Qingdao), Key Laboratory of Benthic Fisheries Aquaculture and Enhancement, Qingdao 266104, PR China.
| |
Collapse
|
5
|
Wu CC, Meyer DN, Haimbaugh A, Baker TR. Implications of Lead (Pb)-Induced Transcriptomic and Phenotypic Alterations in the Aged Zebrafish ( Danio rerio). TOXICS 2024; 12:745. [PMID: 39453165 PMCID: PMC11511149 DOI: 10.3390/toxics12100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Lead (Pb) is a well-known neurotoxin with established adverse effects on the neurological functions of children and younger adults, including motor, learning, and memory abilities. However, its potential impact on older adults has received less attention. Using the zebrafish model, our study aims to characterize the dose-response relationship between environmentally relevant Pb exposure levels and their effects on changes in behavior and transcriptomics during the geriatric periods. We exposed two-year-old zebrafish to waterborne lead acetate (1, 10, 100, 1000, or 10,000 µg/L) or a vehicle (DMSO) for 5 days. While lower concentrations (1-100 µg/L) reflect environmentally relevant Pb levels, higher concentrations (1000-10,000 µg/L) were included to assess acute toxicity under extreme exposure scenarios. We conducted adult behavior assessment to evaluate the locomotor activity following exposure. The same individual fish were subsequently sacrificed for brain dissection after a day of recovery in the aquatic system. RNA extraction and sequencing were then performed to evaluate the Pb-induced transcriptomic changes. Higher (1000-10,000 ug/L) Pb levels induced hyperactive locomotor patterns in aged zebrafish, while lower (10-100 ug/L) Pb levels resulted in the lowest locomotor activity compared to the control group. Exposure to 100 µg/L led to the highest number of differentially expressed genes (DEGs), while 10,000 µg/L induced larger fold changes in both directions. The neurological pathways impacted by Pb exposure include functions related to neurotransmission, such as cytoskeletal regulation and synaptogenesis, and oxidative stress response, such as mitochondrial dysfunction and downregulation of heat shock protein genes. These findings emphasize a U-shape dose-response relationship with Pb concentrations in locomotor activity and transcriptomic changes in the aging brain.
Collapse
Affiliation(s)
- Chia-Chen Wu
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, 1001, Daxue Rd, East District, Hsinchu City 300093, Taiwan;
- Department of Environmental and Global Health, University of Florida, 1225 Center Drive, Gainesville, FL 32610, USA; (D.N.M.)
| | - Danielle N. Meyer
- Department of Environmental and Global Health, University of Florida, 1225 Center Drive, Gainesville, FL 32610, USA; (D.N.M.)
- Department of Pharmacology, School of Medicine, Wayne State University, 540 E. Canfield, Detroit, MI 48201, USA
| | - Alex Haimbaugh
- Department of Environmental and Global Health, University of Florida, 1225 Center Drive, Gainesville, FL 32610, USA; (D.N.M.)
- Department of Pharmacology, School of Medicine, Wayne State University, 540 E. Canfield, Detroit, MI 48201, USA
| | - Tracie R. Baker
- Department of Environmental and Global Health, University of Florida, 1225 Center Drive, Gainesville, FL 32610, USA; (D.N.M.)
- Department of Pharmacology, School of Medicine, Wayne State University, 540 E. Canfield, Detroit, MI 48201, USA
- UF Genetics Institute, University of Florida, 2033 Mowry Road, Gainesville, FL 32610, USA
| |
Collapse
|
6
|
Xu S, Gierisch ME, Barchi E, Poser I, Alberti S, Salomons FA, Dantuma NP. Chemical inhibition of the integrated stress response impairs the ubiquitin-proteasome system. Commun Biol 2024; 7:1282. [PMID: 39379572 PMCID: PMC11461528 DOI: 10.1038/s42003-024-06974-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
Inhibitors of the integrated stress response (ISR) have been used to explore the potential beneficial effects of reducing the activation of this pathway in diseases. As the ISR is in essence a protective response, there is, however, a risk that inhibition may compromise the cell's ability to restore protein homeostasis. Here, we show that the experimental compound ISRIB impairs degradation of proteins by the ubiquitin-proteasome system (UPS) during proteotoxic stress in the cytosolic, but not nuclear, compartment. Accumulation of a UPS reporter substrate that is intercepted by ribosome quality control was comparable to the level observed after blocking the UPS with a proteasome inhibitor. Consistent with impairment of the cytosolic UPS, ISRIB treatment caused an accumulation of polyubiquitylated and detergent insoluble defective ribosome products (DRiPs) in the presence of puromycin. Our data suggest that the persistent protein translation during proteotoxic stress in the absence of a functional ISR increases the pool of DRiPs, thereby hindering the efficient clearance of cytosolic substrates by the UPS.
Collapse
Affiliation(s)
- Shanshan Xu
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Solnavägen 9, S-17165, Stockholm, Sweden
| | - Maria E Gierisch
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Solnavägen 9, S-17165, Stockholm, Sweden
| | - Enrica Barchi
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Solnavägen 9, S-17165, Stockholm, Sweden
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Open Sesame Therapeutics GmbH, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Florian A Salomons
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Solnavägen 9, S-17165, Stockholm, Sweden
| | - Nico P Dantuma
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Solnavägen 9, S-17165, Stockholm, Sweden.
| |
Collapse
|
7
|
Rai P, Bergmann A. Unraveling the intricate link between cell death and neuroinflammation using Drosophila as a model. Front Cell Dev Biol 2024; 12:1479864. [PMID: 39411483 PMCID: PMC11474694 DOI: 10.3389/fcell.2024.1479864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Protein aggregation is a common pathological occurrence in neurodegenerative diseases. This often leads to neuroinflammation, which exacerbates the aggregation and progression of diseases like Parkinson's and Alzheimer's. Here, we focus on immune responses and neurotoxicity in a Parkinson's disease model in Drosophila. Mutations in the SNCA gene that encodes the alpha (α)-Synuclein protein have been linked to familial Parkinson's disease, disrupting autophagy regulation in neuronal cells and promoting the formation of Lewy bodies, a hallmark of Parkinson's pathology. This results in the loss of dopaminergic neurons, manifesting as movement disorders. α-Synuclein aggregation triggers innate immune responses by activating microglial cells, leading to phagocytic activity and the expression of neuroprotective antimicrobial peptides (AMPs). However, sustained AMP expression or chronic inflammation resulting from inadequate microglial phagocytosis can induce neuronal toxicity and apoptosis, leading to severe dopaminergic neuron loss. This review underscores the mechanistic connection between immune response pathways and α-Synuclein-mediated neurodegeneration using Drosophila models. Furthermore, we extensively explore factors influencing neuroinflammation and key immune signaling pathways implicated in neurodegenerative diseases, particularly Parkinson's disease. Given the limited success of traditional treatments, recent research has focused on therapies targeting inflammatory signaling pathways. Some of these approaches have shown promising results in animal models and clinical trials. We provide an overview of current therapeutic strategies showing potential in treating neurodegenerative diseases, offering new avenues for future research and treatment development.
Collapse
|
8
|
Saravia J, Nualart D, Paschke K, Pontigo JP, Navarro JM, Vargas-Chacoff L. Temperature and immune challenges modulate the transcription of genes of the ubiquitin and apoptosis pathways in two high-latitude Notothenioid fish across the Antarctic Polar Front. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1429-1443. [PMID: 38658493 DOI: 10.1007/s10695-024-01348-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Thermal variations due to global climate change are expected to modify the distributions of marine ectotherms, with potential pathogen translocations. This is of particular concern at high latitudes where cold-adapted stenothermal fish such as the Notothenioids occur. However, little is known about the combined effects of thermal fluctuations and immune challenges on the balance between cell damage and repair processes in these fish. The aim of this study was to determine the effect of thermal variation on specific genes involved in the ubiquitination and apoptosis pathways in two congeneric Notothenioid species, subjected to simulated bacterial and viral infections. Adult fish of Harpagifer bispinis and Harpagifer antarcticus were collected from Punta Arenas (Chile) and King George Island (Antarctica), respectively, and distributed as follows: injected with PBS (control), LPS (2.5 mg/kg) or Poly I:C (2 mg/kg) and then submitted to 2, 5 and 8 °C. After 1 week, samples of gills, liver and spleen were taken to evaluate the expression by real-time PCR of specific genes involved in ubiquitination (E3-ligase enzyme) and apoptosis (BAX and SMAC/DIABLO). Gene expression was tissue-dependent and increased with increasing temperature in the gills and liver while showing an opposite pattern in the spleen. Studying a pair of sister species that occur across the Antarctic Polar Front can help us understand the particular pressures of intertidal lifestyles and the effect of temperature in combination with biological stressors on cell damage and repair capacity in a changing environment.
Collapse
Affiliation(s)
- Julia Saravia
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile.
- Laboratorio de Genómica y Ecología Molecular Antártica y Sub-Antártica (LAGEMAS), Universidad Austral de Chile, Valdivia, Chile.
- Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile.
- Millenium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, Universidad Austral de Chile, Valdivia, Chile.
| | - Daniela Nualart
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Escuela de Graduados, Programa de Doctorado en Ciencias de La Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
- Millenium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, Universidad Austral de Chile, Valdivia, Chile
| | - Kurt Paschke
- Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile
- Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - Juan Pablo Pontigo
- Laboratorio Institucional, Facultad de Ciencias de La Naturaleza, Universidad San Sebastián, Puerto Montt, Chile
| | - Jorge M Navarro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile.
- Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile.
- Millenium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
9
|
Fishman-Jacob T, Youdim MBH. A sporadic Parkinson's disease model via silencing of the ubiquitin-proteasome/E3 ligase component, SKP1A. J Neural Transm (Vienna) 2024; 131:675-707. [PMID: 37644186 PMCID: PMC11192832 DOI: 10.1007/s00702-023-02687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
Our and other's laboratory microarray-derived transcriptomic studies in human PD substantia nigra pars compacta (SNpc) samples have opened an avenue to concentrate on potential gene intersections or cross-talks along the dopaminergic (DAergic) neurodegenerative cascade in sporadic PD (SPD). One emerging gene candidate identified was SKP1A (p19, S-phase kinase-associated protein 1A), found significantly decreased in the SNpc as confirmed later at the protein level. SKP1 is part of the Skp1, Cullin 1, F-box protein (SCF) complex, the largest known class of sophisticated ubiquitin-proteasome/E3-ligases and was found to directly interact with FBXO7, a gene defective in PARK15-linked PD. This finding has led us to the hypothesis that a targeted site-specific reduction of Skp1 levels in DAergic neuronal cell culture and animal systems may result in a progressive loss of DAergic neurons and hopefully recreate motor disabilities in animals. The second premise considers the possibility that both intrinsic and extrinsic factors (e.g., manipulation of selected genes and mitochondria impairing toxins), alleged to play central roles in DAergic neurodegeneration in PD, may act in concert as modifiers of Skp1 deficiency-induced phenotype alterations ('dual-hit' hypothesis of neurodegeneration). To examine a possible role of Skp1 in DAergic phenotype, we have initially knocked down the expression of SKP1A gene in an embryonic mouse SN-derived cell line (SN4741) with short hairpin RNA (shRNA) lentiviruses (LVs). The deficiency of SKP1A closely recapitulated cardinal features of the DAergic pathology of human PD, such as decreased expression of DAergic phenotypic markers and cell cycle aberrations. Furthermore, the knocked down cells displayed a lethal phenotype when induced to differentiate exhibiting proteinaceous round inclusion structures, which were almost identical in composition to human Lewy bodies, a hallmark of PD. These findings support a role for Skp1 in neuronal phenotype, survival, and differentiation. The identification of Skp1 as a key player in DAergic neuron function suggested that a targeted site-specific reduction of Skp1 levels in mice SNpc may result in a progressive loss of DAergic neurons and terminal projections in the striatum. The injected LV SKP1shRNA to mouse SN resulted in decreased expression of Skp1 protein levels within DAergic neurons and loss of tyrosine hydroxylase immunoreactivity (TH-IR) in both SNpc and striatum that was accompanied by time-dependent motor disabilities. The reduction of the vertical movements, that is rearing, may be reminiscent of the early occurrence of hypokinesia and axial, postural instability in PD. According to the 'dual-hit' hypothesis of neurodegenerative diseases, it is predicted that gene-gene and/or gene-environmental factors would act in concert or sequentially to propagate the pathological process of PD. Our findings are compatible with this conjecture showing that the genetic vulnerability caused by knock down of SKP1A renders DAergic SN4741 cells especially sensitive to genetic reduction of Aldh1 and exposure to the external stressors MPP+ and DA, which have been implicated in PD pathology. Future consideration should be given in manipulation SKP1A expression as therapeutic window, via its induction genetically or pharmacological, to prevent degeneration of the nigra striatal dopamine neurons, since UPS is defective.
Collapse
Affiliation(s)
- Tali Fishman-Jacob
- Youdim Pharmaceutical Ltd, New Northern Industrial Park, 1 Ha- Tsmikha St, Stern Building, Fl-3, P. O. Box 72, 2069207, Yokneam, Israel
| | - Moussa B H Youdim
- Youdim Pharmaceutical Ltd, New Northern Industrial Park, 1 Ha- Tsmikha St, Stern Building, Fl-3, P. O. Box 72, 2069207, Yokneam, Israel.
| |
Collapse
|
10
|
Sriaishwarya S, Lakshmi BS. RAD23B mediated proteasomal degradation occurs through p38 MAPK/ATF-2/RAD23B axis under nutrient-deprived conditions in breast cancer. Cell Biol Int 2024. [PMID: 38561940 DOI: 10.1002/cbin.12160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/20/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Metabolic reprogramming in cancer occurs due to interaction of cells with the surrounding tumor microenvironment. In the microenvironment of solid tumors, nutrient deprivation is induced by high consumption of nutrients and insufficient vasculature. Tumor cells alter their metabolic strategies to adapt to the microenvironment. To understand the role of these metabolic changes, in the current study, we have mimicked nutrient deprivation condition in vitro to evaluate the associated signaling pathways in breast cancer cells. In our study, we have shown that nutritional deprivation activated p38 MAPK and activating transcription factor-2 (ATF-2) by increased phosphorylation of Thr180/Tyr182 and Thr71, respectively, in breast cancer cells. Pharmacological inhibition of p38 MAPK showed increased cell viability and reduced expression of ATF-2 and RAD23B under nutrient starvation conditions. Further, silencing of ATF-2 showed increased cell viability and decreased expression of RAD23B under nutrient starvation conditions. This suggests the involvement of p38 MAPK/ATF-2/RAD23B axis as a signaling pathway under nutrition starvation in breast cancer cells. The RAD23B mediated proteasome activity was shown to be much higher under stress conditions indicating a crucial role of RAD23B as a target for breast cancer.
Collapse
Affiliation(s)
| | - Baddireddi Subhadra Lakshmi
- Department of Biotechnology, Anna University, Chennai, Tamil Nadu, India
- Centre for Food Technology, Anna University, Chennai, Tamil Nadu, India
| |
Collapse
|
11
|
Kim H, Jo JH, Lee HG, Park W, Lee HK, Park JE, Shin D. Inflammatory response in dairy cows caused by heat stress and biological mechanisms for maintaining homeostasis. PLoS One 2024; 19:e0300719. [PMID: 38527055 PMCID: PMC10962848 DOI: 10.1371/journal.pone.0300719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 03/04/2024] [Indexed: 03/27/2024] Open
Abstract
Climate change increases global temperatures, which is lethal to both livestock and humans. Heat stress is known as one of the various livestock stresses, and dairy cows react sensitively to high-temperature stress. We aimed to better understand the effects of heat stress on the health of dairy cows and observing biological changes. Individual cows were divided into normal (21-22 °C, 50-60% humidity) and high temperature (31-32 °C, 80-95% humidity), respectively, for 7-days. We performed metabolomic and transcriptome analyses of the blood and gut microbiomes of feces. In the high-temperature group, nine metabolites including linoleic acid and fructose were downregulated, and 154 upregulated and 72 downregulated DEGs (Differentially Expressed Genes) were identified, and eighteen microbes including Intestinimonas and Pseudoflavonifractor in genus level were significantly different from normal group. Linoleic acid and fructose have confirmed that associated with various stresses, and functional analysis of DEG and microorganisms showing significant differences confirmed that high-temperature stress is related to the inflammatory response, immune system, cellular energy mechanism, and microbial butyrate production. These biological changes were likely to withstand high-temperature stress. Immune and inflammatory responses are known to be induced by heat stress, which has been identified to maintain homeostasis through modulation at metabolome, transcriptome and microbiome levels. In these findings, heat stress condition can trigger alteration of immune system and cellular energy metabolism, which is shown as reduced metabolites, pathway enrichment and differential microbes. As results of this study did not include direct phenotypic data, we believe that additional validation is required in the future. In conclusion, high-temperature stress contributed to the reduction of metabolites, changes in gene expression patterns and composition of gut microbiota, which are thought to support dairy cows in withstanding high-temperature stress via modulating immune-related genes, and cellular energy metabolism to maintain homeostasis.
Collapse
Affiliation(s)
- Hana Kim
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
| | - Jang-Hoon Jo
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Hong-Gu Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Woncheoul Park
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do, Republic of Korea
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
| | - Jong-Eun Park
- Department of Animal Biotechnology, College of Applied Life Science, Jeju National University, Jeju, Jeju-do, Republic of Korea
| | - Donghyun Shin
- Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
| |
Collapse
|
12
|
Potapenko A, Davidson JM, Lee A, Laird AS. The deubiquitinase function of ataxin-3 and its role in the pathogenesis of Machado-Joseph disease and other diseases. Biochem J 2024; 481:461-480. [PMID: 38497605 PMCID: PMC11088879 DOI: 10.1042/bcj20240017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Machado-Joseph disease (MJD) is a devastating and incurable neurodegenerative disease characterised by progressive ataxia, difficulty speaking and swallowing. Consequently, affected individuals ultimately become wheelchair dependent, require constant care, and face a shortened life expectancy. The monogenic cause of MJD is expansion of a trinucleotide (CAG) repeat region within the ATXN3 gene, which results in polyglutamine (polyQ) expansion within the resultant ataxin-3 protein. While it is well established that the ataxin-3 protein functions as a deubiquitinating (DUB) enzyme and is therefore critically involved in proteostasis, several unanswered questions remain regarding the impact of polyQ expansion in ataxin-3 on its DUB function. Here we review the current literature surrounding ataxin-3's DUB function, its DUB targets, and what is known regarding the impact of polyQ expansion on ataxin-3's DUB function. We also consider the potential neuroprotective effects of ataxin-3's DUB function, and the intersection of ataxin-3's role as a DUB enzyme and regulator of gene transcription. Ataxin-3 is the principal pathogenic protein in MJD and also appears to be involved in cancer. As aberrant deubiquitination has been linked to both neurodegeneration and cancer, a comprehensive understanding of ataxin-3's DUB function is important for elucidating potential therapeutic targets in these complex conditions. In this review, we aim to consolidate knowledge of ataxin-3 as a DUB and unveil areas for future research to aid therapeutic targeting of ataxin-3's DUB function for the treatment of MJD and other diseases.
Collapse
Affiliation(s)
- Anastasiya Potapenko
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Jennilee M. Davidson
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Albert Lee
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Angela S. Laird
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
13
|
Gasque-Belz L, Raes K, Park B, Colville C, Siciliano S, Hogan N, Weber L, Campbell P, Peters R, Hanson M, Hecker M. Hazard assessment of complex legacy-contaminated groundwater mixtures using a novel approach method in adult fathead minnows. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133299. [PMID: 38141307 DOI: 10.1016/j.jhazmat.2023.133299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
Traditional risk assessment methods face challenges in the determination of drivers of toxicity for complex mixtures such as those present at legacy-contaminated sites. Bioassay-driven analysis across several levels of biological organization represents an approach to address these obstacles. This study aimed to apply a novel transcriptomics tool, the EcoToxChip, to characterize the effects of complex mixtures of contaminants in adult fathead minnows (FHMs) and to compare molecular response patterns to higher-level biological responses. Adult FHMs were exposed for 4 and 21 days to groundwater mixtures collected from a legacy-contaminated site. Adult FHM showed significant induction of micronuclei in erythrocytes, decrease in reproductive capacities, and some abnormal appearance of liver histology. Parallel EcoToxChip analyses showed a high proportion of upregulated genes and a few downregulated genes characteristic of compensatory responses. The three most enriched pathways included thyroid endocrine processes, transcription and translation cellular processes, and xenobiotics and reactive oxygen species metabolism. Several of the most differentially regulated genes involved in these biological pathways could be linked to the apical outcomes observed in FHMs. We concluded that molecular responses as determined by EcoToxChip analysis show promise for informing of apical outcomes and could support risk assessments of complex contaminated sites.
Collapse
Affiliation(s)
- Laura Gasque-Belz
- Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Katherine Raes
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bradley Park
- Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Carly Colville
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Steven Siciliano
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Natacha Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lynn Weber
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Rachel Peters
- Federated Co-operatives Limited, Saskatoon, SK, Canada
| | - Mark Hanson
- Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
14
|
Bianchi C, Alvarez-Castelao B, Sebastián-Serrano Á, Di Lauro C, Soria-Tobar L, Nicke A, Engel T, Díaz-Hernández M. P2X7 receptor inhibition ameliorates ubiquitin-proteasome system dysfunction associated with Alzheimer's disease. Alzheimers Res Ther 2023; 15:105. [PMID: 37287063 DOI: 10.1186/s13195-023-01258-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Over recent years, increasing evidence suggests a causal relationship between neurofibrillary tangles (NFTs) formation, the main histopathological hallmark of tauopathies, including Alzheimer's disease (AD), and the ubiquitin-proteasome system (UPS) dysfunction detected in these patients. Nevertheless, the mechanisms underlying UPS failure and the factors involved remain poorly understood. Given that AD and tauopathies are associated with chronic neuroinflammation, here, we explore if ATP, one of the danger-associated molecules patterns (DAMPs) associated with neuroinflammation, impacts on AD-associated UPS dysfunction. METHODS To evaluate if ATP may modulate the UPS via its selective P2X7 receptor, we combined in vitro and in vivo approaches using both pharmacological and genetic tools. We analyze postmortem samples from human AD patients and P301S mice, a mouse model that mimics pathology observed in AD patients, and those from the new transgenic mouse lines generated, such as P301S mice expressing the UPS reporter UbG76V-YFP or P301S deficient of P2X7R. RESULTS We describe for the first time that extracellular ATP-induced activation of the purinergic P2X7 receptor (P2X7R) downregulates the transcription of β5 and β1 proteasomal catalytic subunits via the PI3K/Akt/GSK3/Nfr2 pathway, leading to their deficient assembly into the 20S core proteasomal complex, resulting in a reduced proteasomal chymotrypsin-like and postglutamyl-like activities. Using UPS-reported mice (UbGFP mice), we identified neurons and microglial cells as the most sensitive cell linages to a P2X7R-mediated UPS regulation. In vivo pharmacological or genetic P2X7R blockade reverted the proteasomal impairment developed by P301S mice, which mimics that were detected in AD patients. Finally, the generation of P301S;UbGFP mice allowed us to identify those hippocampal cells more sensitive to UPS impairment and demonstrate that the pharmacological or genetic blockade of P2X7R promotes their survival. CONCLUSIONS Our work demonstrates the sustained and aberrant activation of P2X7R caused by Tau-induced neuroinflammation contributes to the UPS dysfunction and subsequent neuronal death associated with AD, especially in the hippocampus.
Collapse
Affiliation(s)
- Carolina Bianchi
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, 28040, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Beatriz Alvarez-Castelao
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, 28040, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Álvaro Sebastián-Serrano
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, 28040, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Caterina Di Lauro
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, 28040, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Lucia Soria-Tobar
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, 28040, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tobias Engel
- Department of Physiology and Medical Physics, RCSI, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Miguel Díaz-Hernández
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, 28040, Madrid, Spain.
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain.
| |
Collapse
|
15
|
Oliveri F, Keller SJ, Goebel H, Alvarez Salinas GO, Basler M. The ubiquitin-like modifier FAT10 is degraded by the 20S proteasome in vitro but not in cellulo. Life Sci Alliance 2023; 6:e202201760. [PMID: 37012049 PMCID: PMC10070814 DOI: 10.26508/lsa.202201760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
Ubiquitin-independent protein degradation via the 20S proteasome without the 19S regulatory particle has gained increasing attention over the last years. The degradation of the ubiquitin-like modifier FAT10 by the 20S proteasome was investigated in this study. We found that FAT10 was rapidly degraded by purified 20S proteasomes in vitro, which was attributed to the weak folding of FAT10 and the N-terminally disordered tail. To confirm our results in cellulo, we established an inducible RNA interference system in which the AAA-ATPase Rpt2 of the 19S regulatory particle is knocked down to impair the function of the 26S proteasome. Using this system, degradation of FAT10 in cellulo was strongly dependent on functional 26S proteasome. Our data indicate that in vitro degradation studies with purified proteins do not necessarily reflect biological degradation mechanisms occurring in cells and, therefore, cautious data interpretation is required when 20S proteasome function is studied in vitro.
Collapse
Affiliation(s)
- Franziska Oliveri
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Heike Goebel
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Michael Basler
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany;
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| |
Collapse
|
16
|
Chand K, Barman MK, Ghosh P, Mitra D. DNAJB8 facilitates autophagic-lysosomal degradation of viral Vif protein and restricts HIV-1 virion infectivity by rescuing APOBEC3G expression in host cells. FASEB J 2023; 37:e22793. [PMID: 36723955 DOI: 10.1096/fj.202201738r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 02/02/2023]
Abstract
HSP40/DNAJ family of proteins is the most diverse chaperone family, comprising about 49 isoforms in humans. Several reports have demonstrated the functional role of a few of these isoforms in the pathogenesis of various viruses, including HIV-1. Our earlier study has shown that several isoforms of HSP40 get significantly modulated at the mRNA level during HIV-1 infection in T cells. To explore the biological role of these significantly modulated isoforms, we analyzed their effect on HIV-1 gene expression and virus production using knockdown and overexpression studies. Among these isoforms, DNAJA3, DNAJB1, DNAJB7, DNAJC4, DNAJC5B, DNAJC5G, DNAJC6, DNAJC22, and DNAJC30 seem to positively regulate virus replication, whereas DNAJB3, DNAJB6, DNAJB8, and DNAJC5 negatively regulate virus replication. Further investigation on the infectivity of the progeny virion demonstrated that only DNAJB8 negatively regulates the progeny virion infectivity. It was further identified that DNAJB8 protein is involved in the downregulation of Vif protein, required for the infectivity of HIV-1 virions. DNAJB8 seems to direct Vif protein for autophagic-lysosomal degradation, leading to rescue of the cellular restriction factor APOBEC3G from Vif-mediated proteasomal degradation, resulting in enhanced packaging of APOBEC3G in budding virions and release of less infective progeny virion particles. Finally, our results also indicate that during the early stage of HIV-1 infection, enhanced expression of DNAJB8 promotes the production of less infective progeny virions, but at the later stage or at the peak of infection, reduced expression of DNJAB8 protein allows the HIV-1 to replicate and produce more infective progeny virion particles.
Collapse
Affiliation(s)
- Kailash Chand
- National Centre for Cell Science, SP Pune University Campus, Pune, India
| | | | - Payel Ghosh
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
| | - Debashis Mitra
- National Centre for Cell Science, SP Pune University Campus, Pune, India
| |
Collapse
|
17
|
Verma A, Kommaddi RP, Gnanabharathi B, Hirsch EC, Ravindranath V. Genes critical for development and differentiation of dopaminergic neurons are downregulated in Parkinson's disease. J Neural Transm (Vienna) 2023; 130:495-512. [PMID: 36820885 DOI: 10.1007/s00702-023-02604-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
We performed transcriptome analysis using RNA sequencing on substantia nigra pars compacta (SNpc) from mice after acute and chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment and from Parkinson's disease (PD) patients. Acute and chronic exposure to MPTP resulted in decreased expression of genes involved in sodium channel regulation. However, upregulation of pro-inflammatory pathways was seen after single dose but not after chronic MPTP treatment. Dopamine biosynthesis and synaptic vesicle recycling pathways were downregulated in PD patients and after chronic MPTP treatment in mice. Genes essential for midbrain development and determination of dopaminergic phenotype such as, LMX1B, FOXA1, RSPO2, KLHL1, EBF3, PITX3, RGS4, ALDH1A1, RET, FOXA2, EN1, DLK1, GFRA1, LMX1A, NR4A2, GAP43, SNCA, PBX1, and GRB10 were downregulated in human PD and overexpression of GFP tagged LMX1B rescued MPP+ induced death in SH-SY5Y neurons. Downregulation of gene ensemble involved in development and differentiation of dopaminergic neurons indicate their potential involvement in pathogenesis and progression of human PD.
Collapse
Affiliation(s)
- Aditi Verma
- Centre for Neuroscience, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
| | - Reddy Peera Kommaddi
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India
| | | | - Etienne C Hirsch
- Sorbonne Université, Institut du Cerveau - ICM, Inserm U 1127, CNRS UMR 7225, 75013, Paris, France
| | - Vijayalakshmi Ravindranath
- Centre for Neuroscience, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India. .,Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
18
|
Xu S, Gierisch ME, Schellhaus AK, Poser I, Alberti S, Salomons FA, Dantuma NP. Cytosolic stress granules relieve the ubiquitin-proteasome system in the nuclear compartment. EMBO J 2023; 42:e111802. [PMID: 36574355 PMCID: PMC9890234 DOI: 10.15252/embj.2022111802] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/28/2022] Open
Abstract
The role of cytosolic stress granules in the integrated stress response has remained largely enigmatic. Here, we studied the functionality of the ubiquitin-proteasome system (UPS) in cells that were unable to form stress granules. Surprisingly, the inability of cells to form cytosolic stress granules had primarily a negative impact on the functionality of the nuclear UPS. While defective ribosome products (DRiPs) accumulated at stress granules in thermally stressed control cells, they localized to nucleoli in stress granule-deficient cells. The nuclear localization of DRiPs was accompanied by redistribution and enhanced degradation of SUMOylated proteins. Depletion of the SUMO-targeted ubiquitin ligase RNF4, which targets SUMOylated misfolded proteins for proteasomal degradation, largely restored the functionality of the UPS in the nuclear compartment in stress granule-deficient cells. Stress granule-deficient cells showed an increase in the formation of mutant ataxin-1 nuclear inclusions when exposed to thermal stress. Our data reveal that stress granules play an important role in the sequestration of cytosolic misfolded proteins, thereby preventing these proteins from accumulating in the nucleus, where they would otherwise infringe nuclear proteostasis.
Collapse
Affiliation(s)
- Shanshan Xu
- Department of Cell and Molecular Biology (CMB)Karolinska InstitutetStockholmSweden
| | - Maria E Gierisch
- Department of Cell and Molecular Biology (CMB)Karolinska InstitutetStockholmSweden
| | | | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB)Technische Universität DresdenDresdenGermany
| | - Florian A Salomons
- Department of Cell and Molecular Biology (CMB)Karolinska InstitutetStockholmSweden
| | - Nico P Dantuma
- Department of Cell and Molecular Biology (CMB)Karolinska InstitutetStockholmSweden
| |
Collapse
|
19
|
Noori L, Filip K, Nazmara Z, Mahakizadeh S, Hassanzadeh G, Caruso Bavisotto C, Bucchieri F, Marino Gammazza A, Cappello F, Wnuk M, Scalia F. Contribution of Extracellular Vesicles and Molecular Chaperones in Age-Related Neurodegenerative Disorders of the CNS. Int J Mol Sci 2023; 24:927. [PMID: 36674442 PMCID: PMC9861359 DOI: 10.3390/ijms24020927] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Many neurodegenerative disorders are characterized by the abnormal aggregation of misfolded proteins that form amyloid deposits which possess prion-like behavior such as self-replication, intercellular transmission, and consequent induction of native forms of the same protein in surrounding cells. The distribution of the accumulated proteins and their correlated toxicity seem to be involved in the progression of nervous system degeneration. Molecular chaperones are known to maintain proteostasis, contribute to protein refolding to protect their function, and eliminate fatally misfolded proteins, prohibiting harmful effects. However, chaperone network efficiency declines during aging, prompting the onset and the development of neurological disorders. Extracellular vesicles (EVs) are tiny membranous structures produced by a wide range of cells under physiological and pathological conditions, suggesting their significant role in fundamental processes particularly in cellular communication. They modulate the behavior of nearby and distant cells through their biological cargo. In the pathological context, EVs transport disease-causing entities, including prions, α-syn, and tau, helping to spread damage to non-affected areas and accelerating the progression of neurodegeneration. However, EVs are considered effective for delivering therapeutic factors to the nervous system, since they are capable of crossing the blood-brain barrier (BBB) and are involved in the transportation of a variety of cellular entities. Here, we review the neurodegeneration process caused mainly by the inefficiency of chaperone systems as well as EV performance in neuropathies, their potential as diagnostic biomarkers and a promising EV-based therapeutic approach.
Collapse
Affiliation(s)
- Leila Noori
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Kamila Filip
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35959 Rzeszow, Poland
| | - Zohreh Nazmara
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Simin Mahakizadeh
- Department of Anatomy, School of Medicine, Alborz University of Medical Sciences, Karaj 3149779453, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Fabio Bucchieri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Maciej Wnuk
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35959 Rzeszow, Poland
| | - Federica Scalia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| |
Collapse
|
20
|
Guo H, Yi J, Wang F, Lei T, Du H. Potential application of heat shock proteins as therapeutic targets in Parkinson's disease. Neurochem Int 2023; 162:105453. [PMID: 36402293 DOI: 10.1016/j.neuint.2022.105453] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/08/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Parkinson's disease (PD) is a common chronic neurodegenerative disease, and the heat shock proteins (HSPs) are proved to be of great value for PD. In addition, HSPs can maintain protein homeostasis, degrade and inhibit protein aggregation by properly folding and activating intracellular proteins in PD. This study mainly summarizes the important roles of HSPs in PD and explores their feasibility as targets. We introduced the structural and functional characteristics of HSPs and the physiological functions of HSPs in PD. HSPs can protect neurons from damage by degrading aggregates with three mechanisms, including the aggregation and removing α-Synuclein (α-Syn) aggregates, promotion the autophagy of abnormal proteins, and inhibition the apoptosis of degenerated neurons. This study underscores the importance of HSPs as targets in PD and helps to expand new mechanisms in PD treatment strategies.
Collapse
Affiliation(s)
- Haodong Guo
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jingsong Yi
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Fan Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tong Lei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
21
|
Insights of metal 8-hydroxylquinolinol complexes as the potential anticancer drugs. J Inorg Biochem 2023; 238:112051. [PMID: 36327497 DOI: 10.1016/j.jinorgbio.2022.112051] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
8-Hydroxyquinoline and its derivatives, which belong to a well-known class of quinoline based drugs with varied biological activities, have been extensively explored for the treatments of cancer, Alzheimer's disease, neurodegenerative diseases and other life-threatening diseases. In virtue of the existence of bicyclic heterocyclic scaffold, their bidentate chelators can further bind to metal ions via O- and N-donors from 8-hydroxylquinolinol skeletons to yield a variety of metal 8-hydroxylquinolinol complexes appealing as the anticancer drugs with low toxicity, due to their better biological effects and higher anticancer activities than free 8-hydroxylquinolinol ligands and cis-diammine-dichloro-platinum. The present review summarizes the recent developments in the syntheses, crystal structures, and anticancer activities of metal 8-hydroxylquinolinol complexes, attempting to discover a correlation between their structures and anticancer activities, and to provide an evidence for their potential application perspectives. It means to offer the helpful and meaningful guidance for the researchers in the future syntheses of new and highly efficient anticancer metal 8-hydroxylquinolinol complexes based drugs.
Collapse
|
22
|
Kim H, Gomez-Pastor R. HSF1 and Its Role in Huntington's Disease Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:35-95. [PMID: 36396925 PMCID: PMC12001818 DOI: 10.1007/5584_2022_742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE OF REVIEW Heat shock factor 1 (HSF1) is the master transcriptional regulator of the heat shock response (HSR) in mammalian cells and is a critical element in maintaining protein homeostasis. HSF1 functions at the center of many physiological processes like embryogenesis, metabolism, immune response, aging, cancer, and neurodegeneration. However, the mechanisms that allow HSF1 to control these different biological and pathophysiological processes are not fully understood. This review focuses on Huntington's disease (HD), a neurodegenerative disease characterized by severe protein aggregation of the huntingtin (HTT) protein. The aggregation of HTT, in turn, leads to a halt in the function of HSF1. Understanding the pathways that regulate HSF1 in different contexts like HD may hold the key to understanding the pathomechanisms underlying other proteinopathies. We provide the most current information on HSF1 structure, function, and regulation, emphasizing HD, and discussing its potential as a biological target for therapy. DATA SOURCES We performed PubMed search to find established and recent reports in HSF1, heat shock proteins (Hsp), HD, Hsp inhibitors, HSF1 activators, and HSF1 in aging, inflammation, cancer, brain development, mitochondria, synaptic plasticity, polyglutamine (polyQ) diseases, and HD. STUDY SELECTIONS Research and review articles that described the mechanisms of action of HSF1 were selected based on terms used in PubMed search. RESULTS HSF1 plays a crucial role in the progression of HD and other protein-misfolding related neurodegenerative diseases. Different animal models of HD, as well as postmortem brains of patients with HD, reveal a connection between the levels of HSF1 and HSF1 dysfunction to mutant HTT (mHTT)-induced toxicity and protein aggregation, dysregulation of the ubiquitin-proteasome system (UPS), oxidative stress, mitochondrial dysfunction, and disruption of the structural and functional integrity of synaptic connections, which eventually leads to neuronal loss. These features are shared with other neurodegenerative diseases (NDs). Currently, several inhibitors against negative regulators of HSF1, as well as HSF1 activators, are developed and hold promise to prevent neurodegeneration in HD and other NDs. CONCLUSION Understanding the role of HSF1 during protein aggregation and neurodegeneration in HD may help to develop therapeutic strategies that could be effective across different NDs.
Collapse
Affiliation(s)
- Hyuck Kim
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
23
|
Monteiro KLC, Dos Santos Alcântara MG, Freire NML, Brandão EM, do Nascimento VL, Dos Santos Viana LM, de Aquino TM, da Silva-Júnior EF. BACE-1 Inhibitors Targeting Alzheimer's Disease. Curr Alzheimer Res 2023; 20:131-148. [PMID: 37309767 DOI: 10.2174/1567205020666230612155953] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/27/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023]
Abstract
The accumulation of amyloid-β (Aβ) is the main event related to Alzheimer's disease (AD) progression. Over the years, several disease-modulating approaches have been reported, but without clinical success. The amyloid cascade hypothesis evolved and proposed essential targets such as tau protein aggregation and modulation of β-secretase (β-site amyloid precursor protein cleaving enzyme 1 - BACE-1) and γ-secretase proteases. BACE-1 cuts the amyloid precursor protein (APP) to release the C99 fragment, giving rise to several Aβ peptide species during the subsequent γ-secretase cleavage. In this way, BACE-1 has emerged as a clinically validated and attractive target in medicinal chemistry, as it plays a crucial role in the rate of Aβ generation. In this review, we report the main results of candidates in clinical trials such as E2609, MK8931, and AZD-3293, in addition to highlighting the pharmacokinetic and pharmacodynamic-related effects of the inhibitors already reported. The current status of developing new peptidomimetic, non-peptidomimetic, naturally occurring, and other class inhibitors are demonstrated, considering their main limitations and lessons learned. The goal is to provide a broad and complete approach to the subject, exploring new chemical classes and perspectives.
Collapse
Affiliation(s)
- Kadja Luana Chagas Monteiro
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| | - Marcone Gomes Dos Santos Alcântara
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| | - Nathalia Monteiro Lins Freire
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| | - Esaú Marques Brandão
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| | - Vanessa Lima do Nascimento
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| | - Líbni Maísa Dos Santos Viana
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| | - Thiago Mendonça de Aquino
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| | - Edeildo Ferreira da Silva-Júnior
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| |
Collapse
|
24
|
Pasko VI, Churkina AS, Shakhov AS, Kotlobay AA, Alieva IB. Modeling of Neurodegenerative Diseases: 'Step by Step' and 'Network' Organization of the Complexes of Model Systems. Int J Mol Sci 2022; 24:ijms24010604. [PMID: 36614047 PMCID: PMC9820769 DOI: 10.3390/ijms24010604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/17/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
Neurodegenerative diseases have acquired the status of one of the leading causes of death in developed countries, which requires creating new model systems capable of accurately reproducing the mechanisms underlying these pathologies. Here we analyzed modern model systems and their contribution to the solution of unexplored manifestations of neuropathological processes. Each model has unique properties that make it the optimal tool for modeling certain aspects of neurodegenerative disorders. We concluded that to optimize research, it is necessary to combine models into complexes that include organisms and artificial systems of different organizational levels. Such complexes can be organized in two ways. The first method can be described as "step by step", where each model for studying a certain characteristic is a separate step that allows using the information obtained in the modeling process for the gradual study of increasingly complex processes in subsequent models. The second way is a 'network' approach. Studies are carried out with several types of models simultaneously, and experiments with each specific type are adjusted in conformity with the data obtained from other models. In our opinion, the 'network' approach to combining individual model systems seems more promising for fundamental biology as well as diagnostics and therapy.
Collapse
Affiliation(s)
| | - Aleksandra Sergeevna Churkina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1–73, Leninskye Gory, 119992 Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40, Leninskye Gory, 119992 Moscow, Russia
| | - Anton Sergeevich Shakhov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40, Leninskye Gory, 119992 Moscow, Russia
| | - Anatoly Alexeevich Kotlobay
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya St., 119435 Moscow, Russia
| | - Irina Borisovna Alieva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40, Leninskye Gory, 119992 Moscow, Russia
- Correspondence:
| |
Collapse
|
25
|
Pearse Y, Clarke D, Kan SH, Le SQ, Sanghez V, Luzzi A, Pham I, Nih LR, Cooper JD, Dickson PI, Iacovino M. Brain transplantation of genetically corrected Sanfilippo type B neural stem cells induces partial cross-correction of the disease. Mol Ther Methods Clin Dev 2022; 27:452-463. [PMID: 36419468 PMCID: PMC9672419 DOI: 10.1016/j.omtm.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Sanfilippo syndrome type B (mucopolysaccharidosis type IIIB) is a recessive genetic disorder that severely affects the brain due to a deficiency in the enzyme α-N-acetylglucosaminidase (NAGLU), leading to intra-lysosomal accumulation of partially degraded heparan sulfate. There are no effective treatments for this disorder. In this project, we carried out an ex vivo correction of neural stem cells derived from Naglu -/- mice (iNSCs) induced pluripotent stem cells (iPSC) using a modified enzyme in which human NAGLU is fused to an insulin-like growth factor II receptor binding peptide in order to improve enzyme uptake. After brain transplantation of corrected iNSCs into Naglu -/- mice and long-term evaluation of their impact, we successfully detected NAGLU-IGFII activity in all transplanted animals. We found decreased lysosomal accumulation and reduced astrocytosis and microglial activation throughout transplanted brains. We also identified a novel neuropathological phenotype in untreated Naglu -/- brains with decreased levels of the neuronal marker Map2 and accumulation of synaptophysin-positive aggregates. Upon transplantation, we restored levels of Map2 expression and significantly reduced formation of synaptophysin-positive aggregates. Our findings suggest that genetically engineered iNSCs can be used to effectively deliver the missing enzyme to the brain and treat Sanfilippo type B-associated neuropathology.
Collapse
Affiliation(s)
- Yewande Pearse
- Department of Pediatrics, the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Don Clarke
- Department of Pediatrics, the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Shih-hsin Kan
- Department of Pediatrics, the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- CHOC Research Institute, Orange, CA 92868, USA
| | - Steven Q. Le
- Department of Pediatrics, the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Valentina Sanghez
- Department of Pediatrics, the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Anna Luzzi
- Department of Pediatrics, the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Ivy Pham
- Department of Neurology, the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Lina R. Nih
- Department of Pediatrics, the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- Department of Neurology, the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jonathan D. Cooper
- Department of Pediatrics, Washington University, Saint Louis, MO 63110, USA
| | | | - Michelina Iacovino
- Department of Pediatrics, the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
26
|
Della Valle M, D'Abrosca G, Gentile MT, Russo L, Isernia C, Di Gaetano S, Avolio R, Castaldo R, Cocca M, Gentile G, Malgieri G, Errico ME, Fattorusso R. Polystyrene nanoplastics affect the human ubiquitin structure and ubiquitination in cells: a high-resolution study. Chem Sci 2022; 13:13563-13573. [PMID: 36507175 PMCID: PMC9682910 DOI: 10.1039/d2sc04434j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Humans are estimated to consume several grams per week of nanoplastics (NPs) through exposure to a variety of contamination sources. Nonetheless, the effects of these polymeric particles on living systems are still mostly unknown. Here, by means of CD, NMR and TEM analyses, we describe at an atomic resolution the interaction of ubiquitin with polystyrene NPs (PS-NPs), showing how a hard protein corona is formed. Moreover, we report that in human HeLa cells exposure to PS-NPs leads to a sensible reduction of ubiquitination. Our study overall indicates that PS-NPs cause significant structural effects on ubiquitin, thereby influencing one of the key metabolic processes at the base of cell viability.
Collapse
Affiliation(s)
- M Della Valle
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania - Luigi Vanvitelli Via Vivaldi 43 81100 Caserta Italy
| | - G D'Abrosca
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania - Luigi Vanvitelli Via Vivaldi 43 81100 Caserta Italy
| | - M T Gentile
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania - Luigi Vanvitelli Via Vivaldi 43 81100 Caserta Italy
| | - L Russo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania - Luigi Vanvitelli Via Vivaldi 43 81100 Caserta Italy
| | - C Isernia
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania - Luigi Vanvitelli Via Vivaldi 43 81100 Caserta Italy
| | - S Di Gaetano
- Institute of Biostructures and Bioimaging-CNR Via Mezzocannone 16 80134 Naples Italy
| | - R Avolio
- Institute for Polymers, Composites and Biomaterials - CNR Via Campi Flegrei, 34, 80078 Pozzuoli Naples Italy
| | - R Castaldo
- Institute for Polymers, Composites and Biomaterials - CNR Via Campi Flegrei, 34, 80078 Pozzuoli Naples Italy
| | - M Cocca
- Institute for Polymers, Composites and Biomaterials - CNR Via Campi Flegrei, 34, 80078 Pozzuoli Naples Italy
| | - G Gentile
- Institute for Polymers, Composites and Biomaterials - CNR Via Campi Flegrei, 34, 80078 Pozzuoli Naples Italy
| | - G Malgieri
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania - Luigi Vanvitelli Via Vivaldi 43 81100 Caserta Italy
| | - M E Errico
- Institute for Polymers, Composites and Biomaterials - CNR Via Campi Flegrei, 34, 80078 Pozzuoli Naples Italy
| | - R Fattorusso
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania - Luigi Vanvitelli Via Vivaldi 43 81100 Caserta Italy
| |
Collapse
|
27
|
Wang W, Jiang S, Xu C, Tang L, Liang Y, Zhao Y, Zhu G. Interactions between gut microbiota and Parkinson's disease: The role of microbiota-derived amino acid metabolism. Front Aging Neurosci 2022; 14:976316. [PMID: 36408101 PMCID: PMC9667037 DOI: 10.3389/fnagi.2022.976316] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/29/2022] [Indexed: 11/05/2022] Open
Abstract
Non-motor symptoms (NMS) of Parkinson's disease (PD), such as constipation, sleep disorders, and olfactory deficits, may emerge up to 20 years earlier than motor symptoms. A series of evidence indicates that the pathology of PD may occur from the gastrointestinal tract to the brain. Numerous studies support that the gut microbiota communicates with the brain through the immune system, special amino acid metabolism, and the nervous system in PD. Recently, there is growing recognition that the gut microbiota plays a vital role in the modulation of multiple neurochemical pathways via the “gut microbiota-brain axis” (GMBA). Many gut microbiota metabolites, such as fatty acids, amino acids, and bile acids, convey signaling functions as they mediate the crosstalk between gut microbiota and host physiology. Amino acids' abundance and species alteration, including glutamate and tryptophan, may disturb the signaling transmission between nerve cells and disrupt the normal basal ganglia function in PD. Specific amino acids and their receptors are considered new potential targets for ameliorating PD. The present study aimed to systematically summarize all available evidence on the gut microbiota-derived amino acid metabolism alterations associated with PD.
Collapse
Affiliation(s)
- Wang Wang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shujun Jiang
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chengcheng Xu
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lili Tang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Liang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Yang Zhao
| | - Guoxue Zhu
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Guoxue Zhu
| |
Collapse
|
28
|
Molecular crowding induced loss of native conformation and aggregation of α-chymotrypsinogen A. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Zeng J, Wang X, Pan F, Mao Z. The relationship between Parkinson's disease and gastrointestinal diseases. Front Aging Neurosci 2022; 14:955919. [PMID: 36034146 PMCID: PMC9399652 DOI: 10.3389/fnagi.2022.955919] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/25/2022] [Indexed: 01/03/2023] Open
Abstract
An increasing number of studies have provided evidence for the hypothesis that the pathogenesis of Parkinson's disease (PD) may derive from the gut. Firstly, Lewy pathology can be induced in the enteric nervous system (ENS) and be transported to the central nervous system (CNS) via the vagal nerve. Secondly, the altered composition of gut microbiota causes an imbalance between beneficial and deleterious microbial metabolites which interacts with the increased gut permeability and the gut inflammation as well as the systemic inflammation. The activated inflammatory status then affects the CNS and promotes the pathology of PD. Given the above-mentioned findings, researchers start to pay attention to the connection between PD and gastrointestinal diseases including irritable bowel syndrome, inflammatory bowel disease (IBD), microscopic colitis (MC), gastrointestinal infections, gastrointestinal neoplasms, and colonic diverticular disease (CDD). This review focuses on the association between PD and gastrointestinal diseases as well as the pathogenesis of PD from the gut.
Collapse
Affiliation(s)
- Jiaqi Zeng
- Department of Gastroenterology and Hepatology, First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Xinchan Wang
- Department of Gastroenterology and Hepatology, First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Nankai University, Tianjin, China
| | - Fei Pan
- Department of Gastroenterology and Hepatology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhiqi Mao
- Department of Neurosurgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
30
|
Salari S, Bamorovat M, Sharifi I, Almani PGN. Global distribution of treatment resistance gene markers for leishmaniasis. J Clin Lab Anal 2022; 36:e24599. [PMID: 35808933 PMCID: PMC9396204 DOI: 10.1002/jcla.24599] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/19/2022] [Accepted: 06/28/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Pentavalent antimonials (Sb(V)) such as meglumine antimoniate (Glucantime®) and sodium stibogluconate (Pentostam®) are used as first-line treatments for leishmaniasis, either alone or in combination with second-line drugs such as amphotericin B (Amp B), miltefosine (MIL), methotrexate (MTX), or cryotherapy. Therapeutic aspects of these drugs are now challenged because of clinical resistance worldwide. METHODS We reviewedthe recent original studies were assessed by searching in electronic databases such as Scopus, Pubmed, Embase, and Web of Science. RESULTS Studies on molecular biomarkers involved in drug resistance are essential for monitoring the disease. We reviewed genes and mechanisms of resistance to leishmaniasis, and the geographical distribution of these biomarkers in each country has also been thoroughly investigated. CONCLUSION Due to the emergence of resistant genes mainly in anthroponotic Leishmania species such as L. donovani and L. tropica, as the causative agents of ACL and AVL, respectively, selection of an appropriate treatment modality is essential. Physicians should be aware of the presence of such resistance for the selection of proper treatment modalities in endemic countries.
Collapse
Affiliation(s)
- Samira Salari
- Medical Mycology and Bacteriology Research CenterKerman University of Medical SciencesKermanIran
| | - Mehdi Bamorovat
- Leishmaniasis Research CenterKerman University of Medical SciencesKermanIran
| | - Iraj Sharifi
- Leishmaniasis Research CenterKerman University of Medical SciencesKermanIran
| | | |
Collapse
|
31
|
Ebner JN, Wyss MK, Ritz D, von Fumetti S. Effects of thermal acclimation on the proteome of the planarian Crenobia alpina from an alpine freshwater spring. J Exp Biol 2022; 225:276068. [PMID: 35875852 PMCID: PMC9440759 DOI: 10.1242/jeb.244218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022]
Abstract
Species' acclimation capacity and their ability to maintain molecular homeostasis outside ideal temperature ranges will partly predict their success following climate change-induced thermal regime shifts. Theory predicts that ectothermic organisms from thermally stable environments have muted plasticity, and that these species may be particularly vulnerable to temperature increases. Whether such species retained or lost acclimation capacity remains largely unknown. We studied proteome changes in the planarian Crenobia alpina, a prominent member of cold-stable alpine habitats that is considered to be a cold-adapted stenotherm. We found that the species' critical thermal maximum (CTmax) is above its experienced habitat temperatures and that different populations exhibit differential CTmax acclimation capacity, whereby an alpine population showed reduced plasticity. In a separate experiment, we acclimated C. alpina individuals from the alpine population to 8, 11, 14 or 17°C over the course of 168 h and compared their comprehensively annotated proteomes. Network analyses of 3399 proteins and protein set enrichment showed that while the species' proteome is overall stable across these temperatures, protein sets functioning in oxidative stress response, mitochondria, protein synthesis and turnover are lower in abundance following warm acclimation. Proteins associated with an unfolded protein response, ciliogenesis, tissue damage repair, development and the innate immune system were higher in abundance following warm acclimation. Our findings suggest that this species has not suffered DNA decay (e.g. loss of heat-shock proteins) during evolution in a cold-stable environment and has retained plasticity in response to elevated temperatures, challenging the notion that stable environments necessarily result in muted plasticity. Summary: The proteome of an alpine Crenobia alpina population shows plasticity in response to acclimation to warmer temperatures.
Collapse
Affiliation(s)
- Joshua Niklas Ebner
- 1 Spring Ecology Research Group, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Mirjam Kathrin Wyss
- 1 Spring Ecology Research Group, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Danilo Ritz
- 2 Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Stefanie von Fumetti
- 1 Spring Ecology Research Group, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
32
|
Sinha P, Verma B, Ganesh S. Age-Dependent Reduction in the Expression Levels of Genes Involved in Progressive Myoclonus Epilepsy Correlates with Increased Neuroinflammation and Seizure Susceptibility in Mouse Models. Mol Neurobiol 2022; 59:5532-5548. [PMID: 35732865 DOI: 10.1007/s12035-022-02928-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022]
Abstract
Brain aging is characterized by a gradual decline in cellular homeostatic processes, thereby losing the ability to respond to physiological stress. At the anatomical level, the aged brain is characterized by degenerating neurons, proteinaceous plaques and tangles, intracellular deposition of glycogen, and elevated neuroinflammation. Intriguingly, such age-associated changes are also seen in neurodegenerative disorders suggesting that an accelerated aging process could be one of the contributory factors for the disease phenotype. Amongst these, the genetic forms of progressive myoclonus epilepsy (PME), resulting from loss-of-function mutations in genes, manifest symptoms that are common to age-associated disorders, and genes mutated in PME are involved in the cellular homeostatic processes. Intriguingly, the incidence and/or onset of epileptic seizures are known to increase with age, suggesting that physiological changes in the aged brain might contribute to increased susceptibility to seizures. We, therefore, hypothesized that the expression level of genes implicated in PME might decrease with age, thereby leading to a compromised neuronal response towards physiological stress and hence neuroinflammation in the aging brain. Using mice models, we demonstrate here that the expression level of PME genes shows an inverse correlation with age, neuroinflammation, and compromised heat shock response. We further show that the pharmacological suppression of neuroinflammation ameliorates seizure susceptibility in aged animals as well as in animal models for a PME. Taken together, our results indicate a functional role for the PME genes in normal brain aging and that neuroinflammation could be a major contributory player in susceptibility to seizures.
Collapse
Affiliation(s)
- Priyanka Sinha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh, Kanpur, 208016, India
| | - Bhupender Verma
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh, Kanpur, 208016, India
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh, Kanpur, 208016, India. .,Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
33
|
Lambert-Smith IA, Saunders DN, Yerbury JJ. Progress in biophysics and molecular biology proteostasis impairment and ALS. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 174:3-27. [PMID: 35716729 DOI: 10.1016/j.pbiomolbio.2022.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 05/19/2022] [Accepted: 06/09/2022] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disease that results from the loss of both upper and lower motor neurons. It is the most common motor neuron disease and currently has no effective treatment. There is mounting evidence to suggest that disturbances in proteostasis play a significant role in ALS pathogenesis. Proteostasis is the maintenance of the proteome at the right level, conformation and location to allow a cell to perform its intended function. In this review, we present a thorough synthesis of the literature that provides evidence that genetic mutations associated with ALS cause imbalance to a proteome that is vulnerable to such pressure due to its metastable nature. We propose that the mechanism underlying motor neuron death caused by defects in mRNA metabolism and protein degradation pathways converges on proteostasis dysfunction. We propose that the proteostasis network may provide an effective target for therapeutic development in ALS.
Collapse
Affiliation(s)
- Isabella A Lambert-Smith
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Darren N Saunders
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
34
|
Schellhaus AK, Xu S, Gierisch ME, Vornberger J, Johansson J, Dantuma NP. A spider silk-derived solubility domain inhibits nuclear and cytosolic protein aggregation in human cells. Commun Biol 2022; 5:505. [PMID: 35618760 PMCID: PMC9135726 DOI: 10.1038/s42003-022-03442-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/03/2022] [Indexed: 11/12/2022] Open
Abstract
Due to the inherent toxicity of protein aggregates, the propensity of natural, functional amyloidogenic proteins to aggregate must be tightly controlled to avoid negative consequences on cellular viability. The importance of controlled aggregation in biological processes is illustrated by spidroins, which are functional amyloidogenic proteins that form the basis for spider silk. Premature aggregation of spidroins is prevented by the N-terminal NT domain. Here we explored the potential of the engineered, spidroin-based NT* domain in preventing protein aggregation in the intracellular environment of human cells. We show that the NT* domain increases the soluble pool of a reporter protein carrying a ligand-regulatable aggregation domain. Interestingly, the NT* domain prevents the formation of aggregates independent of its position in the aggregation-prone protein. The ability of the NT* domain to inhibit ligand-regulated aggregation was evident both in the cytosolic and nuclear compartments, which are both highly relevant for human disorders linked to non-physiological protein aggregation. We conclude that the spidroin-derived NT* domain has a generic anti-aggregation activity, independent of position or subcellular location, that is also active in human cells and propose that the NT* domain can potentially be exploited in controlling protein aggregation of disease-associated proteins. Spider-silk protein increases the solubility of an aggregation-prone reporter protein, showing potential applications in controlling aggregation of disease-associated proteins by natural solubility domains.
Collapse
Affiliation(s)
- Anna Katharina Schellhaus
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, S-17165, Stockholm, Sweden
| | - Shanshan Xu
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, S-17165, Stockholm, Sweden
| | - Maria E Gierisch
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, S-17165, Stockholm, Sweden
| | - Julia Vornberger
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, S-17165, Stockholm, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, S-14183, Huddinge, Sweden
| | - Nico P Dantuma
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, S-17165, Stockholm, Sweden.
| |
Collapse
|
35
|
Wang Q, Xie L, Wang Y, Jin B, Ren J, Dong Z, Chen G, Liu D. Djhsp70s, especially Djhsp70c, play a key role in planarian regeneration and tissue homeostasis by regulating cell proliferation and apoptosis. Gene 2022; 820:146215. [PMID: 35122923 DOI: 10.1016/j.gene.2022.146215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/13/2021] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
Abstract
Heat shock protein 70 family (HSP70s) is one of the most conserved and important group of HSPs as molecular chaperones, which plays an important role in cytoprotection, anti-apoptosis and so on. However, the molecular mechanism of HSP70s in animal regeneration remains to be delineated. In this study, we investigate the roles of HSP70s in regeneration of planarian. The four genes, Djhsp70a, Djhsp70b, Djhsp70c, and Djhsp70d of the HSP70s, are selected from the transcriptome database, because of their high expression levels in planarians. We then study the biological roles of each gene by conducting various experimental techniques, including RNAi, RT-PCR, WISH, Whole-mount immunostaining and TUNEL. The results show: (1) External stressors, such as temperature, tissue damage and ionic liquid upregulate the expression of Djhsp70s significantly. (2) The gene expression of Djhsp70s in planarians exhibits dynamic patterns. According to the result of WISH, the Djhsp70s are mainly expressed in parenchymal tissues on both sides of the body as well as blastema. It is consistent with the data of qRT-PCR. (3) After RNA interference of Djhsp70s, the worms experience cephalic regression and lysis, body curling, stagnant regeneration and death. (4) Knockdown of Djhsp70s affect the cell proliferation and apoptosis. These results suggest that Djhsp70s are not only conserved in cytoprotection, but involved in homeostasis maintenance and regeneration process by regulating coordination of cell proliferation and apoptosis in planarians.
Collapse
Affiliation(s)
- Qinghua Wang
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Lijuan Xie
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Yixuan Wang
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Baijie Jin
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Jing Ren
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Dezeng Liu
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| |
Collapse
|
36
|
Thackray AM, Lam B, McNulty EE, Nalls AV, Mathiason CK, Magadi SS, Jackson WS, Andréoletti O, Marrero-Winkens C, Schätzl H, Bujdoso R. Clearance of variant Creutzfeldt-Jakob disease prions in vivo by the Hsp70 disaggregase system. Brain 2022; 145:3236-3249. [PMID: 35446941 PMCID: PMC9473358 DOI: 10.1093/brain/awac144] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/10/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
The metazoan Hsp70 disaggregase protects neurons from proteotoxicity that arises from the accumulation of misfolded protein aggregates. Hsp70 and its co-chaperones disassemble and extract polypeptides from protein aggregates for refolding or degradation. The effectiveness of the chaperone system decreases with age and leads to accumulation rather than removal of neurotoxic protein aggregates. Therapeutic enhancement of the Hsp70 protein disassembly machinery is proposed to counter late-onset protein misfolding neurodegenerative disease that may arise. In the context of prion disease, it is not known whether stimulation of protein aggregate disassembly paradoxically leads to enhanced formation of seeding competent species of disease-specific proteins and acceleration of neurodegenerative disease. Here we have tested the hypothesis that modulation of Hsp70 disaggregase activity perturbs mammalian prion-induced neurotoxicity and prion seeding activity. To do so we used prion protein (PrP) transgenic Drosophila that authentically replicate mammalian prions. RNASeq identified that Hsp70, DnaJ-1 and Hsp110 gene expression was downregulated in prion-exposed PrP Drosophila. We demonstrated that RNAi knockdown of Hsp110 or DnaJ-1 gene expression in variant Creutzfeldt–Jakob disease prion-exposed human PrP Drosophila enhanced neurotoxicity, whereas overexpression mitigated toxicity. Strikingly, prion seeding activity in variant Creutzfeldt–Jakob disease prion-exposed human PrP Drosophila was ablated or reduced by Hsp110 or DnaJ-1 overexpression, respectively. Similar effects were seen in scrapie prion-exposed ovine PrP Drosophila with modified Hsp110 or DnaJ-1 gene expression. These unique observations show that the metazoan Hsp70 disaggregase facilitates the clearance of mammalian prions and that its enhanced activity is a potential therapeutic strategy for human prion disease.
Collapse
Affiliation(s)
- Alana M Thackray
- University of Cambridge, Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 0ES, UK
| | - Brian Lam
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Erin E McNulty
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Amy V Nalls
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Candace K Mathiason
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Srivathsa Subramanya Magadi
- Wallenberg Center for Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, 581 83 Linköping, Sweden
| | - Walker S Jackson
- Wallenberg Center for Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, 581 83 Linköping, Sweden
| | - Olivier Andréoletti
- UMR INRA ENVT 1225 -Hôtes-Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | - Cristóbal Marrero-Winkens
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary TRW 2D10, 3280 Hospital Drive NW, Calgary, AB, Canada T2N 4Z6
| | - Hermann Schätzl
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary TRW 2D10, 3280 Hospital Drive NW, Calgary, AB, Canada T2N 4Z6
| | - Raymond Bujdoso
- University of Cambridge, Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 0ES, UK
| |
Collapse
|
37
|
El-Sappah AH, Seif MM, Abdel-Kader HH, Soaud SA, Elhamid MAA, Abdelghaffar AM, El-Sappah HH, Sarwar H, Yadav V, Maitra P, Zhao X, Yan K, Li J, Abbas M. Genotoxicity and Trace Elements Contents Analysis in Nile Tilapia (Oreochromis niloticus) Indicated the Levels of Aquatic Contamination at Three Egyptian Areas. Front Vet Sci 2022; 9:818866. [PMID: 35478598 PMCID: PMC9038200 DOI: 10.3389/fvets.2022.818866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/02/2022] [Indexed: 11/30/2022] Open
Abstract
The toxic waste and pollutants of heavy metals continuously pollute freshwater aquatic reservoirs, which have severe implications on aquatic life and human health. The present work aims to evaluate trace elements (Zn, Mn, Cu, Cd, and Pb) along with three sites, Mariout Lake, Abbassa, and River Nile Aswan in Egypt, using Nile tilapia (Oreochromis niloticus) as bioindicator. The quality assurance, health-risk assessment, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), quantitative polymerase chain reaction (qPCR), and micronucleus test were performed to investigate the effect of different trace elements on Hsp70 gene level and micronuclei formation. We observed the highest expression of Hsp70 protein band of 70 KD and stress-responsive Hsp70 gene in the liver followed by gills of Nile tilapia caught from Mariout and Abbassa, but the lowest expression was in Nile tilapia caught from Aswan. Obvious micronuclei were observed under the microscope in erythrocytes, and their number was gradually decreased in the following manner: Mariout > Abbassa > Aswan. Noticeably, Cu, Zn, and Mn contents were low. Still, Pb and Cd contents were higher than the toxicity level recommended by the Food and Agriculture Organization (FAO), The World Health Organization (WHO), and the European Commission (EC). These results showed that Hsp70's appearance at the two levels of mRNA and protein is an effective indicator for aquatic pollution besides the aberration at the chromosome level represented in the micronucleus test. Furthermore, these results showed that Nile tilapia of the Aswan region had comparatively low trace elements contamination and were suitable for consumption.
Collapse
Affiliation(s)
- Ahmed H. El-Sappah
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mohamed M. Seif
- Toxicology and Food Contaminants Department, Food Industries and Nutrition Research Institute, National Research Centre, Giza, Egypt
| | | | - Salma A. Soaud
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | | | | | - Huda Sarwar
- Department of Bioscience, University of Wah, Wah Cantt, Pakistan
| | - Vivek Yadav
- College of Horticulture, Northwest A&F University, Xianyang, China
| | - Pulak Maitra
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Xianming Zhao
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Kuan Yan
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Kuan Yan
| | - Jia Li
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Jia Li
| | - Manzar Abbas
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- *Correspondence: Manzar Abbas
| |
Collapse
|
38
|
Wankhede NL, Kale MB, Upaganlawar AB, Taksande BG, Umekar MJ, Behl T, Abdellatif AAH, Bhaskaran PM, Dachani SR, Sehgal A, Singh S, Sharma N, Makeen HA, Albratty M, Dailah HG, Bhatia S, Al-Harrasi A, Bungau S. Involvement of molecular chaperone in protein-misfolding brain diseases. Biomed Pharmacother 2022; 147:112647. [PMID: 35149361 DOI: 10.1016/j.biopha.2022.112647] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 12/19/2022] Open
Abstract
Protein misfolding causes aggregation and build-up in a variety of brain diseases. There are numeral molecules that are linked with the protein homeostasis mechanism. Molecular chaperones are one of such molecules that are responsible for protection against protein misfolded and aggregation-induced neurotoxicity. Many studies have explored the participation of molecular chaperones in Parkinson's disease, Alzheimer's disease, Amyotrophic lateral sclerosis, and Huntington's diseases. In this review, we highlighted the constructive role of molecular chaperones in neurological diseases characterized by protein misfolding and aggregation and their capability to control aberrant protein interactions at an early stage thus successfully suppressing pathogenic cascades. A comprehensive understanding of the protein misfolding associated with brain diseases and the molecular basis of involvement of chaperone against aggregation-induced cellular stress might lead to the progress of new therapeutic intrusion-related to protein misfolding and aggregation.
Collapse
Affiliation(s)
- Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nasik, Maharashta, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | | | - Sudarshan Reddy Dachani
- Department of Pharmacy Practice & Pharmacology, College of Pharmacy, Shaqra University (Al-Dawadmi Campus), Al-Dawadmi, Saudi Arabia
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan university, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hamed Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Saudi Arabia
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania.
| |
Collapse
|
39
|
Sun M, Hu F, Wang T, Zhang T, Jing Y, Guo W, Chen Q, Liu G. Effect of temperature on the toxicokinetics and gene expression of the pacific cupped oyster Crassostrea gigas exposed to cadmium. Comp Biochem Physiol C Toxicol Pharmacol 2022; 253:109252. [PMID: 34968742 DOI: 10.1016/j.cbpc.2021.109252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 01/28/2023]
Abstract
In this study, we investigated the influence of temperature on the bioaccumulation and depuration of Crassostrea gigas exposed to Cd associated with its molecular responses. Oysters were acclimatized to different temperatures (10 °C, 15 °C, 20 °C, 25 °C, and 30 °C) for 14 d and then exposed to 10 μg/L Cd for 28 d, followed by a depuration period of 35 d. Oysters were sampled for chemical analysis by inductively coupled plasma mass spectrometry (ICP-MS) and for mRNA quantification by qPCR. In the digestive gland, gill, and mantle, the cadmium concentration at 10 °C was significantly lower than that at 25 °C and 30 °C in both the whole experiments. The use of a two-compartment model showed that the uptake rate k1 in the above three tissues increased with increasing temperatures ranging from 15 to 25 °C. The fastest elimination rates and shortest half-lives were observed at 15-25 °C. The induction of metallothionein (MT) only occurred in the digestive gland at 15 °C and 20 °C at the end of the accumulation phase. In the mantle and gills, the expression of P-glycoprotein (P-gp) was significantly induced at the end of the accumulation phase and significantly inhibited at the end of the depuration phase. In the digestive gland, the expression of P-gp was induced at the end of both the accumulation and depuration phases. Heat shock protein (hsp70) expression exhibited an overall increasing trend throughout the experiment.
Collapse
Affiliation(s)
- Ming Sun
- Marine Science Institute of Shandong Province, Qingdao 266104, PR China
| | - Fanguang Hu
- Marine Science Institute of Shandong Province, Qingdao 266104, PR China
| | - Tianming Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Tianwen Zhang
- Marine Science Institute of Shandong Province, Qingdao 266104, PR China
| | - Yuanyuan Jing
- Marine Science Institute of Shandong Province, Qingdao 266104, PR China
| | - Wen Guo
- Marine Science Institute of Shandong Province, Qingdao 266104, PR China
| | - Qun Chen
- Marine Science Institute of Shandong Province, Qingdao 266104, PR China
| | - Guangbin Liu
- Marine Science Institute of Shandong Province, Qingdao 266104, PR China.
| |
Collapse
|
40
|
Sarmah S, Roy AS. A review on prevention of glycation of proteins: Potential therapeutic substances to mitigate the severity of diabetes complications. Int J Biol Macromol 2022; 195:565-588. [DOI: 10.1016/j.ijbiomac.2021.12.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 12/21/2022]
|
41
|
Baldan S, Meriin AB, Yaglom J, Alexandrov I, Varelas X, Xiao ZXJ, Sherman MY. The Hsp70-Bag3 complex modulates the phosphorylation and nuclear translocation of Hippo pathway protein Yap. J Cell Sci 2021; 134:273417. [PMID: 34761265 DOI: 10.1242/jcs.259107] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/28/2021] [Indexed: 11/20/2022] Open
Abstract
Protein abnormalities can accelerate aging causing protein misfolding diseases, and various adaptive responses have evolved to relieve proteotoxicity. To trigger these responses, cells must detect the buildup of aberrant proteins. Previously we demonstrated that the Hsp70-Bag3 (HB) complex senses the accumulation of defective ribosomal products, stimulating signaling pathway proteins, such as stress kinases or the Hippo pathway kinase LATS1. Here, we studied how Bag3 regulates the ability for LATS1 to regulate its key downstream target YAP (also known as YAP1). In naïve cells, Bag3 recruited a complex of LATS1, YAP and the scaffold AmotL2, which links LATS1 and YAP. Upon inhibition of the proteasome, AmotL2 dissociated from Bag3, which prevented phosphorylation of YAP by LATS1, and led to consequent nuclear YAP localization together with Bag3. Mutations in Bag3 that enhanced its translocation into nucleus also facilitated nuclear translocation of YAP. Interestingly, Bag3 also controlled YAP nuclear localization in response to cell density, indicating broader roles beyond proteotoxic signaling responses for Bag3 in the regulation of YAP. These data implicate Bag3 as a regulator of Hippo pathway signaling, and suggest mechanisms by which proteotoxic stress signals are propagated.
Collapse
Affiliation(s)
- Simone Baldan
- Department of Molecular Biology, Ariel University, Ariel 4077625, Israel
| | - Anatoli B Meriin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02215, USA
| | - Julia Yaglom
- Department of Molecular Biology, Ariel University, Ariel 4077625, Israel
| | | | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02215, USA
| | | | - Michael Y Sherman
- Department of Molecular Biology, Ariel University, Ariel 4077625, Israel
| |
Collapse
|
42
|
Manganese Intoxication Recovery and the Expression Changes of Park2/Parkin in Rats. Neurochem Res 2021; 47:897-906. [PMID: 34839452 DOI: 10.1007/s11064-021-03493-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/18/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
Occupational overexposure to manganese (Mn) produces Parkinson's disease-like manganism. Acute Mn intoxication in rats causes dopaminergic neuron loss, impairment of motor activity and reduction of the expression of Park2/Parkin. The expression of Park2/Parkin is also reduced. Whether these changes are reversible after cessation of Mn exposure is unknown, and is the goal of this investigation. Adult male rats were injected with Mn2+ at doses 1 mg/kg and 5 mg/kg in the form of MnCl2·4H2O, every other day for one-month to produce acute Mn neurotoxicity. For a half of rats Mn exposure was suspended for recovery for up to 5 months. Mn neurotoxicity was evaluated by the accumulation of Mn in blood and brain, behavioral activities, dopaminergic neuron loss, and the expression of Park2/Parkin in the blood cells and brain. Dose-dependent Mn neurotoxicity in rats was evidenced by Mn accumulation, rotarod impairments, reduction of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra, decreased level of Park2 mRNA in the blood and brain, and decreased Parkin protein in the brain. After cessation of Mn exposure, the amount of Park2 mRNA in the blood started to increase one month after the recovery. After 5-month of recovery, blood and brain Mn returned to normal, rotarod activity recovered, the reduction of TH-positive dopaminergic neurons ameliorated, and the level of Park2 mRNA in the blood and Park2/Parkin in the midbrain and striatum were returned to the normal. Mn neurotoxicity in rats is reversible after cessation of Mn exposure. The level of Park2 mRNA in the blood could be used as a novel biomarker for Mn exposure and recovery.
Collapse
|
43
|
Giovannucci TA, Salomons FA, Stoy H, Herzog LK, Xu S, Qian W, Merino LG, Gierisch ME, Haraldsson M, Lystad AH, Uvell H, Simonsen A, Gustavsson AL, Vallin M, Dantuma NP. Identification of a novel compound that simultaneously impairs the ubiquitin-proteasome system and autophagy. Autophagy 2021; 18:1486-1502. [PMID: 34740308 PMCID: PMC9298443 DOI: 10.1080/15548627.2021.1988359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) and macroautophagy/autophagy are the main proteolytic systems in eukaryotic cells for preserving protein homeostasis, i.e., proteostasis. By facilitating the timely destruction of aberrant proteins, these complementary pathways keep the intracellular environment free of inherently toxic protein aggregates. Chemical interference with the UPS or autophagy has emerged as a viable strategy for therapeutically targeting malignant cells which, owing to their hyperactive state, heavily rely on the sanitizing activity of these proteolytic systems. Here, we report on the discovery of CBK79, a novel compound that impairs both protein degradation by the UPS and autophagy. While CBK79 was identified in a high-content screen for drug-like molecules that inhibit the UPS, subsequent analysis revealed that this compound also compromises autophagic degradation of long-lived proteins. We show that CBK79 induces non-canonical lipidation of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 beta) that requires ATG16L1 but is independent of the ULK1 (unc-51 like autophagy activating kinase 1) and class III phosphatidylinositol 3-kinase (PtdIns3K) complexes. Thermal preconditioning of cells prevented CBK79-induced UPS impairment but failed to restore autophagy, indicating that activation of stress responses does not allow cells to bypass the inhibitory effect of CBK79 on autophagy. The identification of a small molecule that simultaneously impairs the two main proteolytic systems for protein quality control provides a starting point for the development of a novel class of proteostasis-targeting drugs.
Collapse
Affiliation(s)
- Tatiana A Giovannucci
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Florian A Salomons
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Henriette Stoy
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Laura K Herzog
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Shanshan Xu
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Weixing Qian
- Laboratories for Chemical Biology Umeå, Chemical Biology Consortium Sweden (CBCS), Umeå University, Umeå, Sweden
| | - Lara G Merino
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Maria E Gierisch
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Martin Haraldsson
- Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Alf H Lystad
- Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Blindern, Oslo, Norway
| | - Hanna Uvell
- Laboratories for Chemical Biology Umeå, Chemical Biology Consortium Sweden (CBCS), Umeå University, Umeå, Sweden
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Blindern, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Anna-Lena Gustavsson
- Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Michaela Vallin
- Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nico P Dantuma
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
44
|
Fang H, Du Y, Pan S, Zhong M, Tang J. Patients with Parkinson's disease predict a lower incidence of colorectal cancer. BMC Geriatr 2021; 21:564. [PMID: 34663210 PMCID: PMC8522030 DOI: 10.1186/s12877-021-02497-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 09/22/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Recent theory on the "gut-brain axis" suggests a close relationship between the dysfunction of the gut and the disorders of the brain. METHODS We performed a systemic literature search followed by a multi-step inclusion selection for all studies on the risk of Colorectal cancer (CRC) in Parkinson's disease (PD) patients using the following databases: PubMed, EMBASE and WOS. Relative risk (RR) and the 95% confidence intervals (CI) were calculated using either the random-effects model or the fixed-effects meta-analysis model, based on the assessment of heterogeneity. RESULTS Seventeen studies involving a total of 375,964 PD patients and 879,307 cancer patients were included. Independent meta-analyses for cohort studies and case-control studies showed that the overall pooled RR of the cohort studies was 0.78 (0.66-0.91), and that of the case-control studies was 0.78 (0.65-0.94), indicating that patients with PD have a significantly decreased risk for CRC. The significant lower risk is present in both the colon and the rectum subgroups classified by tumor location. Moreover, the risk for CRC is significantly lower in America (RR = 0.58), Europe (RR = 0.82) and Asia (RR = 0.83) compared to the control population. CONCLUSION The occurrence of CRC was significantly lower in patients with diagnosis of PD.
Collapse
Affiliation(s)
- Hongsheng Fang
- Department of gastrointestinal surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yunlan Du
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuting Pan
- Clinical Center for Investigation, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Zhong
- Department of gastrointestinal surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jiayin Tang
- Department of gastrointestinal surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
45
|
Kuhar N, Sil S, Umapathy S. Potential of Raman spectroscopic techniques to study proteins. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 258:119712. [PMID: 33965670 DOI: 10.1016/j.saa.2021.119712] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/23/2021] [Accepted: 03/12/2021] [Indexed: 05/18/2023]
Abstract
Proteins are large, complex molecules responsible for various biological processes. However, protein misfolding may lead to various life-threatening diseases. Therefore, it is vital to understand the shape and structure of proteins. Despite numerous techniques, a mechanistic understanding of the protein folding process is still unclear. Therefore, new techniques are continually being explored. In the present article, we have discussed the importance of Raman spectroscopy, Raman Optical Activity (ROA) and various other advancements in Raman spectroscopy to understand protein structure and conformational changes based on the review of our earlier work and recent literature. A Raman spectrum of a protein provides unique signatures for various secondary structures like helices, beta-sheets, turns, random structures, etc., and various amino acid residues such as tyrosine, tryptophan, and phenylalanine. We have shown how Raman spectra can differentiate between bovine serum albumin (BSA) and lysozyme protein based on their difference in sequence and structure (primary, secondary and tertiary). Although it is challenging to elucidate the structure of a protein using a Raman spectrum alone, Raman spectra can be used to differentiate small changes in conformations of proteins such as BSA during melting. Various new advancements in technique and data analyses in Raman spectroscopic studies of proteins have been discussed. The last part of the review focuses on the importance of the ROA spectrum to understand additional features about proteins. The ROA spectrum is rich in information about the protein backbone due to its rigidity compared to its side chains. Furthermore, the ROA spectra of lysozyme and BSA have been presented to show how ROA provides extra information about the solvent properties of proteins.
Collapse
Affiliation(s)
- Nikki Kuhar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru 560 012, Karnataka, India
| | - Sanchita Sil
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru 560 012, Karnataka, India; Defence Bioengineering and Electromedical Laboratory (DEBEL), Defence Research and Development Organization (DRDO), C V Raman Nagar, Bangalore 560 093, Karnataka, India
| | - Siva Umapathy
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru 560 012, Karnataka, India; Department of Instrumentation & Applied Physics, Indian Institute of Science, Bengaluru 560 012, Karnataka, India.
| |
Collapse
|
46
|
Iyer K, Chand K, Mitra A, Trivedi J, Mitra D. Diversity in heat shock protein families: functional implications in virus infection with a comprehensive insight of their role in the HIV-1 life cycle. Cell Stress Chaperones 2021; 26:743-768. [PMID: 34318439 PMCID: PMC8315497 DOI: 10.1007/s12192-021-01223-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Heat shock proteins (HSPs) are a group of cellular proteins that are induced during stress conditions such as heat stress, cold shock, UV irradiation and even pathogenic insult. They are classified into families based on molecular size like HSP27, 40, 70 and 90 etc, and many of them act as cellular chaperones that regulate protein folding and determine the fate of mis-folded or unfolded proteins. Studies have also shown multiple other functions of these proteins such as in cell signalling, transcription and immune response. Deregulation of these proteins leads to devastating consequences, such as cancer, Alzheimer's disease and other life threatening diseases suggesting their potential importance in life processes. HSPs exist in multiple isoforms, and their biochemical and functional characterization still remains a subject of active investigation. In case of viral infections, several HSP isoforms have been documented to play important roles with few showing pro-viral activity whereas others seem to have an anti-viral role. Earlier studies have demonstrated that HSP40 plays a pro-viral role whereas HSP70 inhibits HIV-1 replication; however, clear isoform-specific functional roles remain to be established. A detailed functional characterization of all the HSP isoforms will uncover their role in cellular homeostasis and also may highlight some of them as potential targets for therapeutic strategies against various viral infections. In this review, we have tried to comprehend the details about cellular HSPs and their isoforms, their role in cellular physiology and their isoform-specific functions in case of virus infection with a specific focus on HIV-1 biology.
Collapse
Affiliation(s)
- Kruthika Iyer
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Kailash Chand
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Alapani Mitra
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Jay Trivedi
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Debashis Mitra
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
47
|
Ye X, Tang X, Zhao S, Ruan J, Wu M, Wang X, Li H, Zhong B. Mechanism of the growth and development of the posterior silk gland and silk secretion revealed by mutation of the fibroin light chain in silkworm. Int J Biol Macromol 2021; 188:375-384. [PMID: 34371049 DOI: 10.1016/j.ijbiomac.2021.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/12/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Silkworm, as a model organism, has very high economic value due to its silk secretion ability. Although a large number of studies have attempted to elucidate the mechanism of silk secretion, it remains unclear. In this study, the fibroin light chain (Fib-L) gene of silkworm was subjected to CRISPR/Cas9 editing, which yielded premature termination of translation at 135 aa. Compared with those of the wild type, the posterior silk glands (PSGs) of the homozygous mutants on the third day of the fifth instar showed obvious premature degeneration. Comparative transcriptome and proteomic analyses of the PSGs of wild-type individuals, heterozygous mutants and homozygous mutants were performed on the fourth day of the fifth instar. A GO enrichment analysis showed that the differentially expressed genes (DEGs) between homozygous mutants and wild-type individuals were enriched in cytoskeleton-related terms, and a KEGG enrichment analysis showed that the upregulated DEGs between homozygous mutants and wild-type individuals were enriched in the phagosome and apoptosis pathways. These results indicated that apoptosis was activated prematurely in the PSGs of homozygous mutants. Furthermore, autophagy and heat shock response were activated in the PSGs of homozygous mutants, as demonstrated by an analysis of the DEGs related to autophagy and heat shock. A comparative proteomic analysis further confirmed that autophagy, apoptosis and the heat shock response were activated in the PSGs of homozygous mutants, which led to premature degradation of the PSGs. These results provide insights for obtaining a more in-depth understanding of the mechanism of silk secretion in silkworms.
Collapse
Affiliation(s)
- Xiaogang Ye
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xiaoli Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Shuo Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Jinghua Ruan
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Meiyu Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xiaoxiao Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Huiping Li
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Boxiong Zhong
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
48
|
Nguyen J, Ghazali R, Batterham P, Perry T. Inhibiting the proteasome reduces molecular and biological impacts of the natural product insecticide, spinosad. PEST MANAGEMENT SCIENCE 2021; 77:3777-3786. [PMID: 33481333 DOI: 10.1002/ps.6290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 01/01/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Insecticide targets are often identified by mutations that confer resistance, but the intricacies of insecticide binding and downstream processes leading to insect death often remain obscure. Mutations in α6-like nicotinic acetylcholine receptor subunit genes have been associated with high levels of resistance to spinosad in many insect species, including Drosophila melanogaster. Here, we aimed to expand our understanding of the effects of the natural product insecticide spinosad on its protein target, the α6 subunit, using genetic tools available in D. melanogaster. RESULTS Functional, fluorescently tagged Dα6 subunits (Dα6YFP ) were developed to allow observation of the protein in vivo. Larvae expressing Dα6YFP were exposed to a sub-lethal concentration of spinosyn A (0.025 ppm) for 6 days, leading to a 64% reduction in fluorescence relative to unexposed larvae. Direct application of high doses of spinosyn A to dissected larval brains resulted in a visible 38.25% decrease in Dα6YFP within 20 min, indicating that degradation of the Dα6 protein occurred in response to spinosyn A exposure. Chemical inhibition of the proteasome system using the multiple myeloma treatment drug, PS-341 reduced loss of Dα6YFP in response to spinosyn A at the 20-min time point to 6.35%. In addition, in vivo administration of PS-341 prior to spinosad exposure reduced the effect of spinosad on larval activity. CONCLUSION Based on these data, we propose that exposure to spinosad leads to degradation of the α6-like target protein, a potentially novel element in the mode of action of spinosyns that may contribute to their toxicity towards insects. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Joseph Nguyen
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Australia
| | - Razi Ghazali
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Australia
| | - Philip Batterham
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Australia
| | - Trent Perry
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Australia
| |
Collapse
|
49
|
Jing L, Cheng S, Pan Y, Liu Q, Yang W, Li S, Li XJ. Accumulation of Endogenous Mutant Huntingtin in Astrocytes Exacerbates Neuropathology of Huntington Disease in Mice. Mol Neurobiol 2021; 58:5112-5126. [PMID: 34250577 DOI: 10.1007/s12035-021-02451-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/10/2021] [Indexed: 01/16/2023]
Abstract
Selective neuronal accumulation of misfolded proteins is a key step toward neurodegeneration in a wide range of neurodegenerative diseases, including Huntington's (HD) diseases. Our recent studies suggest that Hsp70-binding protein 1 (HspBP1), an Hsp70/CHIP inhibitor that reduces protein folding, is highly expressed in neuronal cells and accounts for the accumulation of the HD protein huntingtin (HTT) in neuronal cells. To further determine the role of HspBP1 in regulation of mutant protein accumulation, we investigated whether increasing expression of HspBP1 in glial cells can also induce the accumulation of endogenous mutant HTT in glial cells and yield non-cell-autonomous toxic effects. We performed stereotaxic injection of AAV to selectively express HspBP1 in astrocytes in the brains of HD140Q knock-in (KI) mice that express mutant HTT ubiquitously but do not display obvious neurodegeneration. However, HspBP1 expression in HD140Q astrocytes led to the increased accumulation of endogenous mutant HTT and robust neuronal loss in the striatum of HD140Q KI mice. In transgenic HD mice that selectively express mutant HTT in astrocytes, increased accumulation of mutant HTT in astrocytes via HspBP1 expression did not elicit neurodegeneration but could exacerbate neurological symptoms. Consistently, suppressing the expression of endogenous HspBp1 in the striatum of HD140Q KI mice via CRISPR/Cas9 led to a significant reduction of mutant HTT accumulation. Our findings suggest that although endogenous mutant HTT in astrocytes can exacerbate neurological symptoms, it mediates neurodegeneration only when mutant HTT is also accumulated in neuronal cells.
Collapse
Affiliation(s)
- Liang Jing
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hunan, China
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Siying Cheng
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yongcheng Pan
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Qiong Liu
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Weili Yang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
50
|
Musto M, Parisse P, Pachetti M, Memo C, Di Mauro G, Ballesteros B, Lozano N, Kostarelos K, Casalis L, Ballerini L. Shedding plasma membrane vesicles induced by graphene oxide nanoflakes in brain cultured astrocytes. CARBON 2021; 176:458-469. [DOI: 10.1016/j.carbon.2021.01.142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|